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Abstract: Leishmaniasis is a complex disease present in a variety of manifestations listed by the World
Health Organization (WHO) as one of the neglected diseases with a worse prognosis if not treated.
Medicinal inorganic chemistry has provided a variety of drugs based on metal–organic complexes
synthesized with different metal centers and organic ligands to fight against a great number of
parasite maladies and specifically Leishmaniasis. Taking advantage of the natural properties that
many metals present for biotechnological purposes, nanotechnology has offered, in recent years, a
new approach consisting on the application of metal nanoparticles to treat a great number of parasitic
diseases, as a drug vehicle or as a treatment themselves. The aim of this review is to gather the most
widely used metal complexes and metallic nanoparticles and the most recent strategies proposed as
antileishmanial agents.

Keywords: parasite; leishmania; neglected diseases; metal complex; metal nanoparticle

1. Introduction

The concept of neglected diseases (NTDs) englobes all the maladies that cause serious
problems to wide populations, but there is not enough investment or research on them.
The World Health Organization (WHO) published a list with the main NTDs: Buruli
ulcer; Chagas disease; dengue and chikungunya; dracunculiasis; echinococcosis; foodborne
trematodiases; human African trypanosomiasis; leishmaniasis; leprosy; lymphatic filariasis;
mycetoma, chromoblastomycosis, and other deep mycoses; noma; onchocerciasis; rabies;
scabies and other ectoparasitoses; schistosomiasis; soil-transmitted helminthiases; snakebite
envenoming; taeniasis/cysticercosis; trachoma; and yaws [1]. The 20 diseases, increased
from the initial 17 in the last decade, were chosen because of their adverse impact, relative
obscurity, and the availability of tools to combat them [2,3].

According to recent reports from the WHO, leishmaniasis is considered to be one of
the seven primary illnesses that affects all continents, and is broadly located in tropical
and subtropical poor regions of the New World, but is also present in Europe and Asia by
migration [4], affecting more than 90 countries worldwide. An estimated 700,000 to 1 million
new cases occur annually, with an annual mortality rate of 95% in visceral leishmaniasis if
untreated, being only surpassed by malaria among parasitic diseases [5]. For survival, the
Leishmania parasite needs a mammalian reservoir, which leads to anthroponotic cycles in
humans or zoonotic cycles in animals like rabbits or dogs. The transmission vectors are
mainly dipteral female insects of the genera Phlebotomus in the Old World and Lutzomyia
in the New World (Figure 1). The recent migration crisis in the Mediterranean area and
Ukraine conflict obligate the relocation of large populations, sometimes in unhealthy
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conditions, facilitating the proliferation of the infection vectors. These situations, with the
blood transfusions from infected patients in host countries, make leishmaniasis a global
illness that is spreading out into the Third World.
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More than 20 Leishmania species cause different forms of leishmaniasis that range
in severity from cutaneous lesions to systemic infection [6–8], but their manifestation in
humans can be classified mainly into three different clinical conditions: visceral, cutaneous,
and muco-cutaneous. Visceral leishmaniasis (VL) [9], also known as kala-azar, is the
most aggressive and mortal form. It is caused by Leishmania donovani in Asia and in
Eastern Africa, where humans are the main pathogen reservoir, and by Leishmania infantum
in Latin America and in the Mediterranean area, where VL is a zoonotic disease and
dogs and rabbits are the main reservoirs. According to the WHO, almost 13,000 cases
of VL occurred in 2020, with an estimated at-risk population of 200 million people [10].
Cutaneous leishmaniasis (CL) [11] is a disfiguring disease, especially for women [12], which
produce nodules and ulcers in the skin, and often leaves scars on visible body sites, causing
psychological, social, and economic problems, but it does not cause death. It is usually
caused by Leishmania mexicana, Leishmania (Viannia) braziliensis, or Leishmania panamensis
in the Americas, and Leishmania major or Leishmania tropica in all other countries [13].
Mucocutaneous leishmaniasis (ML) [14], also known as “espundia”, is potentially life
threatening and requires treatment. It causes permanent lesions in the mucosa (mouth,
nose, or genitals), and occurs years after the onset of cutaneous leishmaniasis. ML is a
known risk from Leishmania spp. of the Viannia subgenus, typically found in the Americas
(Leishmania (Viannia) braziliensis, Leishmania (Viannia) amazonensis, Leishmania (Viannia)
panamensis, and Leishmania (Viannia) guyanensis) [13].

Metals are valuable in multiple research areas due to their wide diversity of properties,
promoted by their different electronic configurations, with an extraordinary variety of
applications, from industrial to biological disciplines. The unique capabilities of metals can
be enhanced by their combination with organic ligands, leading to synergistic effects in the
resulting metal complexes, improving their versatility [15,16]. Among their technological
uses, their popular use as catalysts can be cited [17–19], as can their utility in the material
synthesis industry [20] or photochemistry [21]. Medicinal inorganic chemistry can exploit
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the unique properties of metal ions for the design of new drugs. Recent advances in inor-
ganic chemistry areas make the role of transition metal complexes promising therapeutic
compounds [22–24]. The advances in inorganic chemistry have made possible the synthesis
of a wide series of transition metal complexes with organic ligands of interest, which can
be used as therapeutic agents in cancer [25], bacterial [26], or virus [27] infections.

