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Abstract: Perovskite solar cells (PSCs) have demonstrated remarkable progress in performance in
recent years, which has placed perovskite materials as the leading promising materials for future
renewable energy applications. The solvent additive technique in perovskite composition is a simple
but effective process used to improve the surface quality of the perovskite layers and to improve the
performance and charge transport processes essential to the functions of PSCs. These additives can
have a considerable effect on the topography, crystallinity, and surface properties of the perovskite
active layer, ultimately influencing the stability of the PSCs. A “two-step spin coating” deposition
method to make PSCs in ambient air laboratory conditions was employed. Acetonitrile (ACN) was
conventionally utilized as a chemical additive to enhance the performance of PSCs. In this study,
our film properties exhibited that the incorporation of ACN in the triple cation perovskite precursor
led to the passivation of surface defects and a noticeable increase in the size of the crystal grains of
the perovskite films, which led to enhanced stability of devices. The efficiency achieved for PSCs
prepared with 10% ACN was 15.35%, which is 30% higher than devices prepared without ACN. In
addition, devices prepared with ACN have shown a lower hysteresis index and more stable behavior
compared to devices prepared without ACN. This work presents an easy, low-cost method for the
fabrication of high performance PSCs prepared under ambient air laboratory conditions.

Keywords: acetonitrile; charge transport; perovskite solar cells; solvent additive; stability

1. Introduction

The continued development and improvement of photovoltaic (PV) technology are
crucial for the transition to a more sustainable energy system. PV technology that converts
sunlight into electrical energy is a critical renewable energy technology to meet the future
demand of electricity supply. Developing low-cost solar cells is essential for the success
and widespread utilization of PV technology. Hence, this field of research is topical
and important for both the academia and industry communities. The efficiency of PSCs
has progressed significantly during the past decade. In 2009, the efficiency of PSCs was
around 3.8%, which meant only 3.8% of the sunlight that hit the solar cell was converted
into electrical energy [1]. However, recently, there has been remarkable progression in
improving the efficiency of PSCs to reach over 26% [2].

In the last years, a number of techniques have evolved and been studied to increase
the efficiency and improve the stability of PSCs. These approaches include compositional
engineering [3], interfacial engineering [4], additive engineering [5], solvent engineering [6],
composition engineering [7], and compositional modification or interface engineering [8,9].
Tai et al. have reported the utilization of Pb(SCN)2 precursors in the preparation of PSCs
with a composition of CH3NH3PbI3_x(SCN)x in an ambient air laboratory. They achieved
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an efficiency of 13.5% without encapsulation. The improvement in efficiency is attributed
to the increased charge transport and carrier extraction and decreased trap density [10].

These studies have shown that the morphology of the perovskite active layer, structure,
number of pinholes present, and grain size all are affected by temperature, humidity, and
the oxygen level during the perovskite film deposition method [11]. Oxygen, in general,
can lead to the degradation of the perovskite active layer during the deposition method.
Therefore, a glovebox is an important environment to protect the perovskite film from
oxidation during the fabrication process. Therefore, a glovebox is normally filled with N2
gas to rid it of O2 and water vapor.

The solvent additive technique is a simple process employed to improve the perfor-
mance of the PSCs, which can influence various aspects of the perovskite active layer
formation method, such as the quality of the films, morphology, and defect passivation.

The composition of triple cation perovskite CsI0.05[(FAPbI3)0.85 (MAPbBr3)0.15]0.95 was
prepared as mentioned elsewhere [12]. A commercially available acetonitrile (ACN) as an
effective additive with different percentage ratios was added to the perovskite composition
to examine the influence of using ACN for PSC performance. The PSCs were fabricated in
ambient air, processed using a “sequential deposition process” [13].

