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Abstract: Anode materials have a vital influence on the performance of sodium ion batteries. In
this paper, SnSb nanoparticles were distributed uniformly in N-doped three-dimensional porous
carbon (SnSb@N-PC), which effectively avoided the agglomeration of alloy nanoparticles and greatly
improved the capacity retention rate of SnSb@N-PC. At the same time, the porous carbon substrate
brings higher conductivity, larger specific surface area, and more sodium storage sites, which makes
the material obtain excellent sodium storage properties. The first discharge-specific capacity of
SnSb@N-PC was 846.3 mAh g~! at the current density of 0.1 A g~!, and the specific capacity
remained at 483 mAh g~! after 100 cycles. Meanwhile, the specific capacity of SnSb@N-PC was
kept at 323 mAh g~ ! after 400 cycles at a high current density of 1.5 A g1, which indicated that the
recombination of SnSb with porous carbon played a key role in the electrochemical performance of
SnSb. The contribution of capacitance contrast capacity was able to reach more than 90% by the cyclic
voltammetry (CV) test at high sweep speed, and larger Na* diffusivity was obtained by the constant
current intermittent titration technique (GITT) test, which explains the good rate performance of
SnSb@N-PC.

Keywords: sodium ion battery; anode; SnSb alloy; fast charge and store sodium; sodium storage
mechanism

1. Introduction

With the rapid development of the economy, problems such as energy shortage and
environmental pollution are becoming more and more serious, and it is urgent to develop
clean and renewable energy [1-4]. It has become the consensus of the international community
to promote green and low-carbon technology innovation and develop a modern energy system
based on renewable energy [5-7]. Accelerating the transition to clean and low-carbon energy is
a global trend [8-10]. The lithium-ion battery has emerged as the most practical energy storage
solution due to its high energy density, extended cycle life, portability, and environmental
friendliness. Therefore, it is widely used in electronic equipment, electric vehicles, and power
grid energy storage fields [11-13]. However, due to the limited and uneven distribution of
lithium resources, there is a contradiction between supply and demand, which causes concern
about the cost of renewable energy and lithium-ion batteries. Therefore, it is urgent to develop
new energy storage systems [14-17]. Sodium ion batteries (NIBs) are considered as one of the
most promising electrochemical energy storage systems because of their abundant resources,
high safety, and low price [18-20]. Improving the performance of anode materials, cathode
anode materials, electrolytes, and other key components of NIBs has been widely studied,
which is very important for designing high-performance NIBs to meet the needs of large-scale
electrochemical energy storage [21-24].
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Anode materials have a vital influence on the performance of sodium ion
batteries [25-27]. Up to now, various anode materials, including insertion reactive (graphite
anode, MXene, etc.), alloy reactive (Sn, Sb, P, etc.), and conversion (Co3zOy4, FeSy, NiS/NiS,,
CoP, CoS/CoSe, CoSe, etc.), have been explored for NIBs [28-36]. Alloy materials have
been widely concerned by researchers because of their high specific capacity of sodium
storage, relatively high reaction potential, and high conductivity [37-39]. However, the
poor reaction kinetics of alloy materials, huge volume changes, and irreversible structural
deterioration in the process of sodium intercalation and desalination lead to pulveriza-
tion of materials and rapid attenuation of specific capacity, which limit the application of
alloy materials [40,41]. In order to solve these problems, a great deal of work including
micro/nano-scale structure design, introduction of buffer matrix materials, preparation of
multi-metallic compounds, and so on have been devoted to improving properties of alloy
materials [42—44]. But up to now, the performance of alloy-based hosts is not satisfactory,
which is very important for the design of high-performance NIBs [45]. Therefore, it is a
key problem to explore high-performance anodes and promote the application of alloy
materials in NIBs.