The use of metal complexes in the field of parasitology is developing promising
perspectives [28], with transition metal centers like Cu [29,30], Ni [31,32], or Zn [33,34], pre-
cious metals like Au [35], Ag [36], Pt, and Pd centers [37], or organometallic cores [38]. The
importance of the metal ion and the nature of the organic ligands is critical to understanding
the chemistry between the proposed drugs and the parasite environment.

This review includes the use of the most common metal complexes as treatment, alterna-
tives based on biocompatible ligands, and new possibilities based on metallic nanoparticles.

2. Metal Complexes Used as Conventional Therapies against Leishmaniasis

The use of metal complexes as antiparasitic agents is one of the main therapeutic
approaches to fight Leishmania spp. infections, with pentavalent antimonials acting as the
most effective and low-cost drugs, but they cause strong side effects due to the toxicity of
antimony [39,40]. There are also few commercial alternatives without antimony, but their
effectivity is not so high as the antimonial established treatments.

2.1. Antimonial Commercial Drugs

The importance of antimony in early medicine is well documented, even being con-
sidered to be a general panacea in the 16th century introduced by Paracelsus. The use of
the trivalent antimonial, tarter emetic [41], was first reported for the treatment of CL and
VL, but later this drug was found to be highly toxic as well as very unstable in tropical
climates [40]. Tartar emetic was considered to be an irritating drug, since it exhibited
side effects such as cough, chest pain, and severe depression. This led to the discovery of
pentavalent antimonials [42], where meglumine antimoniate and sodium stibogluconate
stand out among them.

2.1.1. Meglumine Antimoniate

Meglumine antimoniate [43] (Figure 2), commercially known as Glucantime®, is still a
first-line drug in the treatment of leishmaniasis in several countries [44,45]. This antimony
complex presents high water solubility (>300 mg/mL), and its adsorption can be enhanced
for oral administrations with secondary molecules like β-cyclodextrin [46]. It can also be
used in combination with liposomes, metallic, and polymeric nanoparticles to improve its
biodistribution [47,48]. The mode of action of meglumine antimoniate is still unknown [42],
but one of the proposed mechanisms is that Sb(V) would behave as a prodrug, being
reduced within the organism into more toxic and active Sb(III), which can enter Leishmania
cells primarily [49,50]. Sb(III) can interact with low-molecular thiols, cysteine-containing
peptides, and, in particular, thiol-dependent enzymes [51].

Despite its commercial use, meglumine antimony causes common adverse effects dur-
ing treatment, like anorexia, nausea, vomiting, malaise, myalgia, headache, and lethargy.
There are many reports of serious side effects in patients treated with Glucantime®, from
electrocardiographic changes [52,53] to pancreatic toxicity [54], or the presence of antimony
in plasma and skin [55]. Different studies also put in the spotlight the transplacental trans-
ference of antimonies from the mother during the gestation process [56], or the problematic
nature of pharmacokinetics in children administration [57].
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2.1.2. Sodium Stibogluconate

Sodium stibogluconate, or Pentostam®, is also an effective drug in the fight against
leishmaniasis. Its ionic nature makes it freely soluble in water (Figure 3), and its mechanism
of action is well known since four decades ago [58], focusing on the inhibition of the
incorporation of nucleobases into the parasite protein synthesis and blocking its energy
metabolism through stibogluconate interactions.
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Despite no serious toxicity being observed even when a ten-fold increase in the daily
recommended concentration for sodium stibogluconate was applied, there are few reports
where dose-dependent factors promote histological changes in the liver and kidneys [59],
and health problems like pancreatitis, nephrotoxicity, and elevation of liver enzymes were
also reported [60]. This evidence, joined to the development of drug resistance of Leishmania
spp., make it necessary to attempt more efforts to design and test new metal complexes
with antileishmanial activity.

Some other antimonial drugs can be mentioned, like trivalent antimonial stibocap-
tate [61], but their use is less extensive than the first two.
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2.2. Other Commercial Drugs against Leishmania spp. and Trypanosoma cruzi

The antiparasitic metal drugs are not limited to the antimonial ones, and other com-
mercial treatments can be mentioned [62], such as organic molecules like amphotericin
B [63–65], miltefosine [66], or paromomycin [67], as well as combinations of all of them
to improve efficacy [68]. Nevertheless, there are not many examples of metal complexes
derived from these organic ligands. One approach from Chudzik et al. in 2013 can be
mentioned which uses copper complexes of amphotericin-B [69], but its study was focused
in the antifungal activity against C. albicans.

On the other hand, benznidazol and nifurtimox are two nitro derivatives commonly
used against trypanosoma infections like Chagas disease, a zoonosis malady comparable to
leishmaniasis [70,71]. Benznidazole (2-nitro-N-[phenylmethyl]-1H-imidazole-1-acetamide)
is a nitroimidazole derivative that showed efficacy against T. cruzi parasites, and differ-
ent clinical and experimental studies were published using it as a treatment for acute
and chronic Chagas disease. Nifurtimox (3-methyl-N-′[(5-nitro-2 furanyl)-methylene]-4-
morpholinamine 1,1 dioxide) is a nitrofuran derivative which generates nitroanion radicals
by nitroreductases that, in the presence of oxygen, produce free radicals that damage T.
cruzi [72]. But once again, their use in combination with metal ions like copper and silver is
just at the initial phase, it being worthwhile to mention the work of Cunha da Souza et al.
in 2023 [73].

