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Abstract: This study explores the influence of solution concentration, specifically that of water and
ethylene glycol mixtures, on the optical and supercapacitive properties of cobalt tungstate (CoWO4)
nanoparticles. CoWO4 nanoparticles were synthesized using varying ratios of water to ethylene
glycol to ascertain the optimal conditions for enhanced performance. Detailed characterization was
conducted using UV–Vis spectroscopy, photoluminescence (PL) spectroscopy, cyclic voltammetry
(CV), and galvanostatic charge–discharge (GCD) to evaluate the optical properties and electrochemi-
cal behavior, respectively. The results revealed that the solution concentration significantly impacted
the bandgap, absorbance, and emission properties of the CoWO4 nanoparticles. Effective bandgap
tuning was achieved by altering the solution concentration. When using only water, the nanoparticles
displayed the lowest bandgap of 2.57 eV. In contrast, a solution with equal water and ethylene
glycol concentrations resulted in the highest bandgap of 2.65 eV. Additionally, the electrochemical
studies demonstrated that the water/ethylene glycol ratio markedly influenced the charge storage
capacity and cyclic stability of the nanoparticles. The results indicated that the solvent concentra-
tion significantly influenced the crystallinity, particle size, and surface morphology of the CoWO4

nanoparticle nanoparticles, which affected their optical properties and electrochemical performance.
Notably, nanoparticles synthesized with a 1.25:0.75 proportion of water to ethylene glycol exhib-
ited superior supercapacitive performance, with a specific capacitance of 661.82 F g−1 at a current
density of 7 mA cm−2 and 106% capacitance retention after 8000 charge–discharge cycles. These
findings underscore the critical role of solvent composition in tailoring the functional properties of
CoWO4 nanoparticles, providing insights for their application in optoelectronic devices and energy
storage systems.

Keywords: CoWO4 nanoparticles; solvothermal synthesis; effect of solvent concentration; optical
properties; supercapacitor performance

1. Introduction

The ever-growing demand for high-performance energy storage devices and ad-
vanced optical materials has spurred intensive research into nanostructured materials, with
a specific focus on improving the performance and efficiency of these technologies [1].
Supercapacitors have emerged as a crucial component in this field of energy conversion
and storage applications due to their high power density, rapid charge/discharge cycles,
and long-term stability. These features make supercapacitors an appealing alternative to
traditional batteries, especially for applications needing quick energy bursts and extended
operational lifespans [2–4]. Within the diverse array of materials investigated for superca-
pacitor and optoelectronic applications, materials from the metal tungstate family such as
CuWO4, NiWO4, FeWO4, ZnWO4, CoWO4, CeWO4, and MnWO4 have shown exceptional
promise. This is because metal tungstates have favorable characteristics that make them
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ideal for energy storage device applications, such as significant specific capacitance, high
power density, high specific surface area, and great rate capability [5–8]. Furthermore,
materials from the metal tungstate family have garnered significant attention in optoelec-
tronic applications. This interest stems from their optical properties, including a wide
bandgap and strong absorption in the visible region, as well as their use in scintillators.
Additionally, their combination of semiconducting characteristics and nonlinear optical
properties further enhances their appeal [9–13].

In the metal tungstate family, cobalt tungstate (CoWO4) nanoparticles have attracted
considerable interest due to their unique electrical, magnetic, and optical properties. Due
to these promising features, CoWO4 has gained a great deal of attention in various techno-
logical applications, which include catalysts, microwave dielectrics, wastewater treatment,
nonenzymatic glucose sensing, acetone sensing, an anode for Li-ion batteries, photolumines-
cence, dye-sensitized solar cells (DSSCs), optical fibers, humidity sensors, optoelectronics,
tribological devices, and electrocatalysis [9–14]. The distinctive advantages of CoWO4
nanoparticles stem from their high theoretical capacitance, excellent conductivity, and
robust structural integrity. These properties facilitate efficient electron transfer and robust
energy storage capabilities, making CoWO4 an ideal candidate for supercapacitors. The
superior electrochemical performance of CoWO4 nanoparticles can be attributed to their
intrinsic characteristics, such as a large surface area, high porosity, and favorable crystalline
structure. These attributes enable the nanoparticles to store a greater amount of charge
and deliver it rapidly when needed [7,15]. Furthermore, this p-type semiconductor reflects
enriched conductivity in the range of 10−7 to 10−3 S.cm−1, which is higher than that of
pure metal oxide counterparts. This enrichment is mainly ascribable to the incorporation of
tungstate [7,15,16].