Among the various alloy anode materials, Sn and Sb as anodes for NIBs usually
undergo serious structural degradation and large volume change (Naj55ny is about 424%,
and NazSb is about 390%) during sodiation/desodiation processes, which results in ag-
glomeration, pulverization, and electrochemical inactivation [46-48]. Due to the different
sodiation/desodiation of Sn and Sb, alloying can achieve the gradual formation of amor-
phous, nano-limited intermediate phases and the corresponding elastic softening of highly
natrified Sn and Sb phases, which becomes an effective way to absorb and mitigate the
large volume changes and material pulverization during Na™* insertion/extraction [49-51].
Hence, SnSb alloys have received widespread attention as anode materials for NIBs. A
series of unique SnSb alloys (such as SnSb microparticles, colloidal SnSb nanocrystals,
and porous SnSb) and SnSb@C composites (such as SnSb@N-doped carbon, SnSb@porous
carbon nanofibers, SnSb@carbon nanocable@graphene sheets, SnSb@graphene, SnSb@N-
doped porous graphene network, and SnSb@N-rich porous carbon nanowires) have been
lucubrated, which presents excellent Na* storage performances [46,49-55]. However, to
meet the growing demand for high-power electric vehicles and large-scale energy stor-
age systems and compete with LIBs and other emerging battery technologies, the rate
performance and cycle stability of SnSb-based anode materials in NIBs need further im-
provement [56-58]. The corresponding Na* storage mechanism also needs to be further
investigated [59-64]. At present, there are two significant issues should be addressed
urgently for the development of SnSb-based anode materials in NIBs: how to obtain the
fabrication of ultrasmall SnSb nanoparticles (e.g., <5 nm in diameter) and how to select the
suitable substrates for SnSb alloys (currently mainly refer to carbon materials) [65-67].

Recently, metal-organic frameworks (MOFs), especially the ZIF-8 system with the
advantages of wide range of application, easy synthesis, and relatively excellent struc-
tural stability, have received a lot of attention as starting materials for carbon and carbon
composites. An important application of MOFs is to combine with other materials to
prepare ultra-small nanoparticle hybrids embedded in a carbon matrix [68]. For example,
ultra-small Sn nanodots with a size of 2-3 nm were synthesized, and Sn particles have
limited dispersion in N-doped mesoporous MOEF-derived carbon substrates [69]. Yu et al.
used the constraint effect of N-doped microporous carbon derived from ZIF-8 to prepare
ultra-small red P nanoparticles with a diameter of <1 nm by the evaporation-condension—
transformation method [70]. Jiao et al. reported that ultra-small Sn nanoparticles (~0.8 nm)
were encapsulated in N-doped microporous carbon matrix derived from ZIF-8 by the
chemical vapor transformation method [71]. However, the electrochemical properties of
the materials obtained by the above experimental scheme are still lacking. In order to
solve the above problem:s, it is very important to use the facial chemical reduction method
based on liquid phase adsorption to reduce different metal ions to metal particles, which
has the advantages of high efficiency, easy operation, and simple equipment, as well as
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being conducive to the preparation of different kinds of nanoparticles [72]. However, the
preparation of ultra-small SnSb nanoparticles by rapid reduction methods has not yet been
reported, and this remains a challenge [73]. In addition, a suitable carbon substrate with
small size and a large number of micropores plays an important role in the preparation
of ultra-small alloy nanoparticles, avoiding the aggregation of alloy nanoparticles, and
promoting the Na* insertion/extraction kinetics [74].

Herein, in order to solve the problem of excessive volume expansion of antimony
during charge and discharge and the rapid decay of capacity caused by the material
pulverization, we employed ZIF-8 as carbon substrate and successfully synthesized the
N-doped three-dimensional porous carbon (N-PC)-supported SnSb@N-PC nanocomposites
as anodes for rechargeable NIBs with the chemical reduction method and a subsequent
thermal treatment process. N-doped three-dimensional porous carbon (N-PC) was selected
as the matrix, which can store and limit the SnSb alloy particles. With SbCl3 and SnCly
as raw materials, SnSb@N-PC composites with unique structure were prepared by the
chemical reduction method with small size and limited domain. The special structure
effectively avoided agglomeration of SnSb alloy nanoparticles. Therefore, the cycle stability
of the material of SnSb@N-PC as an anode for NIBs was tested. SnSb@N-PC composites
present a specific capacity of 483 mAh g~! and maintained stable cycling after 100 cycles at
0.1 A g~ ! current density, and it showed a high capacity of 323 mAh g~! after 400 cycles
at the current density of 1.5 A g~!. Moreover, the porous carbon substrate brings higher
conductivity, larger specific surface area, and more sodium storage sites. The diffusion
coefficients of SnNSb@N-PC composites are mainly about 10! cm? s~1. As a result, the rate
performance and sodium storage performance are significantly improved. On the basis of
the ultrafast electrochemical performance, the SnNSb@N-PC is a highly promising electrode
material for sodium ion batteries and it may serve as an appropriate electrode material for
other energy storage devices.