3. Biomimetic Metal Complexes against Leishmaniasis

Due to the high toxicity of antimony [39], there is a need to find novel metal complexes
which can substitute the pentavalent antimonials to fight parasite infections, maintaining
the advantages of the synergetic effect of the inclusion of metal ions in the structure of
the proposed drug, but avoiding the toxicity of heavy metals like antimonies. The variety
of metal complexes in the field of parasitology is wide and rich, so this review is focused
on recent advances in the derived metal complexes based on biomimetic and well-known
commercial drugs against leishmaniasis infections.

3.1. Nucleobase Analogous Active Compounds

Numerous organic ligands with purine or pyridine rings in their structures have been
demonstrated to be effective against parasitic infections once they were coordinated with
metallic ions.

3.1.1. Azoles

Azoles [74] (Figure 4) represent a broad family of five-membered heterocyclic aromatic
compounds whose framework contains from one and up to five nitrogen atom(s), and can
also contain at least one S or O atom as a part of the azole conjugated ring (N,S and N,O
subclasses of azoles, respectively) [75].

Their importance as biological agents has been demonstrated throughout the last
decades, with special emphasis on the antibacterial [76] and antifungal [74] effectivity,
but their use as antiparasitic agents is also well defined [77,78], even with specificity to
fight malaria [79] or amoeba infections [80]. The use of azoles against Leishmania spp.
infections has been studied, with a focus on the 14α-demethylase as a distinct target for
antileishmanial therapy [81] or for the inhibition of trypanothione reductase [82]. The
assays with ketoconazole [83], indazol [84], or chloro-derived azoles such as miconazole,
tioconazole, clotrimazole, and their analogs and metal complexes is to be remarked in this
context [85].
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3.1.2. Triazolopyrimidines

Triazolopyrimidine ligands have been known since early last century [86], but their
complexation properties were not studied until 1952 by Birr [87]. Multiple biological
applications have been studied for triazolopyrimidine ligands, as well as for their metal
complexes, due to their remarkable pharmacology [88–91]. For the case of 1,2,4-triazolo[1,5-
a]pyrimidines ligands [92] (Figure 5A), which have shown the best antiparasitic activity,
their structural similarity with purines makes them an optimal model to study the reactivity
with different metal ions [93–96]. Triazolopyrimidines show great versatility as ligands,
because of the presence of nitrogen atoms on their skeleton with available electron pairs.
The coordination occurs mainly through N3-monodentate or N3,N4-bridging, but there are
descriptions of many other bonding routes being possible when the number of exocyclic
substituents in the aromatic ring increases. The interaction between metal cations and
triazolopyrimidines exhibit a great potential to act as building blocks with enormous
versatility, giving rise to multidimensional systems with useful properties, as well as
technological and biological properties [97–100].

The 1,2,4-triazolo[1,5-a]pyrimidine family includes a wide variety of derived struc-
tures with antileishmanial activity, such as the non-substituted simple structure (tp) [101],
the 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine with two methyl groups (dmtp) [102] and
7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7-atp) with a very reactive amine entity in the
structure [103]. To increase the coordination positions, there are also several triazolopyrim-
idines containing exocyclic oxygen atoms, which spread out the range of metallic centers
that can interact with these ligands (i.e., lanthanide ions). Some of the reported oxygenated
triazolopyrimidine derivatives are dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine (5HtpO
and 7HtpO), whose structures were described by Abul Haj et al. [104], the commercial
4,7-dihydro-5-methyl-7-oxo[1,2,4]-triazolo[1,5-a]pyrimidine (HmtpO) [105], and the most
recently reported, 7-oxo-5-phenyl-1,2,4-triazolo[1,5-a]pyrimidine (HftpO) [106]. The effi-
cacy of [1,2,4]-triazolo[1,5-a]pyrimidines against leishmania spp. have been contrasted in
different studies [107,108]. Comparing them with reference drug Glucantime ® (meglumine
antimoniate), methyl, and amino substituted triazolopyrimidines, the organic molecules
slightly increase their efficacy against different leishmania strains like L. infantum or L.
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braziliensis, but the hydroxy-tryazolopyrimidines are the ones which led to a substantial
increase in the leishmanicidal effect, with a selectivity index (SI, proportion between toxicity
to the host cells and specificity reducing parasite population) up to 40 times better than
the drug reference (it is possible to reach even more than 50 time better effect to trypanoso-
matid parasites) [106]. These results positioned tryazolopyrimidines as an extraordinary
potential alternative to antimonial traditional treatments, with fewer side effects and higher
biological activity.
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3.1.3. Quinolines

Quinoline is an heterocyclic aromatic nitrogen molecule with a double-ring skeleton
containing a benzene ring fused to pyridine at two adjacent carbon atoms (Figure 5B) [109].
The extraordinary variety of potential positions to include substituents (from C2 to C8)
make this basic core a very versatile basic unit to build numerous series of biologically
active families.

The potential biological applications of quinoline derivatives vary from antibacterial
efficacy to antitubercular, antimicrobial, or anticancer applications [110–114], but they also
can be used as antiparasitic agents [115] with leishmanicidal efficacy [116,117]. The interest
of the scientific community in these compounds increased after 2013 [118], with the work
of Bringmann et al. [119], who evaluated 49 different quinolines against promastigote and
amastigote forms of L. major, obtaining lower values of IC50 than 10 µM in 20 compounds.
The higher SI were obtained with 4′-methylphenyl-pentyl substituted. The halogen ones
had great activity against the parasites, but also were very toxic to the J774.1 cells used
as a host model in that study. But, in general, modified quinolines show a similar or
better efficacy against L. major, positioning them as excellent candidates to further studies
and building blocks for metal complexes. From that point, the use of quinolines against
Leishmania spp. forms increased during the last decade [120,121].

