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1. Experimental Section 

1.1 Materials 

Acrylonitrile (≥ 99.0%), Itaconic acid (≥ 99.0%), 1-Dodecanethiol (≥98.5%), 2,2-

Azobisisobutylronitrile (KOH, ≥98.0%), and DMSO (≥ 99.0%) were obtained from 

Samchun, Republic of Korea. Lithium nitrate (LiNO3 ≥ 99.0%), Calcium nitrate (Ca 

(NO3)2 ≥ 99.0%), and Nickel nitrate (Ni (NO3)2 ≥ 99.0%) are purchased from Sigma-

Aldrich. All the chemical compounds were analytical grade and used without further 

purification. 
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2. Materials characterizations 

The as-prepared materials' surface morphology, microstructural analysis, and 

elemental analysis of the fabricated samples were described using field emission 

scanning electron microscopy (FE-SEM, SUPRA40VP, Carl Zeiss, Germany) with an 

instrument equipped with energy-dispersive X-ray spectroscopy (EDXS) and 

transmission electron microscopy (TEM, JEM-2100 plus, JEOL Ltd., Japan). The phase, 

as well as the structure of all the samples, were studied with X-ray diffraction (XRD, 

Rigaku Corporation, Japan, CuKα radiation, wavelength λ=0.154 nm) in the 2 θ range 

from 5-80° at a scan rate of 2° min-1. The graphitization of all prepared samples was 

analyzed by Raman spectroscopy at room temperature using a Raman spectrometer 

(RAMANtouch) from Nanophoton, with an argon ion laser source at an excitation 

wavelength of 523 nm, conducted at the Gunsan National University Center for 

Research Facilities. FE-SEM, EDX, TEM, and XRD analyses were performed at the 

Center for University-wide Research Foundation (CURF), Jeonbuk National 

University, Jeonju, South Korea. 

Figure S1: Photographic image PANs solution with different metal salt (catalyst) at 
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various wt%.  

  

Figure S2: Fe-SEM image: (a, and b) PANs after the drying process, (c, and d) 

graphitized carbon (GC) of pure PANs after carbonization, and (e, e1, e2, and e3) its 

elemental mapping.    
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Figure S3: Morphological characterizations: (a, and b) FE-SEM images and (c, c1, c2, c3, 

c4, and c5) elemental mapping of Li-PANs-5, (d, and e) FE-SEM images and (f, f1, f2, f3, 

f4, and f5) elemental mapping of Li-PANs-10, (g, and h) FE-SEM images and (i, i1, i2, i3, 

i4, and i5) elemental mapping of Li-PANs-15 after drying process. 
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Figure S4: Morphological characterizations: (a, and b) FE-SEM images and (c, c1, c2, c3, 

c4, and c5) elemental mapping of Ca-PANs-5, (d, and e) FE-SEM images and (f, f1, f2, f3, 

f4, and f5) elemental mapping of Ca -PANs-10, (g, and h) FE-SEM images and (i, i1, i2, i3, 

i4, and i5) elemental mapping of Ca -PANs-15 after drying process. 
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Figure S5: Morphological characterizations: (a, and b) FE-SEM images and (c, c1, c2, c3, 

c4, and c5) elemental mapping of Ni-PANs-5, (d, and e) FE-SEM images and (f, f1, f2, f3, 

f4, and f5) elemental mapping of Ni -PANs-10, (g, and h) FE-SEM images and (i, i1, i2, i3, 

i4, and i5) elemental mapping of Ni -PANs-15 after drying process. 

 



 

 

7 

 

 

Figure S6: XRD analysis: (a) XRD pattern of Li-PANs-5, Li -PANs-10, and Li -PANs-15 

(b) XRD pattern of Ca-PANs-5, Ca -PANs-10, and Ca-PANs-15, and (c) XRD pattern of 

Ni-PANs-5, Ni -PANs-10, and Ni -PANs-15 after drying process. 
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Figure S7: Deconvoluted XPS survey spectra of (a1, a2, a3, and a4) C1s, N1s, O1s, and 

Ni2p respectively of Ni-GC-15, (b1, b2, b3, and b4) C1s, N1s, O1s, and Li1s respectively 

of Li-GC-10, (c1, c2, c3, and c4) C1s, N1s, O1s, and Ca2p respectively of Ca-GC-5, (d1, d2, 

and d3) C1s, N1s, and O1s respectively of Pristine GC. 
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Figure S8: Top and tilted view AFM images of (a and b) Pristine GC, (c and d) Ca-GC-

5, (e and f) Li-GC-10, and (g and h) Ni-GC-15. 
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Table S1: ID/IG ratio of earlier published similar materials. 

S.N.  Sample Name Graphitization 

Temperature 

ID/IG   ratio References 

1. T-PAN 1000 0.9 1 

2. PAN nanofiber 2100 1.07 2 

3. PAN/CNT 1000 2.5 3 

4. HGBPC 700 0.906 4 

5. PAA-1300 1300 1.1 5 

6. 5Ni@CNF 900 0.97 6 

7. CF-PIM-1 800 1.16 7 

8 CNF-Co10 1000 0.9 8 

9. NHPC800 800 1.078 9 
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