2. Results

Figure 1 shows the synthesis process of SnSb@N-PC composite. The size of ZIF-8
ranged from 150 nm to 200 nm. The sample was washed with 2.5 mol L~! dilute HCI
solution because Zn?* was oxidized to Zn during high-temperature pyrolysis. In this
process, the disappearance of Zn made a large number of micropores and mesopores
appear in the samples (N-PC). Then, SnSb nanoparticles were uniformly distributed in
the three-dimensional porous carbon materials using SnCly and SbCl3 as raw materials.
Subsequently, the composites were characterized, and electrochemical tests were carried
out. The corresponding reaction process of SnSb@N-PC is as follows:

Zn + 2HCl — ZnCl, + Hy, 1)
2SbCl; + 6NaBHy — 2Sb + 6BH; + 6NaCl + 3H,, @)
SnCly + NaBHy4 — Sn + BC13 + NaCl + 2H,, (3)

Zn**

Ar, 900°C
-

SbCls, SnCly

-
Ultrasonic
stirring

Pyrolysis

SnSb NPs

Figure 1. Schematic diagram of the synthesis process of SnSb@N-PC composites and the morphology
of SnSb@N-PC.
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3. Discussion

The XRD of SnSb@N-PC composite material is shown in Figure 2a. The positions of
the characteristic peaks of SnSb@N-PC and pure bulk SnSb were basically the same. The
diffraction peaks at 28.8°, 40.1°, 41.9°, 51.7°, 59.8°, 68.6°, and 75.8° corresponded to the
(012), (104), (110), (202), (024), (122), and (009) crystal planes of Sb in SnSb and SnSb@N-
PC by comparing with the SnSb standard card (JCPDS#33-0118), respectively. All the
diffraction peaks were very sharp, and there were no obvious miscellaneous peaks, which
shows that the alloy material had a high degree of crystallization, uniform composition,
and ideal purity of the material. As shown in Figure 2b, Raman spectra of SnSb@N-PC were
measured, where two typical peaks at 1342.58 and 1591.00 cm ! belonged to the D band
and G band of pyrolytic carbon, respectively. The D band can reflect the disorder and defect
of carbon, while the G band can represent the in-plane stretching vibration of sp? hybrid
carbon atoms. According to the strength of D-band and G-band, the intensity ratio of Ip/Ig
is =~ 1.02, it is obvious that there were a certain number of defects and disorders in N-PC,
which is beneficial to improve the storage capacity of Na*. The N, adsorption/desorption
isotherms showed porous characteristics of SnNSb@N-PC, which showed that the Brunauer—
Emmett-Teller (BET) specific surface areas of the designed composite were 382.4 m? g~1.
SnSb nanoparticles were coated by the N-PC carbon with limited self-agglomeration.

a b
SnSb@N-PC
J SnSb-N-PC
; A A A A ’;‘ D G
3 &
?_n Pure bulk SnSh z
@ )
= =
L]
JCPDS#33-0118
'
v LJ v L) A L b L v AJ v ¥ v 2
10 20 30 40 50 60 70 80 1000 1500 2000
20 (°) Raman shift (cm™)

Figure 2. XRD (a) and Raman patterns (b) of SnSb@N-PC composite.