In addition to the abovementioned technological applications of CoWO4, this bimetal-
lic tungstate is also very suitable for optoelectronic applications, such as photodetec-
tors and light-emitting devices [17]. The bandgap of CoWO4 is typically in the range of
2.2 to 2.8 eV, which classifies it as a semiconductor. On the other hand, the luminescence
of CoWO4 is mainly due to the electronic transitions within the Co2+ ions. When excited
by UV light, CoWO4 can emit light in the visible range, which is often observed as a
characteristic blue or green emission [9,13,18,19]. In general, CoWO4 crystallizes in a
monoclinic wolframite structure. This structure is characterized by chains of edge-sharing
octahedra, where cobalt (Co) and tungsten (W) ions are coordinated by oxygen (O) atoms.
This monoclinic symmetry further leads to anisotropic optical properties, and the material
exhibits different optical behavior along different crystallographic directions [18–20]. How-
ever, the functional properties of CoWO4 nanoparticles are significantly influenced by the
choice of synthesis methods, temperature, time variation, and solvents used during their
preparation. The solvothermal method, a widely used synthesis technique, enables precise
control over the morphology and size of nanoparticles, while solvents such as water and
ethylene glycol play a crucial role in determining the morphology, size, and distribution
of the nanoparticles [16]. A few studies have revealed that the physiochemical properties
of the nanoparticles can be tuned with the use of alternative solvents in the preparation
of nanoparticles [2,7,12,16]. Furthermore, the concentration of these solvents affects the
crystallinity and surface chemistry of CoWO4, thereby impacting its optical and superca-
pacitive performance. However, there are no studies in the literature that examine how
changes in solvent concentrations affect the physicochemical properties of the materials,
specifically for metal tungstate-based nanoparticles such as CoWO4 nanoparticles. There-
fore, understanding the influence of solution concentration on the properties of CoWO4
nanoparticles holds substantial significance for both fundamental science and practical
applications. From a scientific perspective, it provides insights into the nucleation and
growth mechanisms of nanoparticles in varying chemical environments, contributing to
the broader knowledge base regarding nanomaterial synthesis. Practically, optimizing the
concentration can lead to the development of CoWO4-based materials with tailored proper-
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ties for specific applications, such as more efficient supercapacitors for energy storage and
enhanced optical devices.

This research focuses on the synthesis of CoWO4 nanoparticles using the solvothermal
method, with a particular emphasis on understanding how the concentration of the precur-
sor solution affects their optical and supercapacitive properties. The primary objectives of
this research are to synthesize and characterize CoWO4 nanoparticles with varying precur-
sor concentrations; systematically investigate their optical properties; and evaluate their
electrochemical performance as supercapacitor electrodes, focusing on specific capacitance
and cycling stability as a function of solution concentration. By systematically analyz-
ing how the mixed-solvent environment affects the structural and functional properties
of CoWO4, this research seeks to uncover the optimal conditions for maximizing their
performance. The addition of ethylene glycol during the preparation of CoWO4 nanopar-
ticles enhances their electrochemical performance. An electrode made of nanoparticles
prepared with a solvent volume ratio of 1.25:0.75 (water/ethylene glycol) has the highest
specific capacitance, while all the electrodes have over 100% stability after 8000 charge–
discharge cycles measured at 25 mA cm−2. Furthermore, the bandgap of the CoWO4
nanoparticles can easily tuned by changing the solvent proportion; the estimated bandgap
remains between 2.57 to 2.65 eV for the different ratios of water to ethylene glycol. These
insights related to electrochemical and optical properties presented through this work will
not only advance the fundamental understanding of CoWO4 nanoparticle synthesis but
also contribute to the development of high-performance materials for energy storage and
optoelectronic applications.

2. Results and Discussion

Using X-ray diffraction (XRD), the produced materials’ phase purity and structural
characterization were ascertained. Even without any additional heat treatment or annealing
process, all samples of CoWO4 had strong, sharp diffraction peaks, confirming formation
with good crystallinity, as illustrated in Figure 1a. The observed crystal plane positions
closely match the monoclinic crystal symmetry with space group P2/c of CoWO4, as
referenced by JCPDF number 01-072-0479 [3]. The monoclinic crystallinity remains the
same during the preparation of CoWO4 nanoparticles with the involvement of ethylene
glycol in the total solvent. The impact on various parameters, including plane position,
peak intensity, and average crystallite size of the nanoparticles, was significant. Figure 1b
confirms this, showing a magnified view of the system’s most intense crystal plane at
2θ = 30.6◦. With the addition of ethylene glycol at an initial ratio of 1.75:0.25, the crystal
plane positions shifted towards a lower 2θ angle. As the ratio of ethylene glycol in the
solvent increased, the peak position started to move towards a higher 2θ angle. When
the concentration of ethylene glycol became equal to that of DI water, the peak position
slightly shifted back towards a lower 2θ angle. Furthermore, as the ethylene glycol content
increased, the intensity of the crystal peaks decreased. The average crystallite size of
each CoWO4 sample was estimated by analyzing six highly intense crystal planes from
each diffraction pattern, specifically (100), (110), (−111), (002), (−202), and (−132). The
Debye–Scherrer equation was applied to estimate the average crystallite size as illustrated
below [9].