Generally, interfaces between perovskite film and other layers is crucial for improv-
ing charge transport and device stability. The use of additive solvents such as ACN for
perovskite composition improves the charge carrier extraction and reduces charge recombi-
nation and eventually improves the stability of the PSCs [13]. Hence, this leads to enhanced
charge transport in PSCs and reduces the hysteresis index between the forward and reverse
I-V scans. We investigated the influence of using ACN on the surface quality and how it
leads to enhance the charge transport and stability of PSCs. The composition of triple cation
perovskite CsI0.05[(FAPbI3)0.85 (MAPbBr3)0.15]0.95 was used in this study. In addition, the ac-
tive area of all devices studied in the present work was 0.36 cm2. Hussein et al. reported on
the use of ACN to enhance the efficiency of PSCs. They fabricated different perovskite film
compositions of (CsMAFA)Pb (IBr)3 with 8% ACN under ambient air laboratory conditions
using a sequential deposition process that yielded an efficiency of 15% with a small device
active area [13]. Cheng et al. in 2017 fabricated perovskite with a device configuration of
ITO/poly-TPD/perovskite/C60/BCP/Ag that achieved an efficiency of 18%. They used a
perovskite composition of CH3NH3PbI3 and a two-step spin-coating technique fabricated
in an ambient laboratory with a preheating process which is different from that used in our
study. In addition, their study was conducted on a small device active area of 0.1 cm2 [14].

In this study, the perovskite solar cells were fabricated outside the glovebox in an
ambient laboratory condition of 45% humidity and 24 ◦C temperature. The composition
of a triple cation mixed-halide perovskite was prepared by the same method mentioned
elsewhere [15]. Herein, ACN solvent 0–15 v% was added to the perovskite composition
while stirring for 20 min. Then, the effect of using ACN with different ratios on the
properties of the perovskite film was investigated. The main aim of this research is to study
and present the effect of ACN on the performance of PSCs.

2. Results
2.1. Structural and Optical Properties of Perovskite Films Fabricated under Ambient Air
Laboratory Conditions

The analysis of defects in the materials using SEM images provides an important
insight onto the material properties. The defects refer to irregularities or deviations from
the expected or ideal structure in the material under analysis. It has been shown that ACN
as a solvent additive can improve the surface properties by passivating the surface defects
of the perovskite active layers [13]. Herein, the concentration ratio of ACN to the perovskite
composition was changed from 5% to 15%. Using an optimum ratio of ACN in perovskite
film led to an increase in the crystal grain size of the perovskite film and a decrease in the
series resistance of the PSCs [16].
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The grain size of the active perovskite films processed with 10% ACN are larger
compared to films prepared without ACN, as illustrated in the SEM images shown in
Figure 1. In addition, a reduction in pinholes or defects was observed. This was contrasted
with the perovskite films prepared without ACN, which possess much higher density of
defect states and pinholes, as shown in Figure 1a. High defect density has a negative effect
on the performance of PSCs prepared without ACN [13]. Consequently, we found that the
optimum ratio of ACN to perovskite precursor was 10% to achieve the desired performance
of the PSCs. Perovskite material with a large grain size produces lower solar cell series
resistance Rs, which leads to increased efficiency of the PSCs [6]. The SEM images show
that the use of an optimum concentration of ACN in PSCs improves the perovskite crystal
structure properties, which can boost the stability and the charge transport processes in
perovskite devices [17,18].

It can be seen from Figure 2 that the perovskite active layer with 10% ACN gives a
higher absorption coefficient value between the wavelength range 500–800 nm compared
to other ratios of ACN additives. The 6% improvement in the absorption between the
500 and 700 nm wavelengths at 10% ACN might be behind the higher current density (Jsc)
for devices prepared under these conditions, as shown in Table 1. The improvement in the
perovskite film absorption spectra for samples prepared with 10% ACN is attributed to
enlarged perovskite grain sizes, which results in lower recombination rates [17].
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(a) SEM image of perovskite layer prepared without ACN and histogram showing an average grain size of 170 nm. The 

yellow circles indicate voids or pinholes. 
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(b) SEM image of perovskite layer with 5% ACN and histogram showing an average grain size of 110 nm. 
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Figure 1. Cont.
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(c) SEM image of perovskite layer with 10% ACN and histogram showing an average grain size of 190 nm. 
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(d) SEM image of perovskite layer with 15% ACN and histogram showing an average grain size of 144 nm. 