The morphology of SnSb@N-PC composites was characterized by SEM and TEM.
According to the scanning electron microscope image of Figure 3a,b, it can be clearly
found that the amorphous porous carbon was evenly dispersed on the dodecahedral
nanosheets. The HRTEM diagram in Figure 3¢ presents the selected broken nanocomposite,
in which several tens of nanometer-sized SnSb phases were homogeneously distributed
throughout the particles. The typical characteristic interlayer shows the spacing of 0.299 nm
and 0.200 nm, corresponding to the (1 0 1) lattice and (1 1 0) planes of the SnSb alloy,
respectively. The lattice spacing of the short-range ordered pyrolytic carbon (0.34 nm) is
not marked in Figure 3¢ because of the similar spacing of the (0 1 2) crystal face spacing
in the SnSb alloy [50,53,56]. It was proven to be stable in MOF-derived carbon. The
composite carbon structure can not only improve the conductivity of the material but can
also accelerate the diffusion rate of ions, thus enhancing the electrochemical performance
of the material [34,59]. Due to the large specific surface area of N-doped three-dimensional
porous carbon, SnSb alloy particles can be prevented from accumulating by the limited
domain of carbon, so that the grains do not agglomerate and exist in the form of nano-sized
small particles. The element distribution diagram of the composite material (Figure 3d)
shows that Sb, Sn, and N elements are uniformly distributed in the nanocomposite material,
indicating that the MOF-derived nanocarbon material has been successfully doped with
heteroatom (N element) during the sample preparation process [75], and the beneficial
heteroatom doping is conducive to increasing the active site of the material, thereby
improving the sodium storage performance of the material.
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Figure 3. SEM (a,b); TEM (c); the corresponding EDS mappings; (d) images showing the elementary
composition of C, Sb, Sn, N in the SnSb@N-PC composite.

In order to test the electrochemical performance of SnSb@N-PC nano-material as the
negative electrode of sodium ion battery, it was assembled into a button half-cell for the
CV test and constant current charge—-discharge test. Figure 4a shows the CV curve of
SnSb@N-PC composite electrode for three cycles in the first five cycles, with a scanning
rate of 0.1 mV s~! and a voltage range of 0.005-2.0 V (vs. Na*/Na). It can be clearly seen
that the CV curve of the first cycle was quite different from that of the other two cycles,
which can mainly be attributed to the irreversible decomposition of electrolyte and the
irreversible deintercalation of Na* in carbon and SnSb. For the first cathodic scan, the
reduction peak at 1.0 V can be attributed to the formation of solid electrolyte interface (SEI)
film on the alloy surface and the reduction of SnSb oxide. The reduction peak at 0.26 V can
be attributed to the formation of Naj55n4 and Na3zSb by the alloying reaction of Na-Sn and
Na-Sb. The reduction peak at about 0.01 V is related to Na* insertion into porous carbon.
In anodic scanning, the first peak of 0.25 V can correspond to the removal of Na* from
porous carbon. In addition, the reduction peak at about 1.0 V for the first cathodic scan
disappeared in the subsequent scan, which can be attributed to the formation of SEI film.
The alloying reaction occurred at about 0.72 V (NaxSb) and 0.49 V (NasSb and Naj55ny),
starting with the second cathodic scan. In addition, the other scan curves coincided well
after the first scan, which indicates that the electrode material has good reversibility of
reaction. Figure 4b shows the constant current charge-discharge curves of the material at
0.1 A g~! current density for the first, second, fifth, and tenth cycles. The plateau at about
0.5V (vs. Na*/Na) corresponded to the formation of SEI film in the first cycle discharge
curve of SnSb@N-PC nanomaterials. The first discharge and charge capacity of SnSb@N-PC
nanomaterials were 846.3 mAh g~! and 451.8 mAh g~ !, respectively, and the first coulomb
efficiency (CE) was only 53.4%. The lower initial coulomb efficiency can be attributed to the
irreversible decomposition of electrolytes, the formation of SEI film, and the irreversible
deintercalation of sodium ions in porous carbon. The specific capacity of the sample was
stable at 516 mAh g1, and the coulomb efficiency reached 95.6% after ten cycles, which
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shows the stability of electrode structure and cycle. Figure 4c—e shows the good cycle
performance and rate ability of SnSb@N-PC nanomaterials. The first discharge specific
capacity of SnSb@N-PC was 846.3 mAh g~! at 0.1 A g~! current density, and the specific
capacity remained at 483 mAh g~ ! after 100 cycles. At the same time, the specific capacity