D =
kλ

βcosθ
(1)

This equation relates the crystallite size (D) to the broadening (peak width) of the
crystal plane, centered at a specific angle (θ) and measured at half the maximum height,
known as FWHM or β. In the equation, λ represents the X-ray wavelength, and k is
the shape factor constant. A decrease in average crystallite size was observed with an
increasing ratio of ethylene glycol in the solvent mixture, except at a 1:1 ratio, where the size
increased. All samples indicated the formation of nanosized crystallites, with estimated
sizes ranging from 15 to 25 nm. The estimated lattice parameters, unit cell volume, and
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crystallite size for samples prepared with different ratios of DI water to ethylene glycol are
summarized in Table 1.
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Figure 1. (a) X-ray diffraction patterns of the CoWO4 nanoparticles at different solvent concentrations;
(b) magnified view of the (−111) crystal plane for all samples.

Table 1. Various parameters estimated from the analysis of the X-ray diffraction patterns of the
CoWO4 nanoparticles prepared with different solvent ratios.

W/E.G. Ratio
Lattice Parameters (Å)

Angles
(θ) Volume

(V)
Crystallite Size

(nm)
a b c α β γ

2:0 4.646 5.694 4.959 90 90.228 90 131.31 22.71
1.75:0.25 4.646 5.695 4.959 90 90.282 90 131.21 21.68

1.5:0.5 4.646 5.699 4.959 90 90.247 90 131.20 19.31
1.25:0.75 4.646 5.692 4.958 90 90.354 90 131.15 15.99

1:1 4.646 5.693 4.959 90 90.275 90 131.16 24.46

The functional characteristics and chemical bond information of all CoWO4 samples
were determined using Fourier transform infrared (FTIR) spectroscopy analysis, as depicted
in Figure 2. Figure 2 is divided into two sections: one covering the range from 1750 to
400 cm−1 and the other ranging from 4000 to 2750 cm−1. The section between 2750 and
1750 cm−1, which contains no absorption bands, has been omitted to emphasize the regions
with absorption bands. The absorption bands that are visible within the 400–1000 cm−1

wavenumber range are associated with the CoWO4 nanoparticles’ stretching vibrations.
The bands within this range of wavenumbers are the primary bands resulting from the
absorption of the wolframite-type structure in metal tungstates [21]. The vibration at
827 cm−1 signifies the anti-symmetric stretching involving the O-W-O bonds [9,13], while
the bands at 621 cm−1 and 951 cm−1 are associated with the stretching vibrations of the
W-O bonds [22]. The absorptions observed at 459 cm−1 and 510 cm−1 correspond to
the symmetrical and asymmetrical deformations of the W-O and Co-O bonds within the
WO6 and CoO6 polyhedra, respectively [21,23]. Absorption at 1383 cm−1 indicates the
symmetrical stretching of the C=O bond, attributed to the presence of a hydroxyl functional
group [24]. The depth of this band seems to be enhanced with increasing content of
ethylene glycol. The subsequent spectral absorption peak at 1629 cm−1 indicates stretching
involving either C=N or H-O-H bending [10,21,25]. Symmetric stretching of the C-H
bond is attributable to the absorptions at 2886 cm−1 and 2977 cm−1 [11], while the broad
absorption centered around 3407 cm−1 corresponds to the stretching vibrations indicative
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of water (OH) molecules adsorbed on the powder’s surface. These vibrations are linked to
the presence of moisture during the test preparation [22,25].
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X-ray photoelectron spectroscopy (XPS) was applied to probe the surface atomic
composition and binding energies in cobalt tungstate nanoparticles synthesized with a
solvent ratio of 1.25:0.75. Surface scanning, as illustrated in Figure 3a, captured only the
spectra related to the constituent elements, i.e., Co, W, and O, respectively, without peaks of
any other element. The deconvoluted Co 2p spectrum as represented in Figure 3b provides
detailed insights into the contributions from different chemical states or environments of
cobalt atoms in a sample. Two strong asymmetric peaks at 780.2 eV and 796.5 eV were
visible in the Co 2p spectra, signifying the two states Co 2p3/2 and Co 2p1/2, respectively.
Inside these asymmetric reflections, the Co3+ species of cobalt atom was identified as the
source of the peaks at 780.0 eV and 796.1 eV. On the other hand, the Co2+ states of this
element were centered at 781.3 eV and 797.1 eV [6,8,26]. Two further subpeaks were linked
to satellite levels, which were centered at 785.3 eV and 803.1 eV. The presence of satellite
levels with reasonable intensity signifies the existence of a Co2+ oxidation state in the Co
2p spectrum of the Co element [27]. The W4f spectrum featured two distinct peaks at
34.9 eV and 37.0 eV, corresponding to the characteristic reflections of the element W. These
peaks indicated the presence of W 4f7/2 and W 4f5/2, respectively. The fitted spectrum for
the element W had a spin–orbit separation of 2.1 eV, as shown in Figure 3c, confirming
its existence in the 6+ oxidation state [8,27,28]. Due to metal–oxygen bonds, the O 1s
spectrum split into two main peaks at 529.8 eV (corresponding to Co–O and W–O bonds)
and 530.6 eV, as displayed in Figure 3d [2,27]. The atomic percentages of Co, W, and O
determined from XPS were 15.1%, 16.3%, and 68.6%, respectively, indicating the formation
of CoWO4.

