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Abstract: In contrast to corresponding nitrosyl compounds, thionitrosyl complexes of rhenium and tech-
netium are rare. Synthetic access to the thionitrosyl core is possible by two main approaches: (i) the treat-
ment of corresponding nitrido complexes with S2Cl2 and (ii) by reaction of halide complexes with trithiazyl
chloride. The first synthetic route was applied for the synthesis of novel rhenium and technetium thionitro-
syls with the metals in their oxidation states “+1” and “+2”. [MVNCl2(PPh3)2], [MVNCl(PPh3)(LOMe)] and
[MVINCl2(LOMe)] (M = Re, Tc; {LOMe}− = (η5-cyclopentadienyl)tris(dimethyl phosphito-P)cobaltate(III))
complexes have been used as starting materials for the synthesis of [ReII(NS)Cl3(PPh3)2] (1), [ReII(NS)Cl3
(PPh3)(OPPh3)] (2), [ReII(NS)Cl(PPh3)(LOMe)]+ (4a), [ReII(NS)Cl2(LOMe)] (5a), [TcII(NS)Cl(PPh3)(LOMe)]+

(4b) and [TcII(NS)Cl2(LOMe)] (5b). The triphenylphosphine complex 1 is partially suitable as a precursor
for ongoing ligand exchange reactions and has been used for the synthesis of [ReI(NS)(PPh3)(Et2btu)2]
(3a) (HEt2btu = N,N-diethyl-N′-benzoyl thiourea) containing two chelating benzoyl thioureato ligands.
The novel compounds have been isolated in crystalline form and studied by X-ray diffraction and
spectroscopic methods including IR, NMR and EPR spectroscopy and (where possible) mass spectrom-
etry. A comparison of structurally related rhenium and technetium complexes allows for conclusions
about similarities and differences in stability, reaction kinetics and redox behavior between these 4d
and 5d transition metals.

Keywords: rhenium; technetium; thionitrosyl complexes; synthesis; X-ray diffraction; EPR; NMR

1. Introduction

The two “group 7” elements technetium and rhenium possess radioactive isotopes
(99mTc, 186,188Re), which make them more than interesting for nuclear medical applica-
tions [1–11]. The metastable nuclide 99mTc (pure γ-emitter, half-life 6 h, γ-energy: 411 keV)
is sometimes denoted as the “workhorse” of diagnostic nuclear medicine, since more than
80 percent of clinical applications in this field in more than 10,000 hospitals worldwide are
performed with 99mTc-containg pharmaceuticals [12]. This dominating position is mainly
due to the favorable nuclear properties of this nuclide: (i) an almost optimal γ-energy
without considerable amounts of accompanying particle radiation, (ii) a half-life which
is long enough to examine metabolic processes but short enough to avoid a considerable
radiation burden to the patient and (iii) the formation of 99mTc in a so-called generator
system from 99Mo [13], which ensures a permanent availability of this nuclide in the clinics.
A similar generator system starting from 188W as mother nuclide is also available for the
supply of 188Re (Eβ,max: 2.12 MeV, Eβ,av: 784 keV, half-life: 16.9 h), a beta-emitting isotope
with potential in nuclear medical therapy [14]. For both isotopes, kit-like preparations
of the pharmaceuticals have been developed, which allow for a rapid and cost-efficient
production of the individual administrations [1,14].

99mTc and 188Re are also under discussion as an almost perfect example of a “matched
pair” of nuclides for theragnostic applications [15,16], which is a modern approach in
personalized medicine, where an optimized dosage of a therapeutic drug becomes possible
by the parallel monitoring of the therapeutic effects by a diagnostic counterpart.
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Although the syntheses of 99mTc and 188Re compounds proceed at an approximate
nanomolar level due to the low (chemical) concentrations obtained from the corresponding
nuclide generators, fundamental chemical and structural studies concerning the formed
compounds are commonly conducted with natural rhenium and the long-lived technetium
isotope 99Tc, a weak beta emitter (Emax = 297 keV, half-life 2.11 × 105 years), which is
also available in macroscopic amounts. During such studies, occasionally at the first
glance, unusual solutions for the development of novel radiopharmaceuticals have been
found, including several organometallic approaches [17–23] and drugs on the basis of
nitrido [24–27] or hydrazido compounds [28–30]. Finally, the usability of a potential
solution is decided by the successful transfer to the low concentration level of 99mTc and the
stability of the product under aqueous conditions. Consequently, the potential of a chemical
solution for a final medical application cannot easily be predicted by a simple, intuitive
evaluation of a substance or a substance class. A good example is “99mTc-sestamibi”, a
cationic organotechnetium(I) complex with six isocyanide ligands. As a compound with
six technetium-carbon bonds, it was most probably not in the first row for candidates
for myocardial imaging. Nowadays, it is one of the most used radiopharmaceuticals
worldwide and, up to now, more than 40 million patients have been examined with this
drug [17]. Also, nitrosyl complexes of technetium were considered for such purposes
and related 99mTc compounds have been tested for their biodistribution [31]. The related
structural chemistry was performed with the long-lived isotope 99Tc and starting from
these early days in the 1980s, our knowledge about nitrosyltechnetium compounds has
significantly increased.