Figure 1. SEM images of the surface morphology of perovskite films (a) without ACN and with (b) 

5% ACN, (c) 10% ACN, and (d) 15% ACN. 
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Figure 1. SEM images of the surface morphology of perovskite films (a) without ACN and with
(b) 5% ACN, (c) 10% ACN, and (d) 15% ACN.
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Figure 2. The optical absorption of various concentrations of perovskite films without ACN and with
5% ACN, 10% ACN, and 15% ACN.



Inorganics 2024, 12, 214 5 of 12

Table 1. Key parameters for solar cells measured for active perovskite layer without ACN (0%) and 5%, 10%, and 15% ACN using a two-step spin coating deposition
process. Active area in all devices tested was 0.36 cm2.

Sample
Description

Sweep
Direction EFF% FF% Voc

[mV]
Jsc

[mA/cm2]
Vmax
[mV]

Jmax
[mA/cm2]

Isc
[mA]

Rshunt
[Ω.cm2]

Rseries
[Ω.cm2]

Perovskite with 0% ACN (control) was fabricated
under laboratory ambient air

FW 10.8 49.5 921 23.7 584 18.5 8.4 962 13
BW 12.5 56 990 22.4 696 18 8.1 1403 12
Avg. 11.6 52.7 955 23 640 18.2 8.2 1182 12.5

Perovskite with 5% ACN was fabricated under
laboratory ambient air

FW 12.6 52 1047 23 668 18.9 8.3 701 12
BW 13.1 53.8 1046 23.2 696 18.8 8.3 7004 11
Avg. 12.8 52.9 1046 23.1 682 18.8 8.3 3852 11.5

Perovskite with 10% ACN was fabricated under
laboratory ambient air

FW 15.2 61 1044 22.4 764 19.5 8.06 7562 7.8
BW 15.5 63 1066 23 780 19.9 8.3 7716 7.9
Avg. 15.35 62 1055 22.7 772 19.7 8.18 7639 7.85

Perovskite with 15% ACN was fabricated under
laboratory ambient air

FW 12.3 54 983 23 668 18.35 8.2 420 9.4
BW 13.7 58.5 1017 23 724 18.9 8.3 955 8.6
Avg. 13 56.2 1000 23 696 18.6 8.2 687 9
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The energy gap, Eg, of the perovskite film without ACN and with various concentra-
tion ratios of ACN is fixed at 1.62 eV. This implies that there is a very small variation or
change in the value of the Eg of the perovskite films when ACN is added. Figure 3 shows
the absorbance edge of the perovskite film without ACN and with different ratios of ACN.
The extracted energy gaps of the perovskite films do not change in value with the changing
of the ACN ratio [19].

Inorganics 2024, 12, x FOR PEER REVIEW 5 of 12 
 

 

Perovskite with 5% ACN 

was fabricated under la-

boratory ambient air 

BW 13.1 53.8 1046 23.2 696 18.8 8.3 7004 11 

Avg. 12.8 52.9 1046 23.1 682 18.8 8.3 3852 11.5 

Perovskite with 10% ACN 

was fabricated under la-

boratory ambient air 

FW 15.2 61 1044 22.4 764 19.5 8.06 7562 7.8 

BW 15.5 63 1066 23 780 19.9 8.3 7716 7.9 

Avg. 15.35 62 1055 22.7 772 19.7 8.18 7639 7.85 

Perovskite with 15% ACN 

was fabricated under la-

boratory ambient air 

FW 12.3 54 983 23 668 18.35 8.2 420 9.4 

BW 13.7 58.5 1017 23 724 18.9 8.3 955 8.6 

Avg. 13 56.2 1000 23 696 18.6 8.2 687 9 

The energy gap, Eg, of the perovskite film without ACN and with various concentra-

tion ratios of ACN is fixed at 1.62 eV. This implies that there is a very small variation or 

change in the value of the Eg of the perovskite films when ACN is added. Figure 3 shows 

the absorbance edge of the perovskite film without ACN and with different ratios of ACN. 

The extracted energy gaps of the perovskite films do not change in value with the chang-

ing of the ACN ratio [19]. 