Figure 4a–j displays the FE-SEM images of CoWO4 nanoparticles at various magnifi-
cations, prepared using different ratios of ethylene glycol in the total solvent. Specifically,
Figures (a and b), (c and d), (e and f), (g and h), and (i and j) show the surface microstruc-
ture images of samples prepared with 2:0, 1.75:0.25, 1.5:0.5, 1.25:0.75, and 1:1 ratios of
deionized water to ethylene glycol, respectively. These images revealed that all microstruc-
tures appeared identical, confirming the formation of clustered granule-like nanoparticles,
indicating that CoWO4 forms without structural modification despite variations in ethy-
lene glycol content. However, changes in particle size were observed with the addition
of ethylene glycol. Histograms of the particle size, derived using ImageJ (Version-1.54 j)
software with log-normal plots, are shown in Figure 4k–o. These histograms indicate
that the sample prepared with a 1:1 solvent ratio had a higher number of larger parti-
cles (approximately 47 nm) than the other samples. Samples prepared with 1.5:0.5 and
1.25:0.75 ratios had the highest number of particles below 30 nm, while samples with only
water and a 1.75:0.25 ratio had the majority of their particles around 35 nm in size. These
observations were also recorded in the X-ray diffraction analysis. The CoWO4 nanoparticles
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(synthesized with a 1.25:0.75 ratio of water to ethylene glycol) underwent EDS analysis to
assess their elemental composition and purity. Figure S1 (Supporting Information) presents
the EDS spectrum, displaying energy peaks corresponding to Co, W, and O elements. The
estimated atomic percentages of these elements are shown in the accompanying table,
which aligns closely with the observations from the XPS results.
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Brunauer–Emmett–Teller (BET) analysis is a critical characterization technique that
provides valuable insights into the surface properties of CoWO4 nanoparticles synthe-
sized via the solvothermal method. Surface area is a crucial factor in determining the
activity and efficiency of nanoparticles in various applications. In this context, all sam-
ples of CoWO4 nanoparticles were subjected to BET analysis to elucidate how changes in
solution concentration translate to variations in surface area and pore structure. The N2
adsorption–desorption curves, depicted in Figure 5a–e for various solvent concentrations,
exhibited a characteristic Type IV isotherm, indicative of the mesoporous nature of the
CoWO4 nanoparticles. For supercapacitive applications, a higher BET surface area often
indicates a higher number of active sites accessible for electrochemical processes [1]. Com-
parably, a more expansive surface area with larger active sites is also helpful in improving
a nanoparticle’s optical characteristics by enhancing its contact with light [29]. Specifically,
CoWO4 nanoparticles prepared with a 1:0.75 ratio of water to ethylene glycol exhibited
a higher surface area of 33.76 m2g−1. As confirmed by BET analysis, other samples of
CoWO4 nanoparticles exhibited a surface area of 15.09, 16.93, 20.52, and 26.10 m2g−1 for
water/ethylene glycol ratios of 2:0, 1.75:0.25, 1.5:0.5, and 1:1 respectively. The BET sur-
face area significantly impacts the optical properties and supercapacitive performance
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of CoWO4 nanoparticles. A larger surface area enhances light absorption, beneficial for
photocatalysis and photodetectors, and correlates with increased capacitance in supercapac-
itors by providing more active sites for electrochemical reactions [16,29,30]. Mesoporous
structures with an optimal pore size facilitate electrolyte diffusion and ionic transport,
which are essential for high-rate supercapacitor performance. Additionally, these pores can
trap and scatter light, influencing the optical behavior of the nanoparticles. The pore size
distribution of the CoWO4 nanoparticles was analyzed using the BJH method. Figure 5f–j
illustrate the pore size distribution for CoWO4 nanoparticles at various water/ethylene
glycol concentrations. The estimated pore volumes were 0.1459, 0.1479, 0.1261, 0.1699,
and 0.1357 cm3g−1 for the nanoparticle samples with water/ethylene glycol ratios of 2:0,
1.75:0.25, 1.5:0.5, 1.25:0.75, and 1:1, respectively. The pore structure from BET analysis
is crucial, as mesoporous materials exhibit unique optical behaviors by interacting with
light. Equally important, mesopores facilitate rapid ion transport, essential for high power
density and cyclic stability in supercapacitors [1,29].
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Figure 6a shows the diffuse reflectance absorption spectra for CoWO4 nanoparticles.
These spectra exhibited an absorption band ranging from 350 nm to 800 nm for all the
samples prepared in this study. Each sample displayed a broad absorption peak centered at
586 nm, accompanied by a smaller shoulder peak at 523 nm. The d-d transitions between the
4A2 → 4T1(P) energy levels of Co2+ ions are responsible for this broad absorption peak [11].
Another absorption noted below 450 nm is characteristic of electron excitation from the O2p
orbital of the oxygen element towards the W5d orbital of the tungsten element, resulting
from UV energy absorption [10,13]. Close observation revealed that the absorption edge
initially decreased with the addition of ethylene glycol. It then increased sharply for the
samples prepared with solvent ratios of 1.5:0.5 and 1.25:0.75. Finally, when the solvent
was in equal proportion, the absorption edge decreased again, indicating an increase in
the bandgap. The Tauc plot of each sample is illustrated in Figure 6b, which was further
utilized to estimate the binding energy as per the equation below [12].