In contrast to the relatively large number of nitrosyl complexes of the elements rhe-
nium [32–40] and technetium [40–60], there are only a few reports about thionitrosyls of these
two elements [61–80]. This should be mainly due to the lack of a readily available monomeric
nitrogen sulfide. Although the thionitrosyl radical has been described spectroscopically and
some NS+ salts have been isolated [81–84], the synthesis of such compounds remains a chal-
lenge and they have only occasionally been used as precursors for the synthesis of thionitrosyl
complexes [61,83,84]. More convenient are reactions starting from cyclic compounds such
as tetrasulfur tetranitride, S4N4, or trithiazyltrichloride, (NSCl)3 (Figure 1), which readily
undergo thermal or photochemical decomposition under release of NS+ or NSCl+ building
blocks. But it should be noted that N4S4 is a potentially dangerous compound, which tends
to explode on heating or upon shock. Thus, it is not a favored agent at least for reactions
with the radioactive technetium. Finally, the most promising synthetic approach to thioni-
trosyl complexes is the addition of a “sulfur atom” to a nitrido ligand. A variety of “sulfur
sources” have been used including elemental sulfur, SOCl2, dithionite or NCS− ligands. Most
successful, however, are reactions of nitrido complexes with S2Cl2, which give low-valent
thionitrosyl species in good yields. About reactions following the latter approach, we report in
the present paper starting from different rhenium and technetium complexes with the metals
in the oxidation states “+5” or “+6”.
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2. Results and Discussion
2.1. Triphenylphosphine Complexes

Treatment of the rhenium(V) complex [ReNCl2(PPh3)2] with an excess of disulfur
dichloride in refluxing dichloromethane results in a subsequent dissolution of the sparingly
soluble starting material and a dark-red, almost black solution is formed, from which
the thionitrosyl complexes [Re(NS)Cl3(PPh3)2] (1) and [Re(NS)Cl3(PPh3)(OPPh3)] (2) can
be isolated. The parallel formation of phosphine and phosphine oxide complexes is not
completely surprising with respect to the oxidizing conditions in the reaction mixture
and has been observed previously during similar reactions with [TcNCl2(PMe2Ph)3] [74].
The two products can readily be separated during the crystallization procedure since
compound 2 is highly soluble in acetone, while complex 1 is almost insoluble in this
solvent. During the slow evaporation of CH2Cl2/acetone solutions of mixtures of 1 and 2,
[Re(NS)Cl3(PPh3)2] precipitates first as dark-red crystals, while the orange-yellow crystals
of 2 do not deposit until almost all acetone is evaporated. The best method for the isolation
of pure [Re(NS)Cl3(PPh3)2], however, is the addition of an excess of PPh3 during the
synthesis, which obviously avoids the formation of significant amounts of the phosphine
oxide complex (Scheme 1).
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Scheme 1. Syntheses of [Re(NS)Cl3(PPh3)2] (1) and [Re(NS)Cl3(PPh3)(OPPh3)] (2).

The infrared spectra of the complexes show the characteristic ν(NS) stretches at 1213 cm–1

(phosphine complex) and 1230 cm–1 (phosphine oxide complex). These values are in agree-
ment with such recorded for other rhenium complexes and those calculated for similar
chromium(I) species [62]. The difference of approximately 20 cm–1 reflects a stronger back-
donation in compound 1 compared with 2. Since the oxidation state of rhenium in both
compounds is “+2”, the observed difference indicates some changes in the coordination
sphere of the transition metal. Particularly the electronic properties of the ligand in the trans
position to the thionitrosyl ligand have a direct influence to the donor/acceptor behavior
of NS+.

Single-crystal X-ray diffraction confirms that the oxidation of one of the PPh3 ligands is
accompanied with a ligand rearrangement and the OPPh3 ligand in 2 occupies the position
trans to NS+ instead of Cl− in 1. The molecular structures of both complexes are depicted
in Figure 2 and selected bond lengths and angles are summarized in Table 1. It becomes
evident that the thionitrosyl units are arranged linearly in both compounds with Re–N–S
angles between 167◦ and 178◦. Such a bonding situation has been found for all hitherto
structurally characterized thionitrosyl complexes. Also, the direction of a formed phosphine
oxide ligand in the trans position to a multiply bonded ligand is not without precedence and
has been observed before during the formation of [Tc(NS)Cl3(PMe2Ph)(OPMe2Ph) from
cis,mer-[TcNCl2(PMe2Ph)3] [74]. More generally, the presence of one triphenylphosphine
oxide ligand in the coordination sphere of a transition metal favors the cis coordination to
PPh3, since the steric and electronic effects, which direct two PPh3 ligands commonly into
trans positions to each other, are significantly lowered.
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Table 1. Selected bond lengths (Å) and angles (◦) in [Re(NS)Cl3(PPh3)2] (1) and (b) [Re(NS)Cl3(PPh3)
(OPPh3)] (2).

Re1–N10 N10–S10 Re1–Cl1 Re1–Cl2 Re1–Cl3 Re1–P1 Re1–P2/O1 O1–P2 Re1–N10–S10 Re1–O1–P2

1 1.795(5) 1.518(5) 2.353(1) 2.340(1) 2.416(1) 2.540(2) 2.555(2) - 174.4(3) -

2 (1) 1.77(1)
1.77(1)

1.53(1)
1.52(1)

2.368(4)
2.357(4)

2.255(3)
2.332(3)

2.338(3)
2.366(3)

2.506(4)
2.584(4)

2.100(8)
2.099(8)

1.509(9)
1.497(9)

167.2(7)
178.4(6)

155.7(6)
164.5(5)

(1) Values for two crystallographically independent molecules.

[Re(NS)Cl3(PPh3)2] (1) as well as [Re(NS)Cl3(PPh3)(OPPh3)] (2) contain rhenium in
the oxidation state “+2”. Due to the corresponding 5d5 “low spin” configuration, they are
paramagnetic with one unpaired electron. This allows for the detection of resolved EPR
spectra in solution. Figure 3 shows the spectra of both compounds at various temperatures.
The spectra in liquid solutions (Figure 3a) consist of six hyperfine lines due to interactions of
the unpaired electron with 185,187Re, both having a nuclear spin of I = 5/2. Superhyperfine
couplings due to interactions of the unpaired electron with the coordinating 31P (I = 1/2),
35,37Cl (I = 3/2) or 14N (I = 1) nuclei could not be resolved. The frozen solution EPR spectra,
which are shown in Figure 3b, confirm the presence of essentially axially symmetric,
randomly oriented S = ½ spin systems with resolved parallel and perpendicular sets of
185,187Re hyperfine lines. The analysis of the spectral parameters indicates the presence of a
small rhombic component in the perpendicular part of the spectrum of complex 1, which
has been taken into account during the simulation. The simulated spectra, which have been
used to derive the spectral parameters, are depicted in the Supporting Material.
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g0 = 2.025; a0

