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Iron–sulfur (Fe-S) clusters are critical to a wide range of biological processes, from
DNA repair and transcriptional regulation to mitochondrial respiration and enzymatic catal-
ysis [1–4]. Composed of iron and inorganic sulfur, Fe-S clusters are ubiquitous cofactors,
with the most common types being rhombic [2Fe-2S] and cubane [4Fe-4S] structures [5].
Their unique ability to facilitate electron transfer, catalyze reactions involving organic
radicals, and stabilize protein structures makes them indispensable across all domains
of life. While the exact role of [4Fe-4S] clusters in most enzymes remains unclear, in the
over 100,000 known radical S-adenosyl-L-methionine (RS) enzymes [6,7], including those
that repair or modify nucleic acid substrates, [4Fe-4S] cofactors, coordinated by three cys-
teines, cycle between oxidation states to generate the potent aliphatic 5′-deoxyadenosyl
radical, which drives subsequent reactions [6,8–15]. The relevance of RS enzymes to human
health is paramount, with gene variants linked to diseases like molybdenum cofactor
deficiency [16], lipoic acid deficiencies (reviewed in [2,16]), type 2 diabetes [17,18], and
motor neuron degeneration in ALS [19]. Pathogenic variants in Fe-S domains of DNA
helicases, like XPD, FANCJ, RTEL1, DDX11, and glycosylases, such as NTHL1 and MUTYH,
have been linked to several cancers and compromised DNA repair activity [20–39]. Addi-
tionally, an increasing number of human conditions are being identified through exome
sequencing, which are caused by loss of function in the components of the Fe-S biogenesis
machinery [2,40–42].

Gaining a deeper understanding of Fe-S cluster assembly and the roles of proteins
that ligate these cofactors is crucial for elucidating cellular functions and their implications
for human health and disease development. The articles in this Special Issue, entitled
“Iron–Sulfur Clusters: Assembly and Biological Roles”, present primary research studies
and in-depth reviews that significantly advance our knowledge of these essential cofac-
tors. They explore the intricate processes of Fe-S cluster biogenesis, the vulnerabilities of
these cofactors, and the sophisticated techniques used to study them. This collection also
highlights the roles of Fe-S clusters in various biological processes, including the sensing
of oxygen and nitric oxide levels, cellular homeostasis, and, as recently emerged, viral
pathogenesis [43–48]. Together, these contributions emphasize the importance of continued
investigation in this field.

SantaMaria and Rouault [49] provide a comprehensive review on how cells utilize Fe-S
clusters to sense and regulate intracellular environments. They delve into the ancient and
ubiquitous nature of Fe-S clusters, highlighting their role as biological sensors across diverse
forms of life, from unicellular bacteria to complex humans. This review includes a timeline
illustrating the pace of discovery of Fe-S enzymes and offers a thorough examination of
the mechanisms by which Fe-S clusters maintain cellular homeostasis. The authors also
explore unanswered questions in the field, such as the potential of undiscovered Fe-S
cluster-containing proteins, the role of these clusters in viruses beyond SARS-CoV-2, and
the mechanisms enabling iron sensing in archaea and plants. Additionally, they emphasize
the importance of understanding how Fe-S proteins switch between their apo and holo
forms, how Fe-S clusters are regained after loss, and the balance between cluster stability
and turnover, highlighting these as critical areas for future research.
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Ogunkola and colleagues [50] address the controversy surrounding the Fe-S depen-
dency of the E. coli MnmA protein. The wobble nucleoside at position 34 of tRNAs
universally carries thiomodifications that enhance codon binding and are crucial across all
life forms [51]. These modifications, particularly the sulfur-based s2 and mnm5 modifica-
tions at uridine 34, stabilize tRNA structures, improve interactions with aminoacyl-tRNA
synthetase, and ensure accurate mRNA decoding. In E. coli, a sulfur-relay system in-
volving several proteins, including MnmA, facilitates these modifications [52]. While the
mnm5s2U34 modification in bacteria was believed to be Fe-S cluster-independent, recent
reports have suggested otherwise. This study aims to resolve these contradictions by inves-
tigating the activity of Fe-S cluster-containing MnmA under specific conditions. Through
meticulous experimentation, the authors demonstrate that the presence of Fe-S clusters
inhibits tRNA thiolation, thereby establishing MnmA as an Fe-S cluster-independent pro-
tein. These finding challenges previous assumptions and add a new dimension to our
understanding of tRNA modifications in prokaryotes.