was kept at 323 mAh g~ after 400 cycles at a high current density of 1.5 A g~ 1.
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Figure 4. Electrochemical performance of SnSb@N-PC nanomaterials as anodes for sodium ion
batteries (a) CV curves for the first, second, and fifth turns. (b) Charge/discharge curves for the
first, second, fifth, and tenth turns. (c) Multiplicity performance at 0.1 A g_1—2 A g_l. (d) Cycling
performance of SnSb@N-PC at 0.1 A g~ . (e) Cycling performance of SnSb@N-PC at 1.5 A g~ 1.

In order to further analyze the kinetics of sodium storage in SnSb@N-PC anode
materials, the CV curves of sodium ion batteries were measured at different sweep rates
(0.1,0.2,0.5,1.0,2.0 mV s ). Figure 5a shows that the shape of the curve did not change
obviously with the increase in scanning speed, so SnSb@N-PC had good stability. However,
the area of the CV curve increased with the increase in scanning speed, which indicates
that there was a capacitive sodium storage behavior on the electrode surface. The behavior
of peak current is analyzed by Equation (3) in this paper [76,77].

i=adv® (4)

where a is a constant and v is the scanning speed. The b value is the slope of the In i
and In v graphs where the b value can vary between 0.5 and 1.0, which shows that the
specific capacity of the electrode is dominated by diffusion process and capacitance drive,
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respectively. The b value of the negative electrode gradually increased from 0.55 to 0.97
with the increase in scanning speed, which indicated that the electrochemical reaction
of SnSb@N-PC negative electrode was controlled by the combination of capacitance and
diffusion process (Figure 5b). In addition, according to the Equation (4), the specific
proportion of the contribution of capacitance (k; v) and diffusion-controlled effects (k; v1/2)
to the material capacity is discussed.
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Figure 5. (a) CV curves of SnSb@N-PC at different sweep rates. (b) Scan index b values calculated
according to Figure 4a. (c) Capacitive contribution capacity ratio of SnSb@N-PC at a scan rate of
0.2 mV s~1. (d) Capacitive and diffusion contribution capacity ratio of SnSb@N-PC for different
sweep rates. (e) The GITT curve and the diffusion rate calculated from the GITT curve of SnSb@N-PC.

As shown in Figure 5c¢, the capacitive capacity contribution accounted for 83.6% in
the CV curve with a scanning speed of 0.2 mV s~!. The capacitance contributions were
76.17%, 83.60%, 87.43%, 91.24%, and 93.25% at the scanning rates of 0.1, 0.2, 0.5, 1, and
2mV s~ respectively (Figure 5d). The capacitance effect dominated the storage behavior
of Na* under high current, which is beneficial to the structural stability of materials, and
this is also the main reason for the excellent cycle and rate performance. Figure 5e further
shows the sodium ion diffusion coefficient of the SnSb@N-PC anode calculated according
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to the GITT curve, which can analyze the diffusion behavior of Na* in solid-phase electrode
charging and discharging. The measured diffusion coefficients of Na* in active materials
ranged from 10712 to 107! cm? s~! and was mainly concentrated in about 10~ cm? s~1.
Combining the above results, the three-dimensional porous carbon had a positive effect
on the electrochemical behavior of the SnSb@N-PC electrode by improving the sodium
ion diffusion coefficient during the cycling process. This structure makes the electrolyte
fully infiltrated, has high conductivity, promotes ion migration, and prevents alloy particles

from agglomerating.