Re = 342 × 10−4 cm−1; parameters for 2 in acetone: g0 = 2.017; a0
Re = 372 × 10−4 cm−1)

and (b) in frozen solution at T = 77 K (parameters for 1 in CH2Cl2: gx = 2.110, gy = 1.991, gz = 1.943;
Ax

Re = 281 × 10–4 cm–1, Ay
Re = 283 × 10−4 cm−1, Az

Re = 524 × 10−4 cm−1; parameters for 2 in
acetone: g∥ = 1.923, g⊥ = 2.008; A∥

Re = 594 × 10−4 cm−1, A⊥
Re = 293 × 10−4 cm−1).
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As already mentioned, couplings with the 31P nuclei of the coordinated phosphine
ligands could not be resolved in the spectra of 1 and 2. This finding is in contrast to the pre-
viously studied technetium(II) complexes [Tc(NS)Cl3(PMe2Ph)2] and [Tc(NS)Cl3(PMe2Ph)
(OPMe2Ph)], where the 99Tc hyperfine signals of the parallel part show splittings into
triplets (phosphine complex) or doublets (phosphine/phosphine oxide complex) and
provide direct information for the occupation of their respective equatorial coordination
spheres [74,77,85,86]. The larger line-widths of the EPR spectra obtained for the rhenium
complexes prevent the resolutions of such couplings. Nevertheless, a remarkable trend in
the EPR spectral parameters should be mentioned: the isotropic 185,187Re coupling constants
a0

Re show a dependence on the number of chlorido ligands in the equatorial coordination
sphere in a way that they increase from compound 1 (2 Cl−: 342 × 10–4 cm–1) via compound
2 (3 Cl−: 372 × 10–4 cm–1) to the [Re(NS)Cl4]− anion (4 Cl−: 457 × 10–4 cm–1 [66]). In the
same sequence of complexes, the corresponding g0 values decrease. Similar trends are also
observed for the g values and coupling constants of the anisotropic spectra, which reflects
considerable changes in the MO of the unpaired electron mainly due to the presence or
absence of phosphine ligands.

2.2. Complexes with Chelating Ligands

Since the triphenylphosphine complexes 1 and 2 might have potential as precursors for
the synthesis of more thionitrosyl complexes of rhenium, we tested some ligand exchange
reactions with the chelating ligands shown in Figure 4. HEt2btu is a potentially bidentate
chelator. It readily deprotonates after the addition of a supporting base and stable com-
plexes are known with almost all common transition metals. This also includes rhenium
and technetium complexes with the metals in several oxidation states [87–94]. The tripodal,
organometallic ligand {LOMe}− belongs to a classical family of tripodal ligands, which has
been designed by Wolfgang Kläui and tested for a plethora of various applications [95,96].
Also, a number of rhenium complexes with this ligand are known and it is the first example
of a chelating ligand, which forms stable technetium complexes with the metal in seven
different oxidation states [54,95–101].
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Figure 4. N,N-Diethyl-N′-benzoylthiourea (HEt2btu) and (η5-cyclopentadienyl)tris(dimethyl phosphito-P)
cobaltate(III) ({LOMe}−) as typical chelating ligands for ligand exchange reactions.

Reactions of [Re(NS)Cl3(PPh3)2] with HEt2btu in a mixture of CH2Cl2 and EtOH
proceeded at room temperature (Scheme 2). After the addition of a small amount of
Et3N as a supporting base, the red reaction mixture immediately turned dark brown and
a red-brown solid could be isolated. Single crystals suitable for X-ray diffraction were
obtained by the slow evaporation of a CH2Cl2 solution. The deprotonation of HEt2btu
and its coordination as an S,O chelate is strongly indicated by the IR spectrum of the
product by the disappearance of the NH stretches of the ligands and a strong bathochromic
shift of the νC=O band by almost 200 cm−1. This is typical for chelate-bonded R2btu−

ligands [87]. Reduction of the metal ion is frequently observed during reactions with
sulfur-containing ligands and, thus, the product of the described reaction with HEt2btu
is the diamagnetic rhenium(I) complex [Re(NS)(PPh3)(Et2btu)2] (3a). This allows for the
measurement of NMR spectra. They support the composition of the product as is performed
by the mass spectrum.
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Scheme 2. Ligand exchange reactions starting from [Re(NS)Cl3(PPh3)2] (1).

The results of the spectroscopic studies are confirmed by a single-crystal structure
analysis of the product. Figure 5 depicts the molecular structure of compound 3a, which
shows the expected linear arrangement of the thionitrosyl ligand (Table 2). The equatorial
coordination sphere of rhenium is occupied by an S,O chelate, a PPh3 and the sulfur atom
of the second Et2btu− ligand. Interestingly, the two Re–O single bonds are almost equal,
which indicates similar structural trans influences induced by the NS+ and the PPh3 ligands.
The N–S distance in the rhenium(I) complex is markedly longer than in the rhenium(II)
complexes 1 and 2, which might be a consequence of a stronger back-donation of the d6

metal ion into anti-bonding orbitals of the thionitrosyl ligand. Unfortunately, the corre-
sponding IR stretch, which is normally more indicative, cannot be assigned unambiguously
for 3a due to many overlapping bands in the respective range of the spectrum.
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Figure 5. Molecular structure of [Re(NS)(PPh3)(Et2btu)2] (3a). Thermal ellipsoids represent 50 percent
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Table 2. Selected bond lengths (Å) and angles (◦) [Re(NS)(PPh3)(Et2btu)2] (3a).