Heffner and Maio [53] uncover the emerging roles of Fe-S clusters in viral proteins.
Highlighting the competition for iron resources between host cells and viruses, the authors
discuss how viral proteins exploit Fe-S clusters for replication and survival. This work
opens up new avenues for research into viral pathogenesis and the potential for targeting
Fe-S cluster interactions in antiviral strategies.

Raza and colleagues [54] review the advanced techniques required to study Fe-S
proteins, with a focus on those recently discovered in viruses [43–47]. They highlight the
challenges posed by the oxygen sensitivity of Fe-S clusters and the specialized equipment
required to preserve their integrity. This review offers an in-depth examination of the meth-
ods used to characterize the stoichiometry and oxidation state of Fe-S clusters, including
UV–Vis absorption, NMR, X-ray crystallography, EPR and Mössbauer spectroscopies, and
electrochemical techniques. By elucidating the unique redox transitions of specific Fe-S
clusters, this review offers essential insights into how these transitions might influence en-
zyme function and interactions, providing a valuable resource for researchers investigating
Fe-S proteins.

Quist and colleagues [55] focus on the enigmatic hepatitis B virus X protein (HBx), a
critical factor in HBV-induced hepatocellular carcinoma (HCC). They describe how they
uncovered the nature of the Fe-S cofactor in HBx despite its sensitivity to oxygen [56].
Their work revealed that HBx binds a [4Fe-4S] cluster, contrary to earlier assumptions
of Zn ion binding. Through detailed spectroscopic analyses, including Mössbauer and
EPR spectroscopies, they demonstrated that HBx can switch between [2Fe-2S] and [4Fe-4S]
clusters depending on oxygen availability [45]. This finding suggests potential roles for the
cluster interconversion in HBV pathogenesis and oncogenesis. The study also underscores
the broader significance of Fe-S clusters in viral biology, challenging previous assumptions
and paving the way for new research into viral metalloenzymes and their interactions with
the host–cell machinery.

Crack and colleagues [57] examine the differential reactivity of the E. coli fumarate and
nitrate reduction (FNR) regulator in response to oxygen (O2) and nitric oxide (NO). Their
study reveals how FNR, which plays a key role in managing the shift between aerobic and
anaerobic respiration, responds differently to these signaling molecules. They demonstrate
that the L28H variant of FNR shows enhanced stability under aerobic conditions, a result
attributed to a cation–π interaction between His28 and Arg184 that reduces the flexibility
of the Cys20-Cys29 loop. This increased stability affects the reactivity of the protein to O2,
while its response to NO remains largely unchanged. These findings offer valuable insights
into the mechanistic basis for improved O2 resistance and selective response to NO of the
L28H variant, enhancing our understanding of how Fe-S cluster regulators discern between
different gaseous signals and influence cellular responses to environmental changes.

Aubert and colleagues [58] provide a thorough review comparing bacterial Fe-S
protein biogenesis factors with their eukaryotic counterparts. They focus on Mrp and SufT,
bacterial homologs of eukaryotic Cytoplasmic Iron–Sulfur Assembly (CIA) components,
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and their roles in Fe-S cluster assembly. By examining both the unique and shared features
of these systems, this review offers a detailed overview of the evolutionary conservation
and divergence in Fe-S cluster biogenesis pathways. The parallels between bacterial Mrp
and SufT proteins and their eukaryotic CIA counterparts suggest that further research could
enhance our understanding of Fe-S cluster assembly in higher eukaryotes. Future studies on
the Mrp/Nbp35 cycle may reveal new regulatory factors involved in Fe-S cluster assembly
and transfer, potentially leading to novel strategies for addressing diseases associated with
Fe-S cluster deficiencies and for targeting Fe-S biogenesis in pathogenic bacteria.

The papers in this Special Issue highlight the central role of Fe-S clusters in a diverse
array of biological processes. The contributions explore the fundamental mechanisms of
Fe-S cluster biogenesis and their implications for cellular function, from DNA replication
and repair, to translation and viral replication. Key insights include the regulatory roles
of Fe-S clusters in different environmental and metabolic conditions, the importance of
these cofactors for viral pathogenesis, and the advanced techniques used for studying
Fe-S proteins. The comparative analysis of bacterial and eukaryotic Fe-S cluster assembly
systems reveals both conserved mechanisms and potential novel regulatory factors. These
findings could pave the way for future studies that leverage Fe-S clusters to develop
therapeutic strategies for diseases related to their deficiencies and to target pathogenic
organisms. As our understanding deepens, integrating these discoveries promises to
significantly enhance our ability to address critical biological and medical challenges.

Conflicts of Interest: The author declares no conflict of interests.
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