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Abstract: A Zn2TiO4 crystalline photovoltaic glass ink was prepared by fast firing at 700 ◦C for 5 min
by the glass crystallisation method, which effectively improved the reflectivity and acid resistance of
the photovoltaic glass ink coating. The phase, morphology and properties of the samples were tested
by XRD, SEM and UV-vis diffuse reflection, etc. The enhanced reflectivity mechanism was proposed.
The results showed that the increase in ZnO/SiO2 ratio reduced the transition temperature (Tg) and
crystallisation temperature (Tp) of the glass melt, which could promote the crystallinity of Zn2TiO4

in photovoltaic glass ink coatings and thus improve the acid resistance of photovoltaic glass inks.
Significant improvement in reflectance and whiteness is due to the Zn2TiO4 crystallinity growth,
which fills in the pores of the ink surface, and TiO2 fillers keep almost the same surface roughness
(0.2 µm) and wetting angle (5.2◦). Typical samples achieved 89.2% of the whiteness and 88.0% of the
reflectance, and the weight loss in acid was 3.9 mg/cm2, which could improve the efficiency of solar
power generation.

Keywords: Zn2TiO4; photovoltaic glass ink; chemical stability; reflectivity; fast firing

1. Introduction

With the increase in environmental pollution and the depletion of natural resources,
human beings’ demand for clean energy is becoming more and more urgent [1,2]. Photo-
voltaic materials can convert solar energy into electricity by means of solar cells, so the
photovoltaic industry has been developing rapidly [3–5]. Photovoltaic modules consist
of cover glass, EVA adhesive, solar cells and back glass. However, the mainstream power
generation efficiency of commercially available solar cells is already close to the theoretical
value. To improve the power generation efficiency of the solar cells, more efficient cell
technology can also be improved through the sunlight and energy density utilization of the
module side [6].

Photovoltaic glass ink is composed of ink blending oil, low melting point glass, inor-
ganic filler (rutile TiO2) and additives, which can be sintered and cured on the double-glass
photovoltaic module backplane glass with double-sided power generation technology,
as shown in Figure 1. Photovoltaic glass ink coating can reflect the sunlight back to the
solar cell and improve the power generation efficiency of the photovoltaic modules [7].
Some literatures have reported that the increase in the coating diffuse reflection is more
favourable for improving solar cell utilization [8]. However, the chemical stability of the
coating is poor, which shortens the working life. It is well known that the crystal formation
in the glass melt can improve the chemical stability and reflection of the coating [9,10]. To
our knowledge, there are few reports about crystal formation in photovoltaic glass ink
because its quick firing time and low temperature are only 5 min and 700 ◦C, which is in
conflict with the crystal formation time and temperature. Recently, Jiao [9] synthesized
Bi2Ti2O7 nanocrystals by a glass crystallisation method in 6 min. However, its cost is
expensive and the process is complicated. Therefore, seeking a simple, facile and low-cost
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method for crystal formation in glass melt is an interesting topic for low-temperature fast
firing.
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Figure 1. Schematic diagram of the reflection of a photovoltaic glass ink module.

For photovoltaic glass ink, low-melting glass is an important part, which plays a key
role in its bonding with the substrate, chemical stability and reflectivity [7,9,11]. Due to its
low melting temperature, good thermal stability and electrical insulation, ZnO-B2O3-SiO2
glass systems are often used in glass surface deep processing, glass–metal sealing and other
fields [12–15]. However, to our knowledge, there are few reports about ZnO-B2O3-SiO2
glass photovoltaic ink.

In the paper, Zn2TiO4 microcrystalline photovoltaic glass ink coating was prepared by
changing ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases) fast firing at 700 ◦C in
5 min, and effects of different ZnO/SiO2 on the performance of the samples was explored.