 

Figure 2. The optical absorption of various concentrations of perovskite films without ACN and 

with 5% ACN, 10% ACN, and 15% ACN. 

 

Figure 3. Extrapolation of energy gap of perovskite films without ACN and with 5% ACN, 10% 

ACN, and 15% ACN using Tauc plot. 

450 500 550 600 650 700 750 800

A
b

so
rb

an
ce

 (
a.

u
)

Wavelength (nm)

Absorbance

Perovskite + 0% ACN

Perovskite + 5% ACN

Perovskite + 10% ACN

Perovskite + 15% ACN

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

(A
b

s 
h

ν)
2

 [e
V

2
.m

−2
]

Energy (ev)

Energy gap

Perovskite + 0% ACN

Perovskite + 5% ACN

Perovskite + 10% ACN

Perovskite + 15% ACN

 

Figure 3. Extrapolation of energy gap of perovskite films without ACN and with 5% ACN, 10% ACN,
and 15% ACN using Tauc plot.

Figure 4 shows the photoluminescence (PL) spectrum of the pristine device (without
ACN) and perovskite composition with 10% ACN. It is clear that there is an increase in
the PL intensity indicating that the “non-radiative recombination” in the perovskite films
was decreased when using 10% ACN. Non-radiative recombination refers to the process in
which the excited electrons and holes in a material recombine and release energy as heat
instead of light. In this case, the reduced non-radiative recombination in the existence of
10% ACN suggests that more energy was being released as light, which is desirable in PSCs
as it can lead to higher efficiency [20]. This is due to the improvement of the perovskite
film properties [21] and the reduction in the “grain boundary recombination” [22]. The
results shown in Figure 4 are consistent with other work published elsewhere [13]. To study
further the effects of the ACN additive on the crystalline structure and the surface quality
of the perovskite films used in PSCs, XDR analysis was performed. The XRD spectra of
the perovskite film without ACN and with 10% ACN are shown in Figure 5. The XRD
results exhibited that as the content of the ACN additive in the perovskite composition
increased, the intensity of the (001) plane of the perovskite film also increased, indicating
a more desirable crystalline structure. This result is consistent with the results obtained
from the PL, which showed improved device performance with the addition of 10% ACN
as a result of decreasing the Rs value. Additionally, the XRD results showed a decrease in
the intensity of the PbI2 peak in all films prepared with 10% ACN in contrast with the PbI2
peak observed in cells prepared without ACN. This has led to improved performance of
the PSCs and the hysteresis suppression. Overall, the combination of XRD, PL, and SEM
measurements provide important information on the crystal structure and surface quality
of the perovskite films. The above analysis demonstrated a noticeable improvement in the
optical properties and crystal structure of the perovskite films, which can lead to enhanced
performance and charge transport in perovskite films [23,24].
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Figure 4. The photoluminescence (PL) spectra of control device (ACN 0%) and perovskite film with
10% ACN.
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Figure 5. XED pattern spectra of the perovskite films without ACN and with 10% ACN.

2.2. (J-V) Characteristics of PSC Devices Prepared under Ambient Air Laboratory Conditions
Using Solvent Additive Technique

Different concentrations of ACN were added to the active perovskite films and were
tested to study the optimum concentration of ACN that yielded the best device perfor-
mance. It is clear from the J-V curves in Figure 6 that the solar cell characteristics of the
perovskite film with 10% ACN shows higher efficiency (15.3%) compared to perovskite
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film without ACN (11.6%). This is an indicative that ACN suppresses non-radiative recom-
bination in the perovskite film. Furthermore, owing to better surface quality with a larger
grain size of the perovskite layer, the hysteresis phenomenon found in most perovskite-
based devices is much less when ACN is added at a 10% ratio [13]. The perovskite
prepared with 10% ACN gave an average PCE of 15.35%, which is about 30% more than per-
ovskite fabricated without ACN. The perovskite prepared with 10% ACN shows 17% and
15% higher efficiency than the devices prepared with 5% ACN and 15% ACN, respectively.
The Voc of the devices prepared with 10% ACN is 1055 mV, which is higher than other
devices prepared with different ACN ratios. The improvements in the FF from 52% to 62%
and in the Voc are due to the drop in the series resistance Rs from 12.5 to 7.85 Ω.cm2, as
measured from the J-V curves. Moreover, this is also due to a decrease in non-radiative
recombination in the perovskite devices, as indicated from the PL measurements [25].
Table 2 shows a summary of the parameters measured by others [13,19,26–28] using per-
ovskite films with ACN as an additive technique and how they compare with our study. In
general, devices fabricated under laboratory ambient air conditions processed with ACN
have resulted in higher efficiency and a lower hysteresis effect compared to pristine cells.
Moreover, this technique shows an easy method to fabricate PSCs with high efficiency
under laboratory ambient air without a glovebox.
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The preparations of the perovskite films were conducted in a laboratory ambient air condition of
45% humidity and 24 ◦C temperature using a two-steps spin coating deposition method. Both
forward and backward bias scans are shown in the figure for comparison.