Re1–N10 N10–S10 Re1–P1 Re1–S1 Re1–O1 Re1–S11 Re1–O11 O1–C1 C1–N1 N1–C2

1.749(4) 1.571(4) 2.362(1) 2.401(1) 2.101(3) 2.439(1) 2.103(4) 1.296(6) 1.301(7) 1.353(7)

C2–N2 C2–S1 O11–C11 C11–N11 N11–C12 C12–N12 C12–S11 Re1–N10–S10

1.319(7) 1.755(6) 1.266(6) 1.329(6) 1.338(7) 1.325(7) 1.758(6) 176.5(3)

With respect to the clean reaction of [Re(NS)Cl3(PPh3)2] with HEt2btu and the ready
formation of the thionitrosylrhenium(I) complex 3a, a surprising result was obtained for
an analogous reaction of the corresponding technetium complex [Tc(NS)Cl3(PPh3)2]. It
proceeded under complete removal of the NS+ ligand and oxidation of the metal ion. The
resulting technetium(III) tris complex [Tc(Et2btu)3] (Scheme 2) has been reported before
(i) as the product of the direct reduction of pertechnetate with SnCl2 in the presence of
excess ligand [102], and (ii) by a subsequent reduction/ligand exchange procedure starting
from (NBu4)[TcOCl4] [87]. The observed lability of the thionitrosyl unit is a considerable
drawback for a potential use of 1 as precursor in ligand exchange procedures and is accom-
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panied by another disappointing experience during attempted reactions with Na{LOMe}.
Although reactions of an entire series of different technetium and rhenium complexes with
the “Kläui ligand” give well-defined and stable products [95–101], attempted reactions
with 1 at room temperature did not proceed. Heating of such reaction mixtures finally
gave a small amount of the chelate [Re(NS)Cl(PPh3)(LOMe)], but the yield was low and the
product was accompanied by a number of side-products and impurities, which precluded
the isolation of a pure compound in reasonable yields. Consequently, we preferred the
second general approach to thionitrosyl compounds: the reaction of nitrido complexes
with S2Cl2. Corresponding starting materials with {LOMe}− ligands, [MNCl(PPh3)(LOMe)]
and [MNCl2(LOMe)] complexes with M = Re or Tc, are readily available from simple proce-
dures, and the reactions with S2Cl2 (Scheme 3) give the products [M(NS)Cl(PPh3)(LOMe)]Cl
(M = Re: 4a; M = Tc: 4b) and [M(NS)Cl2(LOMe)] (M = Re: 5a; M = Tc: 5b) in reasonable
yields and good purities.
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The reactions with all four starting complexes are restricted to the nitrido ligands and
the remaining coordination spheres of the metals remain unchanged. Cationic thionitrosyls
of rhenium(II) and technetium(II) are formed, when [MVNCl(PPh3)(LOMe)] complexes
(M = Re, Tc) are used as precursors. The products can be precipitated from the reaction
mixture as yellow (Re compound, 4aCl) and red (Tc complex, 4bCl) chloride salts by the
addition of n-hexane. Microcrystalline samples were obtained after recrystallization of
CH2Cl2/n-hexane mixtures. For the rhenium complex, the PF6

− salt was prepared by
metathesis with AgPF6. Orange-yellow needles of [Re(NS)Cl(PPh3)(LOMe)](PF6), 4a(PF6),
were suitable for X-ray diffraction. The structure of the complex cation is shown in Figure 6a
and selected bond lengths and angles are summarized in Table 3. Expectedly, the {LOMe}−

ligands act as tripods in both complexes, which directs the remaining three ligands into trans
positions of their oxygen atoms. The M–N–S angles are close to 180◦ in both compounds.
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Table 3. Selected bond lengths (Å) and angles (◦) in [Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)) and
(b) [Tc(NS)Cl2(LOMe)] (5b).

M1–N10 N10–S10 M1–Cl1 M1–Cl2 M1–P1 M1–O2 M1–O3 M1–O4 M1–N10–
S10

4a 1.752(5) 1.554(5) 2.337(1) - 2.475(1) 2.071(3) 2.032(3) 2.083(3) 175.4(3)

5b (1) 1.732(7)
1.75(1)

1.540(7)
1.54(1)

2.339(3)
2.330(3)

2.343(2)
2.344(3) - 2.060(6)

2.068(5)
2.047(6)
2.057(6)

2.095(5)
2.088(5)

171.7(6)
172.0(8)

(1) Values for two crystallographically independent molecules.

Similar reaction patterns are observed for [ReNCl2((LOMe)] and [TcNCl2((LOMe)]. Both
precursors contain the transition metals in their oxidation states “+6”, while the prod-
ucts [Re(NS)Cl2(LOMe)] (5a) and [Tc(NS)Cl2(LOMe)] (5b) are Re(II) and Tc(II) complexes
(Scheme 3). An X-ray crystal structure determination has been performed for the tech-
netium complex and its molecular structure is shown in Figure 6b. The general structural
features found for the cation 4a also apply to technetium complex 5b (Table 3).

As compounds 1 and 2, the {LOMe}− complexes of the present study, are paramag-
netic with a d5 “low spin” configuration, this results in S = ½ spin systems and allows
us to record resolved EPR spectra in liquid and frozen solutions. The spectra have essen-
tially axial symmetry with well-resolved 185,187Re and 99Tc hyperfine couplings in their
parallel and perpendicular parts. Figure 7 shows exemplarily the spectra obtained for
[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl).

Inorganics 2024, 12, x FOR PEER REVIEW 8 of 16 
 

 

Table 3. Selected bond lengths (Å) and angles (°) in [Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)) and (b) 
[Tc(NS)Cl2(LOMe)] (5b). 

 M1–N10 N10–S10 M1–Cl1 M1–Cl2 M1–P1 M1–O2 M1–O3 M1–O4 M1–N10–S10 
4a  1.752(5) 1.554(5) 2.337(1) - 2.475(1) 2.071(3) 2.032(3) 2.083(3) 175.4(3) 

5b (1) 1.732(7) 
1.75(1) 

1.540(7) 
1.54(1) 

2.339(3) 
2.330(3) 

2.343(2) 
2.344(3) - 2.060(6) 

2.068(5) 
2.047(6) 
2.057(6) 

2.095(5) 
2.088(5) 

171.7(6) 
172.0(8) 

(1) Values for two crystallographically independent molecules. 