4. Materials and Methods
4.1. Preparation of SnSb@N-PC

Firstly, a ZIF-8 metal-organic framework synthesized by coordination chelation of
dimethylimidazole (C4HgN,) and Zn?* was used as a precursor [78]. The ZIF-8 nanocrystals
were heated to 300 °C for 2 h and then carbonized at 900 °C for 5 h at a heating rate of
5 °C/min. Subsequently, the sample was washed with 2.5 mol L~ dilute HCI solution.
Finally, the sample was washed repeatedly with deionized water and dried in vacuum at
70 °C for 12 h. Porous structure with N doping (N-PC) with a large number of micropores
and mesopores was obtained, and high homogeneity of in situ N doping was achieved.
Then, 40 mg of the prepared N-PC powder was diluted in a 40 mL solution of SnCly (140 mg)
and SbCl3 (91.2 mg) in methanol and stirred at room temperature for 3 h. Subsequently, a
2 mL solution of methanol NaBHy4 (200 mg) was then rapidly added to the mixture, which
was then magnetically stirred at room temperature for 30 min. The mixture was centrifuged,
washed with deionized water and methanol, and dried in a vacuum drying oven at 70 °C
for 12 h. The above steps are repeated without adding porous carbon to obtain SnSb@N-PC.

4.2. Characterization

In order to study the morphology, crystal structure, and chemical composition of the
samples, X-ray diffraction (XRD) was used to characterize the samples. The X-ray diffraction
instrument (D 8, Cu K o irradiation, A = 0.154 nm, 40 kV, 2 6 = 20~80°) is manufactured by
Bruker. A scanning electron microscope (SEM, Zeiss, Oberkochen, Germany, 15 kV) and
transmission electron microscope (TEM, FEI, 200 Kv, Portland, OR, USA) were also used
to analyze the samples. The corresponding EDS Mappings was tested using One Max 20
equipment. Raman spectroscopy (Senterra, Bruker, Karlsruhe, Germany) was also used to
characterize the disorder and defects of carbon materials.

4.3. Electrochemical Measurements

Firstly, the active material, acetylene carbon black and polyvinylidene fluoride (PVDF)
were weighed and mixed evenly according to the mass ratio of 8:1:1. N-methyl pyrrolidone
(NMP) was used as solvent to form a uniform slurry, which was coated on copper foil. The
electrodes were then dried in a vacuum oven at 80 °C for 12 h. The button half-cell was
fabricated with sodium as counter electrode, glass superfine fiber as the separator and 1 M
NaPFg in EC/DEC as the electrolyte. The LAND battery instrument (Wuhan Kingnuo Elec-
tronic Co., Wuhan, China) was used to conduct the constant current charge and discharge
test and galvanostatic intermittent titration technique (GITT) test. The cyclic voltammetry
test (CV, scanning speed 0.1-1 mV s~!) was measured in an electrochemical workstation
(CHI660E) with a voltage window of 0.005-2 V. The apparent diffusion coefficients of Na*
in the electrode were measured by GITT [37]. The ratio of capacitance drive and diffusion
process to total capacity was calculated [79].

Equation (3) is the apparent diffusion coefficients of Na*.

4 (mgVy\ [ DEs\? 2
Dy = — o 6
k nr(MBS><AET> <D (6)
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where mp and Mp are the mass of the active substance and molecular weight, respectively; S
is the total contact area between the electrolyte and the electrode; V,, is the molar volume of
the active substance; I is the thickness of the electrode; and AE; and AE; are the steady-state
voltage change after subtracting the voltage drop and the total transient change in cell
voltage during a single titration, respectively.

5. Conclusions

SnSb@N-PC composite was successfully prepared with SbCls, SnCly, and N-PC as raw
materials, in which SnSb nanoparticles were uniformly distributed in three-dimensional
porous carbon materials. The special composite structure greatly avoided the agglomera-
tion of alloy nanoparticles during synthesis process, which improved the capacity retention
of SnSb@N-PC composite. On the other hand, the high conductivity, larger specific surface
area, and more sodium storage sites brought by porous carbon substrate materials make
SnSb@N-PC composites obtain excellent sodium storage performance. The specific capacity
of SnSb@N-PC composites was maintained at 483 mAh g~! after 100 cycles at 0.1 A g !
current density, and at 323 mAh g~ after 400 cycles at 1.5 A g~! current density. The
results of the CV test show that the sodium storage process of SnSb@N-PC composites is
controlled by the combination of capacitive and diffusion processes, and the contribution
of capacitance to capacity can reach more than 90% at high scanning speed. The diffu-
sion coefficients of SnSb@N-PC composites were mainly about 107! cm? s~!. Therefore,
SnSb@N-PC composites have good rate performance.
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