Table 2. Summary of efficiency improvement obtained from other published work using ACN as
an additive technique as compared with this study.

References Fabrication
Atmosphere

Technique of
Fabrication

Using ACN as
Additive

Technique
Composition of Perovskite Active

Area cm2
Efficiency Im-

provement

[13] Laboratory
ambient air

Sequential
deposition

process

Cation perovskite
precursor + CAN (CsMAFA)Pb (IBr)3 - 20%
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Table 2. Cont.

References Fabrication
Atmosphere

Technique of
Fabrication

Using ACN as
Additive

Technique
Composition of Perovskite Active

Area cm2
Efficiency Im-

provement

[19] Dry atmosphere
in a glovebox One-step process Cation perovskite

precursor + ACN (CsMAFA)Pb (IBr)3 0.12 9.6%

[26] N2

Sequential
deposition

process

PbI2 precursor +
ACN CH3NH3PbI3 - 18.5%

[27] Glovebox One-step process ACN + CBZ
anti-solvent CH3NH3PbI3 - 16.6%

[28] Not mentioned Two-step
process

Carbon slurry +
ACN CH3NH3PbI3 0.10 11.5%

Our work Not mentioned Two-steps
spin-coating

Triple cation
perovskite

precursor + ACN
CsI0.05[(FAPbI3)0.85(MAPbBr3)0.15]0.95 0.36 25%

2.3. Stability of Perovskite Films with Solvent Additive Fabricated under Ambient Air
Laboratory Conditions

The stability of the PSCs was studied by evaluating the efficiency of the devices over
20 weeks. To account for reproducibility, we took the average of five samples so the rates
for forward and backward scans were similar. The devices were not encapsulated during
the stability test. The illuminated J-V characteristics (sunlight simulator of 100 mW/cm2

intensity) were monitored over 20 weeks under ambient air laboratory conditions. The
stability curves were taken by monitoring the efficiency measured from the forward and
reverse J-V characteristic of the PSCs, as displayed in Figure 7. The decrease in efficiency
was about 15% for perovskite films fabricated with 10% ACN, while the drop was 24%
for the pristine samples (perovskite with 0% ACN) over the same period of 20 weeks. It
is evident that using 10% ACN additive has resulted in improved stability and device
performance in general compared to films without ACN.
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3. Materials and Methods
3.1. Materials

All basic materials were supplied commercially and were utilized as received with-
out any extra purification. Conductive Soda Lime glass fluorine-doped tin oxide (FTO,
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12–15 Ω/sq) was sourced from MSE proTM supplies. Titanium dioxide (TiO2) paste (30NR-
D), formamidinium iodide (FAI), and methylammonium bromide (MABr) were procured
from greatcell solar. Lead (II) iodide (PbI2) 99.9% and lead (II) bromide (PbBr2) 99.9% were
purchased from luminescence technology corp. (Lumtec). Bis(trifluoromethane)sulfonimide
lithium salt (Li-TFSI 99.9%), acetonitrile anhydrous, (99.8%), spiro-MeOTAD 99% (HPLC),
chlorobenzene (95%), tris(2-(1H-pyrazol-1-yl)-4-tert-utylpyridine)cobalt(III) tri[bis(trifluor-
omethane)sulfoni-mide] FK209 Co(III) TFSI salt, and 4-tert-Butylpyridine (TBP 98%) were
bought from Sigma-Aldrich. Cesium iodide (CsI 99.998%) was purchased from Alfa Ae-
sar. N,N-dimethylformamide (DMF, 99.5%) and dimethyl sulfoxide (DMSO, 99.9%) were
acquired from Fisher Scientific (Waltham, MA, USA).

