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Abstract: This paper reports the designing and testing, as well as the processing and testing,
of a flexible piezoresistive sensor for pressure-sensing applications, utilizing a composite film of
graphene/polyvinylidene fluoride (Gr/PVDF). Graphene serves as the conductive matrix, while
PVDF acts as both the binder and a flexible polymer matrix. The composite film was fabricated using
the solution casting technique on a flexible polyethylene substrate. We investigated the impact of
post-infrared annealing on the pressure response of the Gr/PVDF films. The experimental results
indicated that the films IR-annealed for 2 min exhibited improved pressure sensitivity compared
with the as-deposited films. The stability and durability of the sensors were assessed through the
application of pressure over more than 1000 cycles. The mechanical properties of the films were
examined using a universal tensile testing machine (UTM) for scenarios both with and without in-
frared light annealing. Raman spectroscopy was employed to analyze the quality and characteristics
of the prepared nanocomposites. This study enhances our understanding of the interplay between
the Gr/PVDF composite, the IR annealing effect, and the hysteresis effect in the pressure-sensing
mechanism, thereby improving the piezoresistance of the Gr/PVDF nanocomposite through the
infrared annealing process.

Keywords: flexible pressure sensor; graphene/PVDF nanocomposite; IR annealing

1. Introduction

Pressure sensors that are highly sensitive and flexible have attracted tremendous
research interest in recent years due to their numerous applications in health care, wear-
able electronics, the automotive industry, consumer electronics, and smart monitoring
systems [1–3]. Flexible pressure sensors can be categorized according to their working
principle and sensing performance, i.e., as piezoresistive, piezoelectric, capacitive, piezo-
magnetic, and optical sensors [4–6]. There are many fabrication methods for flexible sensors;
these methods include screen printing, electrospinning, photolithography, spin coating,
and inkjet printing. In the past decade, nanocomposite materials with nanoscale fillers
have been widely explored for the fabrication of flexible sensors because of the increased
specific interfacial area and higher achievable loads [7,8].

Graphene (Gr) polymer nanocomposite is one example that has gained a lot of attention
for the fabrication of flexible sensors. Its good mechanical, thermal, and electrical properties
are suitable for use as a nanofiller in polymer matrixes. Furthermore, its good physical
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properties and ability to disperse in various polymers have led to the development of
graphene-based high-performing nanocomposites [9–11]. The π-π interaction in graphene
and polymer forms a stronger interface. Polyvinylidene fluoride (PVDF) has fluorine atoms
that possess a high affinity with carbon atoms. The binding capability between PVDF and
graphene is due to the presence of electron-rich benzene rings in graphene and electron-
poor fluorine atoms. This polar ionic bond between carbon–fluorine atoms (C+–F−) is an
attractive interaction that holds the nanocomposite together. Thus, PVDF acts as a good
binder in the formation of a conductive Gr/PVDF nanocomposite [12].

Many processes have been explored to fabricate Gr/PVDF films for different applica-
tions. The melt extrusion and injection processes have been used to fabricate Gr/PVDF
composites [13]. The experimental results from this fabrication method have shown an im-
provement in the crystallinity, thermal stability, and mechanical properties of the composite.
The Raman spectra used to analyze the interaction between graphene particles and PVDF
indicated a decrease in the D and G band (ID/IG) intensity ratio. This decrease indicates that
the defects were healed of GP, possibly caused by the interactions between the polar groups
of PVDF and the GP layers [10]. Shuai, C. et al. reported a selective laser sintering (SLS)
fabrication process for graphene oxide (GO)/PVDF scaffolds; here, irradiation of a laser
beam was used to adhere the melted powders [13]. This fabrication process resulted in good
interaction between the fluorine group of PVDF and the carbonyl group of GO nanosheets,
which led to an α to β phase transformation of PVDF. The enhanced β phase exhibits good
piezoelectric and mechanical properties in the composite [13]. The phase-separation-based
fabricated PVDF/GO nanocomposite was coated on a flexible fabric for application in
wearable piezoelectric sensors. Also, the thermal properties of graphene/polymer com-
posites have been reported by many researchers [14]. Zheng, X. et al. prepared a series
of functionalized graphene and introduced it into the PVDF matrix to prepare Gr/PVDF
nanosheet composites [15]. The dielectric effects were investigated for these composites,
and it was clear that the reduced graphene samples had better dielectric properties [15].
Table 1 gives a summary of other fabrication methods for Gr/PVDF nanocomposites and
their applications.