2. Experimentation
2.1. Preparation of ZnO-B2O3-SiO2 Low-Melting Glass

All ingredients are pure chemical ingredients from Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, China. In this experiment, keeping the molar percentages of ZnO and SiO2
unchanged, the chemical composition consists of 4 mol% Na2O, 2 mol% K2O, 5 mol% CaO,
3 mol%, BaO, 30–50 mol% ZnO, 17 mol% B2O3, 36–16 mol% SiO2, 1 mol% Al2O3, and
1 mol% TiO2, with 1 mol% ZrO2 as nucleating agent. The samples were prepared by
changing ZnO/SiO2 ratios of 30/36, 35/31, 40/26, 45/21 50/16, respectively. The low-
melting glass preparation process is shown in Figure 2. The raw materials were weighed
and mixed according to the formula, loaded into corundum crucible, placed in a silicon–
carbon rod electric furnace and heated up to 1300 ◦C; the glass liquid was poured into
the preheated graphite moulds for the forming and water quenching in cold water; and
then the graphite moulds were put into the annealing furnace at 450 ◦C for 1 h and then
cooled naturally. The glass slag obtained from water quenching was ball-milled and
crushed through a 200-mesh sieve to obtain ZnO-B2O3-SiO2 low-melting glass (named as
low-melting glass).
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2.2. Preparation of the Photovoltaic Glass Ink

The photovoltaic glass ink samples are composed of low-melting glass (75 µm), the ink
and TiO2 (rutile, 200–300 nm). The low-melting glass/TiO2 quality ratio was 6:4, and the
concentration of ink was 30%. The raw materials were mixed, ground in an agate mortar for
20 min, printed on the glass substrate through 160 mesh screen printing (96 µm), and then
dried at 110 ◦C for 15 min. The as-prepared photovoltaic glass ink samples are calcined at
700 ◦C for 5 min.

2.3. Characterisation

The crystalline phase composition of the samples was observed by XRD (Bruker D8
advance, Karlsruhe, Germany) (CuKα as a ray source, λ = 1.5418 Å, operating voltage 40 V;
operating current 30 A, scanning frequency 5◦/min, angle 2θ = 5–80◦). The microstructure
of the samples was characterised by SEM (JSM-6700F, JEOL, Tokyo, Japan) and KYKY-
EM3900M (KYKY Technology Co., Ltd, Beijing, China). The chemical composition powder
chemical composition was also measured by an EDS system (15 kV) equipped with FESEM
equipment (JSM-6700F). Acquisition of 3D surface contours and calculation of surface
roughness was performed using the VHX-7000 digital microscope (KEYENCE, Osaka,
Japan). Differential thermal tests (DTA) were performed on the glass melts to explore the
changes in Tg and Tp. Acid resistance of the photovoltaic glass inks was tested with 10%
concentration of citric acid. Whiteness and reflectance of photovoltaic glass inks were
determined using a whiteness meter and UV-Vis diffuse reflectance test. The hydrophilicity
of the samples was tested by a contact angle meter (JGW-360D, Chengde Chenghui Testing
Machine Co., Ltd, Chengde, China).

3. Results and Discussion
3.1. XRD Patterns of Low-Melting Glass

Figure 3 shows XRD patterns of low-melting glass samples prepared with the different
ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases). It can be seen that the diffraction
peaks of all the samples show bun peaks, and there are no obvious crystalline peaks,
indicating that the samples belong to the amorphous phase. The increase in ZnO content in
the samples did not result in significant devitrification of low-melting glass.
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3.2. DTA Curves of the Glass Melt

Figure 4 shows DTA curves of low-melting glass samples. With the increase in
ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases), the transition temperature
(Tg) values of low-melting glass samples are 545 ◦C, 539 ◦C, 527 ◦C, 515 ◦C, and 510 ◦C,
respectively. The devitrification temperature (Tp) also shows a decreasing trend. It can
be seen that from the thermal expansion curves of the samples prepared with ZnO/SiO2
(i.e., ZnO increases and SiO2 content decreases), with the increase in ZnO/SiO2 ratio,
the melting temperature (Tf) and the transition temperature (Tg) of the samples decrease
(Figures 4 and S1), which indicates that increase in ZnO/SiO2 can lower the melting temper-
ature. As the ZnO/SiO2 ratio increases from 30/36 to 45/21, the crystallisation peak (Tp)
becomes more and more obvious, which is due to the increase in ZnO, the decrease in SiO2
content, the increase in [ZnO4] in the melt and the decrease in [SiO4] (Figure S2), resulting
in a decrease in viscosity, where free ions are easier to aggregate, so the crystallisation
peak becomes more obvious. However, further increasing the ZnO/SiO2 ratio to 50/16, Tp
of the sample becomes relatively insignificant, which may be due to the precipitation of
crystals in the process of melting and cooling of the low-melting glass, resulting in the crys-
tallisation peak of the sample not being obvious in the differential thermal test. However,
there is no obvious disintegration peak in the XRD diffraction pattern, which is due to the
small crystal size [16,17]. As is known, differential thermal analysis is a process in which
the thermal effect is converted into a temperature difference signal and reflected in the
differential thermal curve, so differential thermal analysis can indicate the crystallisation of
the glass [18,19].
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Figure 4. DTA curves of low-melting glass samples prepared by changing ZnO/SiO2 ratios.