(αhυ) = A
(
hυ− Eg

)2 (2)
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In this equation, α denotes the absorption coefficient, A is a constant, and h and υ
are Planck’s constant and the radiation frequency, respectively. The estimated bandgap
values lie in the range of 2.57 to 2.65 eV. Bandgap tuning was observed as the solvent ratio
changed: Eg increased with the initial addition of ethylene glycol, then decreased again.
For samples with solvent concentrations of 1.5:0.5 and 1.25:0.75, Eg remained almost the
same. However, when the ethylene glycol concentration increased and became equal in
proportion, the bandgap increased again. This increase may be attributed to the variation
in particle size and other several factors including the complex interplay of variables,
solvent interactions, change in synthesis conditions concerning variation in the solvent
ratio, quantum confinement effects, defects, and states of aggregation and dispersion.
Additionally, orbital overlapping plays a significant role in changes in the bandgap: a
reduction in overlapping reduces the bandgap, and vice versa [13,31].

Figure 7 illustrates the photoluminescence characteristics of CoWO4 nanoparticles
synthesized with varying water/ethylene glycol ratios measured at a 520 nm excitation
wavelength. Usually, the energy produced during the recombination of photogenerated
carriers leads to the emission of photoluminescence (PL). The intensity of the characteristic
PL peak indicates the recombination rate in the material. A lower PL intensity signifies a
lower recombination rate, while a higher intensity indicates a higher recombination rate.
Materials with lower recombination rates, and thus lower PL intensities, are particularly
useful for catalytic applications [14]. A strong, broad spectrum centered at 470 nm for each
sample of CoWO4 nanoparticles indicates blue-green emission. The shoulder peaks visible
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on either side of this broad spectrum are signatures of radiative transitions within the
[WO4]2− tetrahedral group [17]. Notably, the broad spectrum exhibited the lowest intensity
when CoWO4 nanoparticles were prepared using a solvent ratio of 1.25:0.75. Consequently,
this sample demonstrates higher electrocatalytic activity than the others.
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Measurements of the electrochemical performance of CoWO4 nanoparticle electrodes
made at different solution concentrations were carried out in an aqueous KOH electrolyte.
The purpose of this study was to determine how small variations in solution concentration
impact the supercapacitive capabilities of CoWO4 nanoparticles. Figure 8a illustrates
cyclic voltammetry curves that compare electrodes made from CoWO4 nanoparticles
prepared with different concentrations of solvent solutions. These measurements were
taken at a scan rate of 20 mV s−1 within a potential range of −0.2 to 0.6 V. The results
indicate that the CoWO4 nanoparticles prepared with a water/ethylene glycol ratio of
1.25:0.75 exhibited the largest area under the curve, suggesting optimal performance at
this concentration. The shape of the CV itself had a different nature than observed for
electrochemical double-layer capacitors, with the distinct presence of redox peaks implying
that all samples of CoWO4 nanoparticles exhibit pseudocapacitive behavior [3,6,7]. This
was further analyzed by measuring the CV profiles of each electrode at varying scan rates
from 5 mV s−1 to 100 mV s−1 as illustrated in Figure 8b–f. The tungsten does not participate
in this redox reaction; instead, it significantly enhances the overall conductivity. Therefore,
these redox peaks on both the reduction and oxidation sides stem from the reversible
electrochemical reaction between Co2+ and Co3+ species. This is a clear indication that
the faradic mechanism predominantly governs the overall charge storage process [8,32,33].
Each of these electrodes persisted in outstanding reversibility as indicated by the symmetry
redox peaks. Peak current climbed as the scan rate and accompanying peak potential in
both cases moved slightly outward, while no change was noticed in the overall shape.
Effectively, this conduction is a very important factor for the effective movement of ions
and electrons between the electrode and the electrolyte at their interface [6,8]. This process
was more pronounced for CoWO4 nanoparticles prepared with a solvent ratio of 1.25:0.75,
as this electrode could achieve a higher current level than nanoparticles prepared with
other solvent ratios.
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Figure 8. Cyclic voltammetry curves (a) for all electrodes of CoWO4 nanoparticles at 20 mV s−1,
(b) at various scan rates for CoWO4 nanoparticles prepared with a solvent ratio of 2:0, (c) at various
scan rates for CoWO4 nanoparticles prepared with a solvent ratio of 1.75:0.25, (d) at various scan
rates for CoWO4 nanoparticles prepared with a solvent ratio of 1.5:0.5, (e) at various scan rates for
CoWO4 nanoparticles prepared with a solvent ratio of 1.25:0.75, and (f) at various scan rates for
CoWO4 nanoparticles prepared with a solvent ratio of 1:1.