Table 1. Fabrication methods of Gr/PVDF nanocomposite and its potential applications.

Composites Fabrication Methods Applications Ref.

Graphene/PVDF Mixing technique with different co-solvent
mixtures (acetone, THF, water, and EtOH)

Piezoelectric nanogenerator
composite films [16]

Electrospun PVDF/Graphene Membrane Solution mixing technique Humidity sensor [17]

PVDF/Reduced Graphene
Oxides (rGO) composite

Hydrothermal method and simple
mixing technique

Flexible pressure sensors (improved
sensitivity by 333.46% at 5 kPa,

compared with individual PVDF
composite rGO-titania TNL)

[18]

PVDF/Graphene
Prepared by gelation-induced

crystallization of PVDF/cyclohexanone by
varying the temperature and mixing time

Compressible sensors for sports and
wearable electronics [19]

Poly(vinylidene
fluoride-hexafluoropropylene)

(PVDF-HFP)/graphene
Gelation method Water-repellent

catalyst-supporting materials [20]

GO-PVDF Non-solvent-induced phase
separation method Nerve tissue engineering [21]

(PVDF) with zero-dimensional super
fullerene (SF), one-dimensional carbon

nanotubes (CNT), and two-dimensional
graphene sheets (GS)

Solution mixing followed by hot pressing Advanced thermal management [22]

Graphene/Polyvinylidene Fluoride solution-phase mixing technique and
dip-coating method Knittle pressure sensor [6]

Graphene/Polyvinylidene Fluoride solution-phase mixing technique Accelerometer for detection of low
vibrations and airflow sensor [10,23]
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In this study, the Gr/PVDF nanocomposite was prepared via a solution phase tech-
nique and coated on the flexible polyethylene (PE) substrate to fabricate a thin film for
pressure sensor analysis. Five nanocomposite films were prepared for this analysis. For
clear comparisons, the films were annealed using infrared light at a different time step.
Raman spectroscopy was used for the characterization of these films. The piezoresistive
effect of the prepared materials was utilized to record the signal in terms of resistance
to change and the externally applied pressure. It was found that the film annealed for
2 min showed a high performance in terms of sensitivity, repeatability, and accuracy. The
novelty of this research lies in the use of infrared (IR) annealing to enhance the sensing
characteristics of graphene/polyvinylidene fluoride (Gr/PVDF) films, with the added
advantage of the rapid annealing capability offered by IR light.

2. Experimental Procedure
2.1. Preparation of the Gr/PVDF Nanocomposites

The preparation of the Gr/PVDF nanocomposite followed a procedure that has been
presented previously in our work [10,23]. Figure 1 shows the schematic preparation
procedure of the Gr/PVDF nanocomposite. The graphite particles of 1.0 µm (purity of
99.9%) and dimethylformamide (DMF, HCON(CH3)2, 99.8%, Alfa Aesar, Heysham, UK)
solvent were added to a beaker, and the solution was thoroughly mixed using a glass rod
to break the large graphite particles. The sonication process was conducted at intervals of
10 min to prevent the aggregation of graphite particles. The solution was kept in a static
condition at room temperature for 12 h to allow the large graphite particles to settle at
the bottom of the container. PVDF solution was prepared by dissolving PVDF powder
(99.999%, Mw = 534,000 g/mol, Alfa Aesar) in DMF solvent. PVDF/DMF solution was
stirred and placed in an ultra sonicator to ensure that the PVDF powder was completely
broken down. The solution was also kept in a laboratory fume hood for 12 h at room
temperature. The top portion of the prepared graphene solution was then carefully mixed
with the prepared PVDF solution. The concentration of graphene in PVDF was 2.5% by
weight. This optimized concentration was obtained via the measurement of the electrical
conductivity versus graphene concentration in PVDF. The solution was again ultrasonicated
and then kept settling for 12 h before preparing the films. A thin and transparent flexible
polyethylene sheet of thickness 0.1 mm (high density, 99%, Thermos Scientific Chemicals,
Waltham, MA, USA) was chosen as the substrate. Polyethylene (PE) was selected as the
sensor diaphragm due to its high flexibility, superior impact resistance, and ability to
deform without breaking under impact. The substrate was cut into 12 mm × 12 mm size to
design a sensor. The substrate was rubbed with sandpaper to better adhere the composite
to the surface and then rinsed with isopropanol to wash away any contaminants before
applying 20–22 µm thick graphene/PVDF nanocomposite using a doctor blade method.
The width of sensor film was 4 mm (see Figure 2a). Films were slow-dried in vacuum
conditions (~10 mTorr) for 12 h and heated at 50 ◦C for 2 h.