3.1.4. 1,10-Phenanthrolines

The three-aromatic-ringed 1,10-phenanthroline (Figure 5C) is one of the most versatile
and used organic bidentate ligands used to synthesize metal complexes [122]. Its two
nitrogen atoms in positions 1 and 10 make it an extraordinary strong chelating agent. Its
great solubility in organic solvents makes it a good candidate to interact with metal ions in
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a solution to coordinate with them as a main ligand or as an auxiliary ligand to complete
the coordination sphere. There are recent studies of the influence of this organic ligand
and some derivatives, like the 1,10-phenanthroline-5,6-dione of Lane et al. in 2021 [123],
where both forms can induce a variety of disorders in a variety of biological systems, like a
drastic reduction in cell proliferation, prominent morphological changes, the appearance of
electron-dense deposits (mainly consisting of calcium ions) in the parasite’s cytoplasm, as
well as triggering perturbations of the mitochondrial membrane and the cisternae of the
endoplasmic reticulum of the epimastigote forms of T. cruzi [124].

3.2. Metal Complexes Derived from Nucleobase Analogous Active Compounds

Transition metal complexes represent an attractive platform for the development of
anti-parasitic therapeutics, as they present an extraordinary chemical diversity and go by
different mechanisms of action, such as the induction of the generation of reactive oxygen
species (ROS), enzymatic inhibition, or DNA intercalation [125]. Table 1 summarizes the
most significant complexes discussed in this point.

Table 1. Summary of metal complexes cited in Section 3.2., classified by the organic ligand, metal, and
parasite studied, with comparison between the best selectivity index (IC50 for cells/IC50 for parasites,
SI) for the extracellular forms of each family.

Ligand Metal Parasite SI Reference

Ketoconazole Ru(II/III) L. major 150.0 [126]

Clotrimazole Ru(II/III) L. major 500.0 [127]

[1,2,4]Triazolo [1,5-a]Pyrimidine Cd(II), Cu(II) and Zn(II) L. infantum,
L. braziliensis 3.1 [128]

[1,2,4]Triazolo [1,5-a]Pyrimidine Ni(II) L. infantum,
L. braziliensis 20.0 [129]

[1,2,4]Triazolo [1,5-a]Pyrimidine Ru(II/III) L. infantum, L. braziliensis
and L. donovani 52.0 [130]

[1,2,4]Triazolo [1,5-a]Pyrimidine
La(III), Nd(III), Eu(III),
Gd(III), Tb(III), Dy(III)

and Er(III)

L. infantum,
L. braziliensis 49.9 [131]

[1,2,4]Triazolo [1,5-a]Pyrimidine Cu(II)
L. infantum, L. braziliensis,
L. peruviana, L. mexicana

and L. donovani
54.0 [132]

N-heterocyclic
carbene–quinoline Au(I) L. infantum 9.8 [133]

1,10-phenanthroline Cu(II) and Ag(I) L. amazonensis 43.4 [134]

Ibuprofen Ni(II), Mn(II) and Pd(II) L. amazonensis 3.3 [135]

Diclofenac Mn(II), Ni(II) and Co(II) L. infantum, L. braziliensis
and L. donovani 58.8 [136]

Triethylphosphine Au(I) L. infantum,
L. braziliensis 5.6 [137]

Bumetanide Zn(II) L. infantum, L. braziliensis
and L. donovani 22.2 [138]

The family of azole compounds is extraordinarily diverse, and their possible com-
binations with metals is increasing every day. One of the most useful ligands against
leishmania spp. is ketoconazole, an antifungal agent used to treat localized or systemic
fungal infections by inhibiting ergosterol synthesis [139]. Its combination with ruthenium,
published by Iniguez et al. in 2013, demonstrated that the metal complex improves the
leishmanicidal effect of the organic ligand, from 63 SI to 150 SI [126]. The counter-anion
salts used in the synthesis play a crucial role in the activity of the ketoconazole ruthenium
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complexes, with chloride, etilendiamine (en), or bipyridine (bipy) as the most effective ions.
Following the ruthenium compounds, clotrimazole ruthenium complexes also exhibit great
leishmanicidal power against L. major and T. cruzi [127], and again the use of bipy, en, and
acetylacetonate (acac) in the synthesis reaches the best activity.

It is possible to find many examples of metallic complexes with antiparasitic activity
with triazolopyrimidines [107,140], especially those with transition metals like copper [141],
zinc [128], nickel [129], or ruthenium [130], as well as lanthanide cations [131]. All of these
complexes show better IC50 values and higher selectivity indexes than reference drugs
against Leishmania spp. and Trypanosoma cruzi. The proposed drugs were assayed in a
solution for a cytotoxicity test and for amastigote and promastigote screenings in vitro,
but the different solubility of some triazolopyrimidine derivatives make them difficult to
manipulate is some cases, especially in that ligands with organic cycles as substituents in
positions 5 or 7 [107]. Recently, Martin-Montes et al. [132] reported a novel methodology
to deliver the triazolopyrimidine complexes, with the first example of the use of silica
nanoparticles as carriers of the ligand and metal complexes in parasitology (Figure 6).
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Figure 6. Schematic representation of the use of triazolopyrimidine metal complexes directly applied
to extracellular forms and host cells, as well as those supported on silica nanoparticles to improve
their biodistribution. Reproduced with permission from Pharmaceuticals, 2023 [132].