3.3. XRD Patterns

The glass ink was prepared by mixing the low-melting glass with ink mixing oil and
was kept at 700°C for 5 min to observe its crystallisation. XRD patterns of the glass ink after
sintering samples are shown in Figure 5. 30/36 and 35/31 did not show precipitation peaks,
indicating the amorphous glass phases. With the increase in ZnO/SiO2 (i.e., ZnO increases
and SiO2 content decreases), 40/26 and 45/21 show the diffraction peaks of Zn1.7SiO4
crystals, However, the diffraction patterns of c and d do not show obvious regular changes,
which may be the reason for the crystal growth orientation or further research. ZnO as
alkaline earth metal oxide can act as the intermediate oxide in the glass network structure;
a small amount of ZnO addition results in the formation of [ZnO6] present outside the glass
network, and as the ZnO content increases, the [ZnO4] content in the glass increases and
enters the glass network structure [9]. Further increasing the ZnO/SiO2 ratio, the sharp
diffraction peaks of ZnO appeared in 50/16 due to too much ZnO content.
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XRD patterns of the photovoltaic glass ink coatings after sintering is shown in Figure 6.
All the samples are composed of TiO2 (PDF#76-1938) and Zn2TiO4 crystals (PDF#73-0578).
The diffraction peak at 2θ of 29.86◦, 35.17◦, 42.74◦, 53.00◦, 56.50◦, and 62.04◦ correspond to
the (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) faces of Zn2TiO4 crystals, respectively.
With the increase in ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases), the diffrac-
tion peaks of Zn2TiO4 crystals become sharp, which indicates that the crystallinity of the
samples increases. It can be seen that when TiO2 is added to the sample, Zn2TiO4 and TiO2
exist in the samples, which is obviously different from ZnO and Zn1.7SiO4 crystals without
TiO2 in Figure 5 due to the large amount of TiO2 (rutile) in the ink inducing the precipitation
of ZnO crystals from the glass melt [20]. According to the principle of dot-matrix matching
and the condition of directional adsorption of substances [21,22], the smaller difference
(not more than ±15%) in lattice constants between the crystalline phase and the nucleating
agent embryo, the interfacial tension between the two phases is smaller, and thus the
interfacial energy consumption of the new precipitated phase is smaller, which leads to
the better precipitation. Compared with the lattice constants of TiO2 [23] (PDF#76-1938
a0 = 4.593, b0 = 4.593, c0 = 2.95), ZnO [24] (PDF#89-0511 a1 = 3.351, b1 = 3.351, c1 = 5.226)
belongs to a hexagonal close-packed structure, which is c1 ≈ 2c0. The difference between
the two crystalline phases on the c-axis is calculated to be about −11.4%, which is less than
15%. The lattice constants of Zn1.7SiO4 (PDF#24-1466 a2 = 5.069, b2 = 10.292, c2 = 6.677):
b2 ≈ 2b0, the difference between the two crystalline phases on the b-axis is about 12.04%
less than 15%. It is obvious that the difference in lattice constants between ZnO (−11.4%)
is smaller than that of Zn1.7SiO4 (12.04%). Therefore, Zn2TiO4 crystals are more available
for the sample by adding TiO2, which reacts with ZnO to form Zn2TiO4 according to
Equation (1) [25]:

TiO2 (S) + ZnO (S) → Zn2TiO4 (S) (1)
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ZnO/SiO2 ratios.

From the thermodynamic theory, according to the equilibrium equation ∆G = ∆H −
T∆S [26,27], ∆G = −11 KJ < 0 at T = 700 ◦C is calculated, which further indicates that the
reaction Equation (1) can proceed positively to form Zn2TiO4 crystals.