Constant-current charge–discharge measurements were been employed to further
examine the electrode with optimal performance. Figure 9a presents a comparative analysis
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of the charge–discharge curves for all electrodes at 7 mA cm−2. All electrodes had a
well-defined plateau during discharge, which is an indication of their pseudocapacitive
nature [7,34]. Moreover, GCD confirmed that the CoWO4 nanoparticles prepared with a
solvent ratio of 1.25:0.75 exhibited optimal specific capacitance compared to other electrodes,
as it reflected higher discharge time; this was also evidenced by the CV analysis. According
to equations 1 and 2, the estimation of specific capacitance (areal capacitance) revealed that
the highest value of 661.82 F g−1 (1985.4 mF cm−2) at 7 mA cm−2 was achieved when the
nanoparticles were prepared with a water/ethylene glycol ratio of 1.25:0.75. The values of
specific capacitance (areal capacitance) for CoWO4 nanoparticles prepared with ratios of
2:0, 1.75:0.25, 1.5:0.5, and 1:1 were 358.1 F g−1 (930.86 mF cm−2), 386.4 F g−1 (966 mF cm−2),
516.55 F g−1 (1498 mF cm−2), and 498.75 F g−1 (1396.5 mF cm−2), respectively. Further
GCD measurements were carried out at up to twice the original current density, i.e., 14 mA
cm−2 for each electrode. These curves are represented in Figure 9b–f, suggesting a decline
in capacitance with increasing current density. The delay in fast faradic redox reactions
results in the active material not reacting promptly; hence, the specific capacitance declines
at higher current densities [34]. Values of specific capacitance estimated at various current
densities are shown in Figure 9g. The highest retention, 86.29%, was observed for CoWO4
nanoparticles prepared with a solvent ratio of 1.5:0.5 at 14 mA cm−2, compared to the value
at 7 mA cm−2, as depicted in Figure 9h. All electrodes demonstrate excellent retention
ability, maintaining over 75% retention when the current density is doubled which is an
indication high stability of the CoWO4 nanoparticles.