The metallic complexes presented similar acceptable values for IC50 in the promotion
of cytotoxicity assays, but they still did not exceed the performance of commercial drugs
in some cases, like that of L. braziliensis. Nevertheless, for the triazolopyrimidine ligand,
as well as its metal complex [132], the cytotoxicity results were better than those of the
reference drugs. Comparing Glucantime and triazolopyrimidine ligands, the concentration
needed to consider the organic molecule toxic for the host cells was more than sixty-fold
higher than that of the commercial leishmanicidal drug. The results for the antiparasitic
activity of the nanomaterials evaluated indicate a great efficacy of the copper complex, with
higher values of SI in comparison with free Glucantime, while keeping a similar efficacy
range, even though silica nanoparticles were modified with only 20% of the ligand or metal
complex, relative to the weight percentage. The release profile shows a complete liberation
of the drug in two hours, confirming the complete administration of the complex during
the screening experiment.

Despite the increasing studies of quinolines derivatives against Leishmania spp. infec-
tions, there are not many examples of quinoline metal complexes against leishmaniasis. The
only significant test is the one published by Paloque et al. in 2015 [133], where silver (I) and
gold(I) N-heterocyclic carbene–quinoline complexes proved to be promising metallodrugs
with selective action against the pathological relevant form of Leishmania spp. From these
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studies, gold(I) N-heterocyclic carbene-quinoline, and, in particular, a neutral complex,
proved to be promising metallodrugs with potent and selective action against the patholog-
ically relevant form of Leishmania infantum, but the standard treatments with amphotericine
B or miltefosfine are still more effective. Nevertheless, there is a rich chemistry of antimony
(III) hidroxyquinoline complexes with activity against trypanosomatid parasites as an
analogous treatment to tri- and pentavalent antimonial standard drugs [142].

The chemistry of 1,10-phenanthroline metal complexes is a well-studied field, mainly
with copper ions, where multiple applications are studied, such as the following techno-
logical [143] and biological applications: anticancer [144], antibacterial [145], or antifun-
gal [146]. It is also common to observe mixed ligand complexes between one subunit of
1,10-phenanthroline and another biocompatible organic ligand, such as nucleobases [147],
quinolines [148], or commercial drugs [149], for example. But, once again, the studies
of metal complexes derived from 1,10-phenanthrolines against parasite infections are in
low proportion in comparison with other diseases. There are some works about malaria
and antiplasmodic activity [150,151] or T. vaginalis [152], but it can be considered to be
anecdotic in comparison with anticancer or antibacterial studies. In the last decade, vana-
dium phenanthroline complexes against Leishmania spp. and Trypanosoma cruzi [153,154],
and copper and silver complexes with 1,10-phenanthroline modified ligands published
by Oliveira et al. from 2021, are the few examples that can be found in the literature for
leishmaniasis [123,134,155]. These compounds have shown significant activity against
L. braziliensis, influencing metallopeptidases produced by the parasites and being able to
block the interaction process of the parasite with host macrophage cells. Figure 7 shows
the morphological changes produced by the use of metal complexes against leishmania
extracellular forms [134], playing a critical role in normal parasite population growth and
leading to great SI values.
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Figure 7. Scanning electron microscopy (SEM) analysis of L. amazonensis and L. chagasi promastigotes
after treatment with the IC50 value of Ag and Cu 1,10-phenentroline complexes. The control cells of
L. amazonensis (A) and L. chagasi (F) are presented with an elongated cell body and a long flagellum.
The treatment of L. amazonensis with the IC50 value of the Ag complex (B,C) and Cu complex
(D,E) showed parasites displaying a rounding of the cell body (arrows), cell shrinkage (stars), and
a shortening of the flagellum (arrowheads). In addition, treatment with the Cu complex led to a
discontinuity on the cell surface (diamond). L. chagasi treated with the Ag complex (G,H) and Cu
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compound (I,J) also promoted rounding the in cell body (thick arrows) and cell shrinkage (stars),
in addition to the formation of blebs in the membrane (thin arrows). L. chagasi treated with the Cu
complex presented shortening (arrowhead) or loss (asterisks) of the flagellum. Reproduced with
permission from [134].

3.3. Commercial Drug Metal Complexes

One of the trends in the development of new metal complexes with leishmanicidal
activity is to use accepted drugs for other treatments and derivatize them to metallic
complexes to test against the parasite infection.

The most extended family of drug employed against leishmaniasis are the analgesic
and anti-inflamatory compounds. Ni(II), Mn(II), and Pd(II) ibuprofen complexes were
tested against Leishmania amazonensis [135]. Mn(II), Ni(II), and Co(II) diclofenac complexes
were tested against the following three different strains of Leishmania spp., Leishmania
infantum, Leishmania braziliensis, and Leishmania donovani, to study the three clinical forms of
leishmaniasis [136]. In both cases, the efficacy and specificity increased due to the synergetic
effect of the metal ion. There are also some studies with paracetamol and aspirin metal
complexes, but which only focused on antibacterial activity [156].

Several drugs for hyperuricemia and gout were tested against parasitic infections.
Allopurinol [157] and colchicine [158–160] are two of the gout-tested recommended drugs
used against Leishmania spp. infections, but no metal complex was tested to date. Other ex-
amples of active drug complexes tested as antileishmanial agents are anticancer miltefosine
in combination with gold or vanadium complexes [137,161]; vomit-inducer bumetanide
with a Zn synergetic effect against Leishmania braziliensis [138]; or antidiabetic metformin,
lowering the blood sugar level to the minimum physiological limit and destroying para-
sites [162].