Similar reaction patterns are observed for [ReNCl2((LOMe)] and [TcNCl2((LOMe)]. Both 
precursors contain the transition metals in their oxidation states “+6”, while the products 
[Re(NS)Cl2(LOMe)] (5a) and [Tc(NS)Cl2(LOMe)] (5b) are Re(II) and Tc(II) complexes (Scheme 
3). An X-ray crystal structure determination has been performed for the technetium com-
plex and its molecular structure is shown in Figure 6b. The general structural features 
found for the cation 4a also apply to technetium complex 5b (Table 3). 

As compounds 1 and 2, the {LOMe}− complexes of the present study, are paramagnetic 
with a d5 “low spin” configuration, this results in S = ½ spin systems and allows us to 
record resolved EPR spectra in liquid and frozen solutions. The spectra have essentially 
axial symmetry with well-resolved 185,187Re and 99Tc hyperfine couplings in their parallel 
and perpendicular parts. Figure 7 shows exemplarily the spectra obtained for 
[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl). 

 
Figure 7. Liquid solution EPR spectra of [Tc(NS)Cl(PPh3)(LOMe)] in CH2Cl2 (a) at room temperature 
and (b) at T = 77 K (assignment of the 99Tc lines to the parallel and perpendicular parts of the spec-
trum is indicated). 

99Tc has a nuclear spin of I = 9/2, which results in a ten-line pattern in the spectrum in 
liquid solution, while two sets of ten 99Tc hyperfine lines (each one in the parallel and one 
in the perpendicular part of the spectrum) are characteristic for the anisotropic frozen-
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A⊥M are the principal values of the 99Tc and 185,187Re hyperfine tensors AM. The spectral 
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Figure 7. Liquid solution EPR spectra of [Tc(NS)Cl(PPh3)(LOMe)] in CH2Cl2 (a) at room temperature
and (b) at T = 77 K (assignment of the 99Tc lines to the parallel and perpendicular parts of the spectrum
is indicated).

99Tc has a nuclear spin of I = 9/2, which results in a ten-line pattern in the spectrum in
liquid solution, while two sets of ten 99Tc hyperfine lines (each one in the parallel and one in
the perpendicular part of the spectrum) are characteristic for the anisotropic frozen-solution
spectrum as can be described by the Spin Hamiltonian (1), where g∥, g⊥, A∥

M. and A⊥
M are

the principal values of the 99Tc and 185,187Re hyperfine tensors AM. The spectral parameters
are summarized in Table 4.

Ĥsp = βe

[
g∥BzŜz + g⊥

(
BxŜx + ByŜy

)]
+ AM

∥ Ŝz Îz + AM
⊥
(
Ŝx Îx + Ŝy Îy

)
(1)

Table 4. EPR parameters of the Re(II) and Tc(II) complexes with {LOMe}− ligands, coupling constants
are given in 10–4 cm–1.

g0 a0
M g∥ g⊥ A∥

M A⊥
M

[Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl) 1.995 420 1.842 1.986 644 330

[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl) 2.007 168 1.966 2.023 252 112

[Re(NS)Cl2(LOMe)] (5a) 1.990 455 1.945 1.760 787 398

[Tc(NS)Cl2(LOMe)] (5b) 1.996 177 1.943 2.021 285 129
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Superhyperfine interactions due to couplings of the unpaired electron with the 31P
nuclei of the PPh3 ligands in compounds 4 are not visible. This prevents us from obtaining
direct information about the extent of spin delocalization into the ligand orbitals. Indirect
information, however, can be deduced from the 185,187Re coupling parameters. As described
for compounds 1 and 2, also for the {LOMe}− thionitrosyl complexes, the isotropic and
anisotropic ATc and ARe coupling parameters decrease, when phosphine ligands are present
in the equatorial coordination spheres of the metals instead of Cl−. This can be understood
by the transfer of electron density to the π-acceptor PPh3. The experimental line-widths of
the spectra, however, do not allow for the resolution of such couplings for the complexes of
the present study.

3. Materials and Methods

[ReNCl2(PPh3)2] [103], [TcNCl2(PPh3)2] [104], (NBu4)[TcNCl4] [105], (NBu4)[ReNCl4] [106],
[ReNCl(PPh3)(LOMe)] [98], [TcNCl(PPh3)(LOMe)] [58], [ReNCl2(LOMe)] [107], [TcNCl2(LOMe)] [58],
[Tc(NS)Cl3(PPh3)2] [108] and HEt2btu [109] were prepared according to literature proce-
dures. All other chemicals were reagent-grade and purchased commercially. Reactions
with air- or moisture-sensitive compounds were performed with the standard Schlenk
technique. A laboratory approved for the handling of radioactive material was used for
the synthesis of the technetium compounds. Normal glassware gives adequate protection
against the weak beta radiation of 99Tc as long as small amounts of this isotope as in the
present paper are used.