To evaluate the cycling performance of each CoWO4 electrode, charge–discharge
measurements were conducted up to 8000 cycles at a current density of 25 mA cm−2.
Figure 10a–e are composed of the charge–discharge performance and related coulombic
efficiency over 8000 cycles for the CoWO4 nanoparticles prepared with 2:0, 1.75:0.25, 1.5:0.5,
1.25:0.75, and 1:1 ratios of water to ethylene glycol, respectively. The electrode containing
nanoparticles made at a solvent ratio of 1.75:0.25 exhibited superior stability compared
to the others. It retained 168% of its original capacitance after 8000 cycles. Each electrode
showed distinct cycling performance. The electrode with the best performance (solvent
ratio 1.25:0.75) demonstrated an initial increase in capacitance up to 2000 cycles, stabilizing
thereafter. For electrodes prepared with CoWO4 nanoparticles and solvent ratios of 2:0,
1.5:0.5, and 1:1, there was an initial increase in capacitance, which then decreased with more
cycles. However, the most stable electrode exhibited a sustained increase in capacitance
throughout the cycling process. This continuous growth in capacitance (stability) for
electrodes with CoWO4 nanoparticles made at solvent ratios of 1.75:0.25 and 1.25:0.75 is
mainly due to the formation of numerous diffusion channels and the larger surface area
of the electrode, enhancing interaction with the electrolyte [35]. The coulombic efficiency
of each electrode was slightly below 100% for the first few cycles. It then rose to just
above 100% and remained stable, except for the electrodes prepared with 2:0 and 1.5:0.5
solvent ratios. These electrodes showed slight fluctuations, with minor increases and
decreases, throughout the cycling process. These observations of coulombic efficiency
indicate that electron trapping across the solid-electrolyte interphase layer was minimal,
allowing more electrons to participate in reversible electrochemical reactions [36]. To
confirm stability exceeding 100% after 8000 cycles, charge–discharge measurements were
conducted at a current density of 7 mA cm−2. These results were then compared with the
initial charge–discharge curve obtained before cycling, under the same current density.
These results are illustrated in the inset figures of the stability curves for each electrode of
the CoWO4 nanoparticles.
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Figure 9. Charge–discharge profiles and estimation of capacitance. (a) GCD for all electrodes of
CoWO4 nanoparticles at 7 mA cm−2, (b) GCD at various current densities for CoWO4 nanoparticles
prepared with a solvent ratio of 2:0, (c) GCD at various current densities for CoWO4 nanoparti-
cles prepared with a solvent ratio of 1.75:0.25, (d) GCD at various current densities for CoWO4

nanoparticles prepared with a solvent ratio of 1.5:0.5, (e) GCD at various current densities for CoWO4

nanoparticles prepared with a solvent ratio of 1.25:0.75, (f) GCD at various current densities for
CoWO4 nanoparticles prepared with a solvent ratio of 1:1, (g) specific capacitance at different current
density of all electrodes, and (h) capacitance retention at various current density.
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Figure 10. Cyclic stability and coulombic efficiency up to 8000 cycles (a) for the electrode of CoWO4

nanoparticles prepared with a solvent ratio of 2:0, (b) for the electrode of CoWO4 nanoparticles
prepared with a solvent ratio of 1.75:0.25, (c) for the electrode of CoWO4 nanoparticles prepared with
a solvent ratio of 1.5:0.5, (d) for the electrode of CoWO4 nanoparticles prepared with a solvent ratio
of 1.25:0.75, and (e) for the electrode of CoWO4 nanoparticles prepared with a solvent ratio of 1:1
(GCD profiles inset are before and after stability for respective electrode).

Electrochemical impedance spectroscopy (EIS) measurements, as shown in Figure 11a
for all electrodes of the CoWO4 nanoparticles, revealed a bifurcation of these curves in
both the high-frequency and low-frequency regions. In the high-frequency region, the
spectra indicate the series resistance (Rs), which is identified by the point of intersection
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with the real (x) axis. The second region, corresponding to the low-frequency range,
indicates the charge transfer resistance. Typically, this is represented by the diameter of the
semicircle observed in this region [34]. The electrodes made from CoWO4 nanoparticles
prepared with water/ethylene glycol ratios of 1.5:0.5 and 1.25:0.75 exhibited the lowest
series resistance, measuring 0.39 Ω cm−2. The magnified view of the Nyquist plot, shown
in Figure 11b, provides additional confirmation. Moreover, the electrode with the optimal
specific capacitance exhibited the lowest charge-transfer resistance of 0.5 Ω cm−2, which
was the lowest among all tested electrodes. These values indicate that this electrode material
established excellent contact with the current collector (Ni foam), outperforming others
in this regard. Furthermore, a more pronounced straight-line trend along the y-axis in the
EIS plot for this electrode suggests higher ion mobility, contributing to its elevated specific
capacitance among other electrodes made of CoWO4 nanoparticles.
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Figure 11. (a) EIS spectrum for all samples of CoWO4 nanoparticles. (b) A magnified view of the EIS
spectrum at the intersection of the x-axis.

3. Experimental Details
3.1. Materials

Precursors including cobalt (II) chloride hexahydrate (CoCl2·6H2O), sodium tungstate
dihydrate (Na2WO4·2H2O), and ethylene glycol were obtained from Sigma Aldrich (St.
Louis, MO, USA).