3.4. Mechanisms of Action between Metal Complexes and Parasites

The use of metal complexes derived from leishmanicidal drugs led to a decrease in the
infections through a synergetic effect between the organic ligands and metal centers. There
are different mechanisms of action proposed for the interaction between metal complexes
and parasite forms, like the following: DNA interaction and damage [163], DNA structure
disruption, and replication and transcription inhibition, or by the generation of reactive
oxygen species (ROS) that cause DNA strands to break; inhibition of metalloenzymes, such
as ribonucleotide reductase or topoisomerase, or proteases involved in the parasite’s life
cycle, can disrupt protein processing and the metabolism [164]; membrane disruption [165]
through ROS generated by metallic complexes that can initiate lipid peroxidation, compro-
mising the integrity of cellular membranes or by directly binding to membrane components,
disrupting the membrane’s structure and function, leading to cell lysis; or metabolic disrup-
tion [166] by the inhibition of key metabolic pathways targeting essential enzymes for the
parasite’s energy production and biosynthesis due to metallic complexes that can impair
mitochondrial function, ATP production disruption, and apoptosis induction.

ROS play a critical role in most of the mechanisms proposed by diverse authors to
explain the benefits of using metal complexes as alternative leishmanicidal drugs. Many
metallic complexes can undergo redox cycling, producing ROS that damage cellular com-
ponents like lipids, proteins, and DNA. In addition, metal complexes that participate in
Fenton-like reactions can catalyze the production of hydroxyl radicals, leading to oxida-
tive stress.

4. Alternative Use of Metals: Metallic Nanoparticles as Antiparasitic Agents

In recent years, nanotechnology approaches have arisen as a promising solution
to traditional therapies’ limitations against parasites, namely reduced efficacy and poor
penetration (which is especially worrying in the case of intracellular parasites), leading
to the administration of higher doses that provoke severe and undesired side-effects.
Additional noteworthy improvements that nanoparticle (NP)-based strategies against
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parasitic infections bring are higher biocompatibility and membrane penetration, the
possibility to selectively target parasites (protecting from side toxicity to the host), an
improvement in drug delivery and drug stability, or absence of drug resistance (which is a
remarkable limitation for many traditional therapies). Although the specific mechanism
of action depends on the precise parasite species and on the type of nanoparticle used,
general modes of operation are interaction with biological membranes or some parasite’s
proteins, impact on the proliferation of the microorganism, or the production of reactive
oxygen species (ROS). The generation of ROS, which can be triggered by the excitation of
metallic nanoparticles with the appropriate wavelength (visible and infrared), results in the
release of free electrons able to hinder cells’ homeostasis and osmotic potential [167–170].

Moreover, nanoparticle use in the fight against parasitic infections is not only limited to
treatment, but also enables the prevention, control, and detection of several infections [171].
Regarding the latter, fluorescent, magnetic, and metal NP (especially gold and silver
NP [172]) are promising tools, owing to the possibility of conjugation with different probes
or signal enhancers, improving the detection process [173].

One of the main advantages that nanomaterials bring is their versatility in numerous
aspects such as application fields, morphologies, compositions, or synthetic procedures. In
this context, it is remarkable to highlight the current trend in developing metal nanoparticles
for antiparasitic purposes by green methods using natural resources. Examples of natural
products used for the green synthesis of nanoparticle-based materials with antiparasitic
features are fig, olive [174,175], ginger [176], curcumin [177,178], or onion [179]. Some of the
most remarkable advantages that green synthesis pose compared to traditional procedures
are cheap precursors, waste conversion into valuable matter, environmental care, and
non-toxic products.

Despite the great variety of metallic nanoparticles that can be synthesized, the most
numerous research articles found in the literature for antiparasitic purposes are mainly
silver and gold, followed by metallic oxides, which could be attributed to their efficacy [180]
(Figure 8). Therefore, some of the most outstanding results using these nanoparticles will
be reviewed as follows.

4.1. Silver Nanoparticles

Silver nanoparticles (AgNPs) have been found to present several properties which
make them excellent candidates for biomedical purposes. AgNPs present low toxicity,
an anti-inflammatory effect, antimicrobial activity against numerous microorganisms like
bacteria, fungi, protozoa, and some types of viruses, accumulation in tissues, and produc-
tion of ROS [181]. Despite the fact that AgNPs can be synthesized using a great number
of physical (laser ablation, irradiation, evaporation. . .) or chemical (chemical reduction,
sol–gel, pyrolysis. . .) procedures, bio-based methodologies are currently widespread [182].
The use of biological reactants is crucial due to their capacity to reduce and stabilize Ag
ions together with their proven therapeutic effectiveness. Examples of green synthesis
methods are proposed by Almayouf and coworkers (using fig and olive extracts as phenolic
and flavonoid sources in addition to their chemical reductive capacity) [174], Mohammadi
et al. (used ginger rhizome extract) [176], or Javed and colleagues (used an aqueous extract
of Mentha Arvensis) [167].

The action of metal nanoparticles is not limited to the activity of the noble metal itself,
but can also be used to improve certain properties of other active compounds or to provide
synergistic effects to other elements. For example, Badirzadeh et al. designed curcumin-
coated silver nanoparticles to enhance curcumin’s water solubility and bioavailability
for the treatment of cutaneous leishmaniasis (CL) [178], while Shakeel et al. synthesized
thiolated AgNPs to provide muco-adhesion and muco-permeation to the nanosystem and
mannosylated chitosan to enhance the uptake of macrophages [183].