3.1. Syntheses

[Re(NS)Cl3(PPh3)2] (1): [ReNCl2(PPh3)2] (2 g, 2.6 mmol) was suspended in 40 mL
CH2Cl2 and an excess of S2Cl2 (0.5 mL, 6.26 mmol) and PPh3 (680 mg, 5.2 mmol) was
added. The mixture was heated under reflux for approximately 30 min, which resulted
in a slow dissolution of the starting material and the formation of a dark-red solution.
The progress of the reaction can be controlled by TLC. After a complete consumption of
[ReNCl2(PPh3)2], the solvent and the remaining S2Cl2 were removed in vacuum. The re-
sulting solid was crystallized from a CH2Cl2/acetone (1:1) mixture giving dark-red crystals.
Yield: 1.49 g (66%). Elemental analysis: Calcd. For C36H30Cl3NP2ReS: C, 50.1; H, 3.5; N, 1.6;
S, 3.7%. Found: C 49.8; H, 3.5; N, 1.6; S, 4.0%. IR (ATR, cm–1): 3057 (w), 1981 (w), 1670 (w),
1586 (w), 1574 (w), 1482 (s), 1434 (s), 1316 (m), 1213 (s), 1187 (s), 1159 (m), 1089 (s), 1074 (m),
1028 (m), 998 (m), 928 (w), 855 (w), 758 (m), 744 (s), 711 (m), 692 (s), 617 (w). EPR (77 K,
CH2Cl2): gx = 2.110, gy = 1.991, gz = 1.943; Ax

Re = 281 × 10–4 cm–1, Ay
Re = 283 × 10–4 cm–1,

Az
Re = 524 × 10–4 cm–1. EPR (RT, CH2Cl2): g0 = 2.025; a0

Re = 342 × 10–4 cm–1. ESI+ MS
(m/z): 885.002 [M+Na]+ (calcd. 885.009), 900.975 [M+K]+ (calcd. 900.983).

[Re(NS)Cl3(PPh3)(OPPh3)] (2): The product was obtained as a side product of the
synthesis of [Re(NS)Cl3(PPh3)2] when no additional PPh3 was added. It could be isolated
as an orange-red solid following compound 1 during the crystallization procedure. Yield:
0.6 g (26%). IR (ATR, cm–1): 3056 (w), 1589 (w), 1482 (m), 1435 (s), 1231 (s), 1188 (w),
1140 (vs), 1119 (vs), 1026 (m), 998 (m), 924 (w), 852 (w), 747 (s), 723 (vs), 690 (vs). EPR (77 K,
acetone): g∥ = 1.923, g⊥ = 2.008; A∥

Re = 594 × 10–4 cm–1, A⊥
Re = 293 × 10–4 cm–1. EPR (RT,

acetone): g0 = 2.017; a0
Re = 372 × 10–4 cm–1.

[Re(NS)(PPh3)(Et2btu)2] (3a): [Re(NS)Cl3(PPh3)2] (100 mg, 0.1 mmol) was dissolved in
30 mL CH2Cl2 and a solution of HEt2btu (60 mg, 0.25 mmol) in 20 mL Ethanol containing
3 drops of triethylamine was added. The mixture was stirred at room temperature for
30 min. During this time, the color changed to pale brown. The volatiles were removed
in vacuum and the remaining solid was subsequently washed with cold methanol, di-
ethyl ether and n-hexane. The raw product was dissolved in CH2Cl2 for crystallization.
Slow evaporation of the solvent gave red-brown crystals. Yield: 31 mg (25%). Elemen-
tal analysis: Calcd. for C42H45N5O2PReS3: C, 52.3; H, 4.7; N, 7.3; S, 10.0%. Found:
C 52.0; H, 4.9; N, 6.8; S, 10.2%. IR (ATR, cm–1): 3058 (w), 2972 (w), 2927 (w), 1599 (w),
1587 (w), 1528 (m), 1499 (s), 1446 (m), 1416 (s), 1394 (s), 1353 (s),1311 (m), 1294 (m),
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1251 (s),1210 (w), 1140 (m), 1092 (m), 1071 (m), 1025 (m), 997 (m), 895 (m), 883 (m), 827 (m),
797 (m), 752 (w), 742 (m), 702 (s), 692 (s), 671 (m), 661 (m), 619 (w). 1H NMR (400 MHz,
CDCl3, ppm): 8.10 (d, J = 7.6 Hz, 2H, Ph), 7.65 (d, J = 7.3 Hz, 6H, Ph), 7.37–7.13 (m, 15H),
7.01 (t, J = 7.9 Hz, 2H, Ph), 4.37 (dq, J = 14.2, 7.1 Hz, 1H, CH2), 4.14–3.80 (m, 4H, CH2),
3.73 (q, J = 7.3, 6.8 Hz, 1H, CH2), 3.62 (q, J = 6.3 Hz, 1H, CH2), 3.51 (dd, J = 12.9, 6.5 Hz, 1H,
CH2), 1.52 (s, 2H), 1.39 (dd, J = 9.6, 4.2 Hz, 3H, CH3), 1.27 (q, J = 12.3, 9.7 Hz, 3H, CH3),
1.03 (t, J = 6.5 Hz, 3H, CH3), 0.90 (d, J = 6.3 Hz, 3H, CH3). J = 8.0 Hz, 12H, CH3). 31P NMR
(CDCl3, ppm): 21.67 (s). ESI+ MS (m/z): = 965.237 [M]+ (calcd. 965.203) 988.225 [M+Na]+

(calcd. 988.192), 1004.202 [M+K]+ (calcd. 1004.166).
[Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl): [ReNCl(PPh3)(LOMe)] (250 mg, 0.25 mmol) was

suspended in 30 mL CH2Cl2, an excess of S2Cl2 (0.1 mL) was added and the mixture was
heated under reflux for 30 min. The solvent was reduced to 15 mL and n-hexane (150 mL)
was added. The resulting precipitate was washed with hexane and diethyl ether and dried.
Recrystallization from a CH2Cl2/n-hexane (2:1) mixture gave a pale-yellow solid. Yield:
211 mg (83%). Elemental analysis: Calcd. for C29H38Cl2CoNO9P4ReS: C, 34.3; H, 3.8; N,
1.4; S, 3.2%. Found: C 34.0; H, 4.0; N, 1.4; S, 3.1%. IR (ATR, cm–1): 3056 (w), 2992 (w),
2948 (w), 1634 (w), 1483 (w), 1457 (w), 1436 (m), 1223 (m), 1177 (m), 1036 (vs), 1014 (vs),
943 (s), 912 (s), 853 (s), 793 (s), 746 (vs), 693 (s), 599 (vs). EPR (77 K, CH2Cl2): g∥ = 1.842,
g⊥ = 1.986; A∥

Re = 644 × 10–4 cm–1, A⊥
Re = 330 × 10–4 cm–1. EPR (RT, CHCl3): g0 = 1.995;

a0
Re = 420 × 10–4 cm–1. ESI+ MS (m/z): 981.013 [M]+ (calcd. 980.979).

[Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)): [Re(NS)Cl(PPh3)(LOMe)]Cl (50 mg, 0.05 mmol)
was dissolved in acetonitrile and an excess of AgPF6 (19 mg, 0.075 mmol) was added. The
solution was stirred at room temperature and the formed colorless precipitate was removed
by filtration. Orange-yellow needles suitable for X-ray diffraction formed upon the slow
evaporation of a solution of the complex in CH2Cl2/n-hexane. Yield: 52 mg (93%). The
essential spectroscopic data are identical with those of 4aCl.

[Re(NS)Cl2(LOMe)] (5a): [ReNCl2(LOMe)] (34 mg, 0.05 mmol) was dissolved in 5 mL
CH2Cl2 and 3 drops of S2Cl2 were added. The mixture was stirred at room temperature.
The progress of the reaction can readily be monitored by EPR spectroscopy and typically
after 15 min the signals of the starting material have disappeared. The solvent and residual
S2Cl2 were removed in vacuum and the solid residue was washed subsequently with n-
hexane and diethyl ether. The product was recrystallized from CH2Cl2/diethyl ether giving
a pale-brown, microcrystalline solid. Yield: 20 mg (53%). IR (ATR, cm–1): 3111 (w), 2958 (m),
2874 (w), 1460 (w), 1425 (w), 1381 (w), 1260 (w), 1222 (s), 1175 (s), 1012 (vs), 945 (w), 860 (m),
796 (vs), 743 (s), 595 (m). EPR (77 K, CH2Cl2): g∥ = 1.945, g⊥ = 1.760; A∥

Re = 787 × 10–4 cm–1,
A⊥

Re = 398 × 10–4 cm–1. EPR (RT, CHCl3): g0 = 1.990; a0
Re = 455 × 10–4 cm–1. ESI+ MS

(m/z): 776.846 [M+Na]+ (ber.: 776.847); 792.821 [M+K]+ (ber.: 792.821).
[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl): [TcNCl(PPh3)(LOMe)] (72 mg, 0.08 mmol) was dis-

solved in 2 mL CH2Cl2 (2 mL) and S2Cl2 (11 mg, 0.08 mmol) was added under perma-
nent stirring. The stirring was continued at room temperature for 1 h and the obtained
dark-red mixture was filtered to remove some insoluble solid (most probably elemental
sulfur). All volatiles were removed in vacuum and the remaining solid crystallized from
a CH2Cl2/n-pentane (1:1) mixture. Storing such a mixture in a refrigerator for several
days gave a red, microcrystalline powder. Yield: 11 mg (15%). IR (KBr, cm–1): 2910 (vs),
2723 (s), 1726 (m), 1630 (w) 1479 (vs), 1381 (vs), 1227 (vs), 1171 (m), 1040 (w), 949 (s),
928 (s), 851 (w), 802 (w), 723 (m), 610 (w), 542 (m). EPR (77 K, CH2Cl2): g∥ = 1.966,
g⊥ = 2.023; A∥

Tc = 252 × 10–4 cm–1, A⊥
Tc = 112 × 10–4 cm–1. EPR (RT, CH2Cl2): g0 = 2.007;

a0
Tc = 168 × 10–4 cm–1.

[Tc(NS)Cl2(LOMe)] (5b): [TcNCl2(LOMe)] (41 mg, 0.06 mmol) was dissolved in CH2Cl2
(10 mL) and treated with an excess of S2Cl2 (0.3 mL). After stirring for 30 min at room
temperature, all volatiles were removed in vacuum. The remaining solid was washed with
n-hexane and diethyl ether and dissolved in 1 mL CH2Cl2. Overlayering with n-hexane
and storing in a refrigerator for several days gave pale-red crystals. Yield: 32 mg (75%).
IR (KBr, cm–1): 3107 (w), 3086 (w), 2990 (w), 2841 (w), 1462 (w), 1423 (w), 1310 (vs), 1236 (vs),
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1182 (vs), 1128 (vs), 1098 (vs), 986 (vs), 847 (m), 795 (s), 747 (s), 638 (m), 608 (s), 530 (w),
476 (w), 426 (w). EPR (77 K, CH2Cl2): g∥ = 1.943, g⊥ = 2.021, A∥

Tc = 285 × 10–4 cm–1,
A⊥

Tc = 129 × 10–4 cm–1. EPR (RT, CH2Cl2) g0 = 1.996; a0
Tc = 177 × 10–4 cm–1.

3.2. Spectroscopic and Analytical Methods

Elemental analyses of carbon, hydrogen, nitrogen and sulfur were determined using
a Heraeus vario EL elemental analyzer. IR spectra were measured as KBr pellets on a
Shimadzu IR Affinity-1 (technetium compounds) or a Thermo Scientific Nicolet iS10 ATR
spectrometer (rhenium complexes). The NMR spectra were recorded on JEOL ECS-400 or
ECZ-400 400 MHz spectrometers. ESI TOF mass spectra were measured with an Agilent
6210 ESI TOF (Agilent Technologies, Santa Clara, CA, USA). X-Band EPR spectra were
recorded in solution with a Magnettech Miniscope MS400 spectrometer at 300 and 77 K.
Simulation and visualization of the EPR spectra were conducted with the EasySpin tool
box in MatLab [110,111].

3.3. X-ray Crystallography

The intensities for the X-ray determinations were collected on STOE IPDS-2T or Bruker
CCD instruments with Mo/Kα radiation. The various temperatures applied are due
to the experimental setup of the different diffractometers. Semi-empirical or numerical
absorption corrections were carried out by the SADABS or X-RED32 programs [112,113].
Structure solution and refinement were performed with the SHELX programs [114,115]
included in the WinGX [116] program package or OLEX2 [117]. Hydrogen atoms were
calculated for idealized positions and treated with the “riding model” option of SHELXL.
The solvent mask option of OLEX2 was applied to treat diffuse electron density due to
disordered CH2Cl2 in the crystals of [Re(NS)Cl3(PPh3)(OPPh3)] (2). Details are given in the
Supplementary Materials. The representation of molecular structures was conducted using
the program DIAMOND [118].