3.2. Methods

In this study, FTO glass substrate (12–15 Ω/sq) was utilized. The ETL in this study
consisted of two main layers, which are compact TiO2 prepared using DC sputtering and
mesoporous TiO2 prepared by dissolving 150 mg of TiO2 paste (30N-RD)/1 mL ethanol.
The perovskite films were prepared and deposited on the ETL in ambient air laboratory
(without using a glovebox). The main materials used in this study to prepare the perovskite
compositions are FAI, MABr, PbI2, PbBr2, and CsI, with the concentrations mentioned in
more detail in [12]. Then, the ACN solvent in different ratios (0%, 5%, 10% and 15%) was
added to the perovskite composition while stirring for 20 min. The influence of the addition
of different ratios of ACN to the perovskite precursors was then studied by analyzing the
grain size, surface roughness, absorbance, XRD, and the illuminated characterization of the
PSC devices. We dissolved 80 mg of spiro-MeOTAD in CBZ (1 mL) and added TBP and
lithium salt to prepare the HTL [12]. The preparation of the active perovskite layer and
both ETL and HTL are mentioned in more detail in [12,15]. Figure 8 shows the schematic
diagram of the device used in this work.
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Figure 8. A schematic diagram of the PSCs used in this study.

The efficiency of devices was measured using ABET Sun3000 sunlight simulator AM
1.5G (100 mW/cm2) illumination, Milford, CT, USA and a Keithley meter. Ultraviolet–
visible spectrometry (Cary 6000i) was used to measure the absorption spectrum of per-
ovskite films without ACN and with different ratios of ACN. The morphology and surface
grain size of the perovskite active layer without ACN and with different ratios of ACN
were measured using a Raith-150 electron beam lithography EBL tool, Germany. A Rigaku
Smart-Lab X-ray system, Japan was employed to measure the XRD spectra of the perovskite
film with and without ACN. All the perovskite device measurements were conducted under
laboratory ambient air.
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4. Conclusions

PSCs fabricated under ambient air laboratory conditions using a solvent additive
technique were investigated. Our results exhibited that using ACN increases the grain
size of the perovskite films and passivates surface defects. The concentration ratio of
ACN as an additive to the perovskite composition was changed from 5% to 15%. The
optimum concentration of ACN was found to be 10% to enhance the charge transport
processes in the device and the stability of the PSCs. Devices fabricated under ambient
air laboratory conditions using ACN have demonstrated higher efficiencies than devices
fabricated without ACN. Adding 10% ACN to the perovskite precursor increases the grain
size of the perovskite film to 190 nm and reduces the Rs of the PSC to 7.85 Ω.cm2. This
has also improved the FF of the PSC to 62%. The efficiency of cells with a perovskite
layer prepared with 10% ACN fabricated under ambient air laboratory conditions is found
to be 15.35% using a device active area of 0.36 cm2, which is 30% and 15% higher than
perovskite fabricated under ambient air laboratory conditions without ACN and with
15% ACN, respectively. The perovskite material prepared with 10% ACN shows
a 17% higher efficiency than perovskite prepared with 5% ACN. The ACN additive im-
proves the stability and decreases the hysteresis phenomenon found in most PSCs. The
drop in efficiency over 20 weeks was around 15% for the perovskite film processed with
10% ACN, while the drop was 24% for pristine devices (perovskite with 0% ACN). Our
results showed that the addition of 10% ACN exhibited a 37% improvement in the stability
of PSCs over devices without ACN. This study demonstrates a simple method for preparing
highly efficient PSCs under ambient air laboratory conditions and the effective use of ACN
in PSC fabrication.
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