3.4. SEM Analysis

Figure 7 shows SEM surface images of the photovoltaic glass ink coatings prepared
with different ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases). It can be seen
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that the Z1 (30/36) sample exhibits a lot of large pores (Figure 7a). With the increase in
ZnO/SiO2, the pores become small and decrease in the samples. It can be concluded that
the increase in ZnO/SiO2 in the glass melt is helpful for the denseness of the samples.
The reason may be that the increase in ZnO/SiO2 in the melt leads to more and more
obvious crystal formation (Figure 6), which can fill some pores. In addition, ZnO can
lower the melting temperature, and thus promote more glass phases [28], resulting in the
photovoltaic glass ink surface becoming dense.
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To further analyse the microstucture of the typical samples, EDS analysis of the typical
sample is shown in Figure 8. It can be seen that Zn and Ti elements are uniformly distributed
in the sample. Figure 8e,f show the EDS spectra of 1 and 2 in Figure 8a, respectively. It can
be clearly seen that Zn atom content has a significant increase of 9.4% and 24.6% for Zn
atoms of 1 and 2 in Figure 8a, respectively. Ti content in the large particles in Figure 8e is
high, which may be attributed to rutile TiO2 (Figure 9a,b).
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Figure 9a,b show the typical SEM images of the pure TiO2 (rutile) samples. The sample
is composed of the spherical particles with the mean sizes of 200–300 nm. It can be seen
that with the increase in ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases), the
surface of the large rutile TiO2 particles become coarse and there are many small Zn2TiO4
particles adsorbed on its surface.
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Figure 9. Typical SEM images of pure TiO2 (a,b). After sintering (c–h), photovoltaic glass ink coatings
with ratios of 30/36, 40/26, and 50/16 were prepared.

Surface roughness plays an important role in the reflectivity of coatings [29,30]. Figure 10
shows AFM images of the typical samples in the range of 10 µm and their roughness is
0.7 µm, 0.2 µm, and 0.2 µm, respectively. The surface roughness of the sample may be
mainly attributed to the increase in glass phase and crystals with the increase in ZnO/SiO2
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ratio (Figures 6 and 7 and S1), which could fill more pores and make the surface of the
sample flatter (Figures 7 and 9), thus decreasing the roughness of the samples.
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3.5. Properties

Figure 11a shows the whiteness and reflectance curves of the photovoltaic glass ink
coatings. It can be seen that the whiteness and reflectance of the samples firstly increased
and then decreased. The samples show high diffuse reflectance in the visible band of
85.7%, 87.8%, 88.0%, 87.6%, and 86.8%, respectively. The whiteness of the samples were
85.7%, 89.2%, 89.2%, 88.3% and 88.4%, respectively. Figure 11b shows the UV-visible diffuse
reflectance spectra of the typical samples. The 40/26 sample has a relatively high reflectance
in the visible range. When ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases) is
30/36, the low reflectivity and whiteness of the sample is due to the large holes on its
surface (Figure 7a), the holes could adsorb or make the light directly through the ink layer,
which decreases the diffuse reflectance of the sample. With the increase in ZnO/SiO2,
many Zn2TiO4 crystals can fill the holes and grow on the surface and interstices of TiO2
(Figure 9), which increases the reflective surface area and thus improves the whiteness
and reflectance of the sample [9]. It is well known that the greater the refractive index of
the samples in the same medium, the greater the reflectance of the sample [31]. As can be
seen from the experimental results (Figures 5–9), although the 30/36 sample has a large
number of pores and a small amount of Zn2TiO4 crystals, the surface roughness is large,
and the reflection area of TiO2 is exposed, so the reflectivity of the 30/36 sample is high. For
40/26 compared with 30/36, although more Zn2TiO4 crystals were grown on the surface
of TiO2 particles, the exposed reflection area of TiO2 was still large. At the same time,
more Zn2TiO4 crystals can be filled into the pores, which is the main factor, thus effectively
improving the reflectivity of the sample. However, further increasing ZnO/SiO2 (50/16),
too many crystals grow on the surface of TiO2 particles, thus reducing the reflective area of
TiO2. The reflectivity of the samples decreases due to the refractive index of TiO2 greater
than that of Zn2TiO4, keeping almost the same surface roughness. Further increasing
ZnO/SiO2, more and more crystals fill the tiny holes on the surface of the sample (Figure 7
(50/16)) and the surface roughness of the sample decreases (Figure 10), resulting in the
reflectivity decrease of the sample. In addition, the average refractive index of TiO2 (rutile) is
3.0–2.6 (400–700 nm) [32], the refractive index of Zn2TiO4 is 2.8–2.1 (400–700 nm) [33]. The
average refractive index of TiO2 (2.72) is greater than that of Zn2TiO4, and more small
crystals grow on the surface of TiO2 (Figure 9), resulting in a decrease in the surface
reflection area of TiO2, and TiO2 is also consumed to generate Zn2TiO4 crystals. As a result,
the whiteness and reflectivity of the sample are reduced.
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Figure 11. (a) The whiteness and reflectance. (b) UV-visible diffuse reflectance profiles of the typical
samples prepared by varying the ZnO/SiO2 ratio. (c) Wetting angle diagram of the photovoltaic
glass ink coatings after sintering by varying the ZnO/SiO2 ratio. (d) Acid resistance curves of the
photovoltaic glass ink coatings after sintering.