3.2. Synthesis of CoWO4 Nanoparticles

CoWO4 nanoparticles were synthesized using a solvothermal synthesis approach
where the ratio of water to ethylene glycol was systematically varied. In simple steps
of synthesis, 50 mM of CoCl2·6H2O was first added to 80 mL (DI water) of solvent in a
beaker, and continuous stirring was applied for up to 15 min. Following this step, the
same amount of Na2WO4·2H2O in a 1:1 proportion was added directly to the solution
containing CoCl2·6H2O, and continuous stirring was further provided for 30 min to ensure
homogeneity. The homogeneous solution containing cobalt and tungstate precursors was
poured into a 125 mL Teflon liner. The Teflon liner was then sealed inside a stainless
steel autoclave and maintained at 180 ◦C for 24 h. After the reaction was complete and
the autoclave had cooled to room temperature, the CoWO4 nanoparticles were collected.
The collected nanoparticles were washed with water and ethanol to remove any residual
solvents and by-products and dried at 100 ◦C for 24 h. This process was repeated, gradually
replacing the volume of water with ethylene glycol, until a 1:1 volume ratio of deionized
water to ethylene glycol was achieved. The dried CoWO4 nanoparticles were used for
further characterization, as well as electrochemical and optical measurements, without any
additional annealing or heating processes.

3.3. Characterization Techniques

X-ray diffraction (XRD) was performed using a DIATOME-Pananlytical instrument
(Malvern, UK) with Cu Kα radiation (1.54 Å). X-ray photoelectron spectroscopy (XPS) anal-
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ysis was conducted using a Versaprobe II system (ULVAC-PHI Inc., Chigasaki, Kanagawa,
Japan). Field-emission scanning electron microscopy (FE-SEM) was carried out using an
S-4800 microscope (Hitachi, Ibaraki, Japan). Functional characteristics were analyzed using
Fourier transform infrared (FT-IR) spectra (PerkinElmer FT-IR spectrometer- Spectrum
100, Waltham, MA, USA). Optical features (absorbance range and bandgap energy) were
determined using ultraviolet–visible (UV–Vis) diffuse reflectance measurements (Agilent
Technologies, Cary 5000 UV–Vis spectrometer, Santa Clara, CA, USA). The properties of
photoluminescence were evaluated using a fluorescence spectrometer with a xenon source
(Hitachi, F-7000, Tokyo, Japan).

3.4. Electrode Fabrication and Electrochemical Measurements

The CoWO4 nanoparticles in powdered form obtained after drying were used to fabri-
cate the electrodes on Ni foam. To fabricate the electrode, powdered nanoparticles were
mixed with PVDF and carbon black in N-methyl-2-pyrrolidinone, maintaining a ratio of
80:10:10. Before applying slurries of this mixture to coat a 1 cm2 area of Ni foam, the foam
was thoroughly cleaned using ultrasonic treatment with ethanol, acetone, and deionized
water. Following the application of the mixed slurries, the Ni foam was dried at 80 ◦C
overnight and utilized further for analyzing electrochemical features. All measurements
were carried out with a three-electrode system in which 2 mol/L potassium hydroxide
(KOH) was used as an electrolyte. An electrochemical workstation ZIVE SP5 (WonaT-
ech, Seocho-gu, Seoul, Republic of Korea) was used to conduct all the electrochemical
assessments. The electrochemical performance of each electrode was evaluated in terms
of specific capacitance (using weight of active material deposited) and areal capacitance
(using active area immersed in the electrolyte) using the following equations [37]:

Cs =
I × td

m × ∆V
(3)

Cs =
I × td

A × ∆V
(4)

In the first expression, ‘m’ represents the weight of the active material, ‘I’ is the
current density, ‘td’ is the discharge time, and ‘∆V’ is the voltage window. The active-
material weights for the electrode are 2.6, 2.5, 2.9, 3.0, and 2.8 mg cm−2 for CoWO4
nanoparticles prepared with DI water and glycol in ratios of 2:0, 1.75:0.25, 1.5:0.5, 1.25:0.75,
and 1:1, respectively. Similarly, ‘A’ in the second expression represents the active area of
the electrode.

4. Conclusions

This investigation into the effects of solution concentration (ethylene glycol/water)
on the optical and supercapacitive performance of CoWO4 nanoparticles concluded with
noteworthy discoveries. Changes in the solvent content by even a very small fraction
were discovered to affect the optical properties, such as bandgap energy and absorption
characteristics. The optical properties can be effectively tuned by adjusting the solvent
ratio during nanoparticle preparation, suggesting promising applications in optoelectronic
devices. Furthermore, different concentrations impacted the CoWO4 nanoparticles’ spe-
cific capacitance and charge–discharge cycling stability in supercapacitive performance,
highlighting the significance of solvent selection in maximizing electrochemical character-
istics. This study implies the possible usefulness of more research into variables such as
temperature and pH, which may make it easier to create multifunctional nanomaterials
such as CoWO4. These initiatives may open the door to a variety of technical uses for
such materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inorganics12080203/s1, Figure S1: EDS spectra of the CoWO4
nanoparticles prepared with a 1.25:0.75 ratio of water-to-ethylene glycol.
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