Regarding the application of AgNPs, most research articles focus their work on the
treatment of different manifestations of leishmaniasis, but are not limited to this parasite.
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Different strains of Trypanosoma (cruzi [184] or brucei [185,186] respectively) or Toxoplasma
gondii [181] are examples of alternative parasites to be approached using AgNPs.
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4.2. Gold Nanoparticles

Gold nanoparticles (AuNPs) are widely used for a variety of applications in the health-
care industry such as imaging, targeting, drug delivery, or treatment [187,188]. Additionally,
they have shown interesting features for parasite treatment.
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Regarding gold nanoparticles synthesis, they can be obtained using both chemical
methods and green procedures as well. For example, Want et al. propose gold nanopar-
ticle synthesis by microwave-assisted heating in the presence of a reductant [189], while
Raj et al. synthesized chrysin (a non-toxic flavonoid with therapeutic properties) conjugated
gold nanoparticles [190]. It is remarkable to highlight the potential of gold nanoparticles
as carriers of relevant bioactive molecules able to perform a variety of tasks as enzyme
substrates (like glutathione [185]) or inhibitors (as apoferritin [186]).

Gold nanoparticles have already shown significant activity towards both amastig-
otes and promastigotes, offering a promising alternative against L. donovani, as proven by
Muzamil Yaqub et al. [189]. Nevertheless, antileishmanial activity could be improved if
gold and silver nanoparticles were combined. Santanu Sasidharan and Prakash Sauda-
gar synthesized 4′,7-dihydroxyflavone modified gold and silver nanoparticles against L.
donovani [191]. In a different study, Dayakar Alti et al. obtained gold–silver bimetallic
nanoparticles [192]. IC50 values obtained for the bimetallic nanomaterial were an order of
magnitude lower than the individual gold nanoparticle designed by Santanu Sasidhara
and coworkers (0.03 µg/mL and 0.1226 µg/mL, respectively).

The interest in gold nanoparticles for antiparasitic purposes is not only limited to the
development of effective treatments, but can be used in the design of sensitive biosensors
for the detection of leishmania. In this regard, gold nanoparticles usually do not have
an active role in the recognition event, but are used as support for the biomolecules
responsible for the biorecognition process [193] or to improve electron transfer in the case
of electrochemical sensors [194].

4.3. Copper Nanoparticles

Copper is a metallic element that also presents interesting features for biomedical
purposes like anti-inflammatory, antinociceptive, or antioxidant effects, immune protection,
or antimicrobial activity. Therefore, in recent years, taking advantage of the benefits
that nanomaterials provide, copper nanoparticles have been explored for health-related
applications. Green synthesis procedures have been published based on the use of plant-
based raw materials for the synthesis of copper nanoparticles. Caesalpinia Spinosa [47],
Lupinus Arcticus [195], or Allium Tuncelianum [179] are examples of vegetable resources
described in the literature for such purposes. These eco-friendly procedures have shown to
be not only more sustainable, but also to be able to provide high effectivity in their duty;
pristine copper nanoparticles, especially when combined with meglumine antimoniate, are
able to significantly inhibit the growth rate of L. major [47].

Not only green synthesis procedures have been proposed for the obtention of copper
nanoparticles. Welearegay et al. used an advanced gas deposition technique followed by
ligand deposition, and the metal nanoparticles synthesized were used for the development
of a gas sensor for the detection of cutaneous leishmaniasis. Interestingly, despite gold
nanoparticles being the most widely used in sensing films, copper nanoparticles showed
better accuracy, sensitivity, and specificity [195].

4.4. Metal Oxide Nanoparticles
4.4.1. Copper Oxide Nanoparticles

A significant advantage that metal oxide nanoparticles have over metallic nanoparti-
cles is that they do not trigger resistance in microorganisms or pathogenic cells. In addition
to this, the cost associated with the precursors is much more competitive compared to
silver or gold, which are the prevalent metals used for the synthesis of nanoparticles for
anti-parasitic purposes. Nevertheless, copper oxide (CuO) nanoparticles must be modified
by a ligand coating or sulfidation to be safe for therapeutic use. Few articles have been
published describing copper oxide nanoparticles for anti-parasitic purposes, to the best
of our knowledge. As an example, Dunia A. Ruda et al. propose the synthesis of copper
oxide nanoparticles using the precipitation method as an anti-leishmania agent [196]. Shah
Faisal et al. published a green synthesis based on the use of plant-based precursors of
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multi-purpose copper oxide nanoparticles with high activity against leishmaniasis, observ-
ing a high mortality rate of 49.1 and 56.2% inhibition at 400 µg/mL for promastigote and
amastigote, respectively [177].