As is well known, the surface roughness and crystallisation behavior of the coatings
are indirectly related to the wetting behaviour. To further characterise the surface and
crystallisation behavior, the wetting angles of the sample with different ZnO/SiO2 ratio
are characterised by the wetting angle test (Figure 11c). With the further increase in
ZnO/SiO2 ratio, the wetting angle of the sample first decreases and then increases. When
the ZnO/SiO2 ratio is 35/31 and 40/26, respectively, the wetting angle of the samples
reaches the super-hydrophilic nature (about 9.0◦ and 5.2◦), which is due to the super-
hydrophilic TiO2 [34] (Figure 6). Further increasing ZnO/SiO2 ratio to more than 45/21,
the wetting angle of the sample increases, which is due to more glass phase and crystal
growth on the surface of TiO2, and the contact area between TiO2 and water is reduced
(Figures 7–9).

Figure 11d shows the acid resistance curves of the samples prepared with different
ZnO/SiO2 (i.e., ZnO increases and SiO2 content decreases). The mass loss of the samples in
the acid solution increases and then decreases with the increase in ZnO/SiO2. It is well
known that the higher SiO2 content in the glass, the better the acid resistance, but at the
same time, the melting temperature of SiO2 is very high, so it is necessary to control SiO2
content appropriately [35]. The mass loss increase of the samples should be caused by the
decrease in SiO2 content, and the mass loss decrease may be due to the precipitation of
more Zn2TiO4 nanocrystals grains (Figures 6 and 9) and the densification in the coatings,
which prevent the contact between the acid solution and the glassy phase.

It can be seen from Table 1 that the sample in our study has relatively higher reflectivity
and acid resistance than those in the reported literature, which is further applied for the
photovoltaic modules.
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Table 1. Comparison of the performance in this study with the literature.

Type of Low-
Melting

Glass

Scope of
Application Filler Firing

Process Crystal Max
Reflectance

Acid
Resistance Ref.

ZnO-B2O3-
SiO2

Photovoltaic
back glass TiO2 700 ◦C 5 min Zn2TiO4 88.00% 3.9 mg/cm2 This work

Bi2O3-ZnO-
B2O3-SiO2

Photovoltaic
back glass TiO2 720 ◦C 6 min Bi2Ti2O7 86.18% - [9]

ZnO-B2O3-
SiO2

Photovoltaic
back glass TiO2

600–760 ◦C
6 min ZnTiO3 85.89% - [7]

R2O-Bi2O3-
B2O3-SiO2

Automobile
glass CuCr2O4 720 ◦C 210 s Bi4Si3O12 - 2.9 × 10−6

g·cm−2·min−1 [36]

4. Conclusions

Zn2TiO4 crystals were prepared for the first time in photovoltaic glass ink coating at
the low-temperature of 700 ◦C for 5 min. Tg and Tp of the glass melt sample decreases
with the increase in ZnO/SiO2 ratio. Zn2TiO4 crystals increase and then decrease with
the increase in ZnO/SiO2 ratio. However, the acid resistance of the samples is enhanced
when the ZnO/SiO2 ratio is 40/26, the reflectivity and whiteness of the sample is 88.0%
and 89.2%, and the weight loss in acid is 3.9 mg/cm2, respectively. It can be attributed that
Zn2TiO4 crystals filled the pores and thus increased the surface area of the reflected light,
which improved the reflectivity and whiteness of the sample. However, many Zn2TiO4
crystals were harmful for the reflectivity and whiteness of the sample. This work provides
a reference for quickly obtaining the crystals in the glass to improve the high reflectivity
and acid resistance, which could be extended to other glass inks in the solar energy, sealing,
automotive glass ink and other fields.
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