4. Conclusions

Reactions of rhenium and technetium nitrido compounds with disulfur dichloride
give access to novel thionitrosyl complexes of these elements having monodentate and
chelating ligands in their coordination spheres. The new compounds are chemically related
to corresponding nitrosyl complexes but do not possess their robustness and stability. Their
thermal instability and the lack of a suitable one-step synthesis starting from pertechnetate
set narrow limits for potential applications in nuclear medical procedures, as is discussed
in the introduction.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/inorganics12080210/s1, Table S1.1: Crystallographic data and data
collection parameters; Figure S1.1: Ellipsoid representation of [Re(NS)Cl3(PPh3)2] (1). The thermal
ellipsoids are set at a 50% probability level. Hydrogen atoms are omitted for clarity; Table S1.2:
Selected bond lengths (Å) and angles (◦) in the [Re(NS)Cl3(PPh3)2] (1); Figure S1.2: Ellipsoid
representation of two crystallographically independent molecules of [Re(NS)Cl3(PPh3)(OPPh3)]
(2). The thermal ellipsoids are set at a 50% probability level. Hydrogen atoms are omitted for
clarity; Table S1.3.: Selected bond lengths (Å) and angles (◦) in [Re(NS)Cl3(PPh3)(OPPh3)] (2);
Figure S1.5: Ellipsoid representation of [Re(NS)(PPh3)(Et2btu)2] (3a). The thermal ellipsoids are
set at a 35% probability level. Hydrogen atoms are omitted for clarity; Table S1.6: Selected bond
lengths (Å) and angles (◦) in [Re(NS)(PPh3)(Et2btu)2] (3a); Figure S1.3: Ellipsoid representation of
[Re(NS)Cl(PPh3)(LOMe)] (PF6) (4a(PF6)) including the positional disorder between the Re–N–S and
Re–Cl bonds. The thermal ellipsoids are set at a 50% probability level. Hydrogen atoms are omitted
for clarity; Table S1.4: Selected bond lengths (Å) and angles (◦) in the [Re(NS)Cl(PPh3)(LOMe)]+ (4a)
cation; Figure S1.4: Ellipsoid representation of two crystallographically independent molecules of
[Tc(NS)Cl2(LOMe)] (5b) including the positional disorder for the O atoms of the {LOMe}− ligands
and between the Tc–N–S and the Tc–Cl bonds. The thermal ellipsoids are set at a 50% probability
level; Table S1.5: Selected bond lengths (Å) and angles (◦) in [Tc(NS)Cl2(LOMe)] (5b); Figure S2.1: IR

https://www.mdpi.com/article/10.3390/inorganics12080210/s1
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(ATR) spectrum of [Re(NS)Cl3(PPh3)2] (1); Figure S2.2: Solution EPR spectra of [Re(NS)Cl3(PPh3)2]
(1) in CH2Cl2, (a) at room temperature and (b) at T = 77 K; Figure S2.3: ESI(+) mass spectrum of
[Re(NS)Cl3(PPh3)2] (1) in CH3CN; Figure S2.4: IR spectrum (ATR) of [Re(NS)Cl3(PPh3)(OPPh3)]
(2); Figure S2.5: Solution EPR spectra of [Re(NS)Cl3(PPh3)(OPPh3)] (2) in acetone; (a) at room
temperature and (b) at T = 77 K; Figure S2.6: ESI(+) mass spectrum of [Re(NS)Cl3(PPh3)(OPPh3)]
(2) in CH3CN; Figure S2.7: IR spectrum (ATR) of [Re(NS)(PPh3)(Et2btu)2] (3a); Figure S2.8: 1H
NMR spectrum of [Re(NS)(PPh3)(Et2btu)2] (3a) in CDCl3; Figure S2.9: 31P NMR spectrum of
[Re(NS)(PPh3)(Et2btu)2] (3a) in CDCl3; Figure S2.10: ESI(+) mass spectrum [Re(NS)(PPh3)(Et2btu)2]
(3a) in CH3CN; Figure S2.11: IR spectrum (ATR) of [Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl); Figure S2.12:
Solution EPR spectra of [Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl) in CH2Cl2; (a) at room temperature
and (b) at T = 77 K; Figure S2.13: ESI(+) mass spectrum of [Re(NS)Cl(PPh3)(LOMe)]Cl (4aCl) in
CH3CN; Figure S2.14: IR spectrum (ATR) of [Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)); Figure S2.15:
ESI(+) mass spectrum of [Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)) in CH3CN; Figure S2.16: IR spec-
trum (ATR) of [Re(NS)Cl2(LOMe)] (5a); Figure S2.17: Solution EPR spectra of [Re(NS)Cl2(LOMe)]
(5a) in CH2Cl2; (a) at room temperature and (b) at T = 77 K; Figure S2.18: ESI(+) mass spec-
trum of [Re(NS)Cl(PPh3)(LOMe)](PF6) (4a(PF6)) in CH3CN; Figure S2.19: IR spectrum (KBr) of
[Tc(NS)Cl(PPh3)(LOMe)]Cl (4bCl); Figure S2.20: Solution EPR spectra of [Tc(NS)Cl(PPh3)(LOMe)]Cl
(4bCl) in CH2Cl2; (a) at room temperature and (b) at T = 77 K; Figure S2.21: IR spectrum (KBr) of
[Tc(NS)Cl2(LOMe)] (5b); Figure S2.22: Solution EPR spectra of [Tc(NS)Cl2(LOMe)] (5b). in CH2Cl2;
(a) at room temperature and (b) at T = 77 K.
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