4.4.2. Nickel Oxide Nanoparticles

Nickel oxide (NiO) presents astonishing physico-chemical properties owing to its
electronic behavior. It is a p-type semiconductor transition metal oxide with a broad
band gap, which provides remarkable ferromagnetic properties and presents thermal and
chemical robustness. In addition, nickel oxide also possesses remarkable antibacterial
and antifungal properties. To avoid the use of hazardous precursors, green methods
are also widely used for the synthesis of nickel oxide nanoparticles. Rhamnus triquetra
and olive leaves have been used to obtain nickel oxide nanoparticles for activity against
Leishmania spp. (IC50 of 27.32 µg/mL and 37.4 µg/mL for promastigotes and amastigotes,
respectively) [197] and the viruses transmitted by Hyalomma dromedarii [175]. Ali Talha
Khalil et al. proposed a synthesis using Sageretia thea, which rendered 24.13 µg/mL and
26.74 µg/mL as IC50 values for the promastigote and amastigote cultures of Leishmania
tropica [198]. As for other metal-based nanoparticles, nanostructured nickel oxide might also
be useful for sensing purposes, in addition to its biomedical application against leishmania.
In this regard, Swati Mohan and coworkers developed a sensitive biosensor for visceral
leishmaniasis [199].

4.4.3. Zinc Oxide Nanoparticles

Zinc is a biocompatible and biodegradable element recommended for both tissue
regeneration and treatment. When combined with oxygen as zinc oxide (ZnO), it is consid-
ered to be a safe substance by the US Food and Drug Administration, and has been proven
to be an effective antibacterial owing to its capacity to produce ROS and perturb bacterial
DNA amplification mechanisms, as well as its capacity to induce lipid membrane oxidation,
making these nanoparticles a good alternative to fight against resistant organisms [200,201].

Among zinc oxide nanoparticles, the most outstanding features, in addition to low
prize and stability, that make them interesting materials are their wide band gap and
photocatalytic behaviors. It is precisely these latter properties which provide one of the
main cytotoxic pathways to fight against leishmaniasis; zinc oxide nanoparticles could
act as photosensitizers, which are useful in photodynamic therapy against Leishmania, as
Akhtar Nadhman et al. established [202].

Different approaches have been found in the literature that use zinc oxide nanopar-
ticles as antiparasitic agents, highlighting nude green-synthesized zinc oxide nanoparti-
cles [203], metal-doped zinc oxide nanoparticles [204], and drug-loaded zinc oxide nanopar-
ticles [200,201,205,206].

In a recent study, Fatemeh Saleh et al. compared the cytotoxic effects of biosynthetic
zinc oxide nanoparticles and glucantime towards L. major. Their findings evidence the
potential of zinc oxide nanoparticles as antileishmanial agents, since in spite of inducing
apoptosis, the toxicity associated with the nanoparticles was lower than glucantime [200].
Nevertheless, in a different study, Samina Nazir et al. evidenced the importance of deeper
study about the toxicological behavior of zinc oxide nanoparticles against leishmania, since
not only its physiological properties might exert an impact, but also the administration
route [207].

Table 2 shows a list of the most significant metal nanoparticle applications for leishma-
niasis, from having a direct leishmanicidal effect to sensing and detecting the disease.



Inorganics 2024, 12, 190 16 of 25

Table 2. Summary of the different kinds of metal nanoparticles’ main applications against leishmani-
asis infections.

Type Applications and Advantages against
Leishmania spp. References

Silver nanoparticles Improve water solubility of leishmanicidal molecules;
provide muco-adhesion and muco-permeation. [178,183]

Gold nanoparticles Direct leishmanicidal effect; lesihmaniasis biorecognition
molecules carrier. [189,191–194]

Copper nanoparticles Leishmanicidal organic molecules vehicle; gas sensor for the
detection of cutaneous leishmaniasis. [195]

Copper oxide nanoparticles Increase mortality rate of intra and extracellular
forms of leishmania. [177,196]

Nickel oxide nanoparticles Low IC50 values; biosensor for visceral leishmaniasis. [198,199]

Zinc oxide nanoparticles Photodynamic therapy; lower toxicity versus commercial
drug Glucantime. [200,202,207]

5. Conclusions

Despite the use of metal complexes in medicine being one of the research areas of
bioinorganic discipline of greater interest to the scientific community, there is still a gap
to fill in the research for neglected diseases, with a special focus needed on parasitic
illnesses such as leishmaniasis. The use of metal complexes derived from biomimetic and
biocompatible organic ligands to enhance their applications in cancer, bacterial, or fungal
therapies is one of the most prospective for the future, and one with the best perspectives,
but contributions to leishmaniasis eradication have experienced a significant slowdown in
the last decade.

There are few examples in recent years of the synergetic effects of the combination
between leishmanicidal ligands and metal ions, with a significant prevalence of copper
complexes due their capacity to generate ROS that can affect multiple vital processes in
parasite life cycles. Azole derivatives show the best selectivity indexes in comparison with
the rest of the emerging synthetic organic leishmanicidal ligands, while triazolopyrimidine
metal complexes are the most versatile due their application to more different types of
leishmania strains. The use of novel nanoplatforms as an effective vehicle to transport the
metal complexes to the infected organ is a promising new way to explore the possibilities
of metal-complex therapy against leishmaniasis. The use of metal elements is not limited to
be part of complex structures, due to metallic nanoparticles offering an attractive alterna-
tive to metallic compounds with a wide variety of applications, ranging from the direct
leishmanicidal effect to the development of biosensors for leishmaniasis or for improving
the solubility or biodisponibility of leishmanicidal molecules.

But despite all of the mentioned encouraging results obtained in the last decade, there
is still much to be carried out in order to find novel metal complexes with good activity and
low toxicity, and an appropriate relationship between their efficacy and their production
costs, to develop long term sustainable solutions for the problematic derived from parasitic
neglected diseases. Increase funding associated with these types of diseases is an urgent
need, in order to reveal the mechanisms of action and the best targets to use the novel metal
complexes in the fight against neglected diseases such as leishmaniasis.
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