2.2. Preparation of the Sensor Test Fixture

The schematic diagrams of the sensor, IR annealing setup, and sensor testing instru-
ment are presented in Figure 2. A cubic (20 × 20 × 10) mm with a hole at the center was
used as a test fixture, which has a center opening (10 mm diameter and 5 mm depth).
The thin film was then mounted on the surface containing the 5 mm hole in the cube. A
high-pressure compressor was connected to the test fixture through the valve attached to
the 5 mm hole. A pressure gauge was installed to regulate the applied pressure. When
the gauge pressure is applied through the valve, the thin Gr/PVDF film deforms into
a dome-shaped structure. To avoid possible delamination of composite films from the
substrate, we kept the thickness of films below 10 microns. The IR annealing was carried
out using a gold tube IR lamp (the Westinghouse WES31-1892) at an intensity of the sensor
surface ~1.3 W/cm2, as shown in Figure 2b. The temperature of sensor was monitored
using a thermocouple in order to avoid melting of PE substrate.
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The resistance of the film was recorded using a Keithley multimeter connected to a
computer through a custom-made LabVIEW interface. The response graphs were obtained
as a function of resistance and applied pressure on the film sensor. The response was varied
quantitatively using the following equation ∆R = (R – R0) × 100/R0, where ∆R is the relative
resistance, R is the final resistance, and R0 is the initial resistance.

To study the change of electrical conductivity with annealing conditions, the films
were measured using a planer electrode configuration. A thin layer of Au (~75 nm) was
coated on the films to measure electrical properties. The width and spacing of the Au
electrodes were 6 mm and 4 mm, respectively. The resistance of composite films between
Au electrodes was measured using a high mega ohm multimeter (Keithly Model: 22-816).
The scanning electron microscopy (SEM) images were collected using a field emission
microscope (Philips XL30 FEG SEM). The Raman spectra of the films were obtained using
an excitation wavelength of 514 nm with a Xplore Plus Raman microscope (Horiba Jobin
Yvon Inc., Longjumeau, France). A tensile test was performed using the ASTM D3039 test
machine. Each sample was stretched at a rate of 100 µm/min, and the change in resistance
versus strain of the thin film was recorded by a multimeter. The test specimens were the
same as the composite samples used in pressure sensor testing.
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3. Results and Discussion
3.1. Characterization of Gr/PVDF Nanocomposite

Figure 3 shows the SEM images of the 2 min IR-annealed and the as-deposited film
of Gr/PVDF nanocomposites. The SEM analysis is important for analyzing the surface
morphology and microstructural characteristics of the materials. As-deposited film shows
an irregular dispersion of graphene within the PVDF matrix, with noticeable agglomeration
and significant surface roughness. These samples often exhibit interfacial gaps between
graphene sheets and the PVDF, indicating weak adhesion. The 2 min IR-annealed examples
exhibited a more uniform dispersion of graphene, a smoother surface, and enhanced
interfacial adhesion. Annealing facilitates better bonding and reduces internal stresses,
leading to a more organized and crystalline structure in the PVDF matrix, ultimately
improving the material’s mechanical and electrical properties. The energy dispersive
X-ray spectroscopy (EDS) images of graphene/PVDF composites provide valuable insights
into the elemental composition and distribution within the material. In as-deposited film
composites, EDS images typically reveal an uneven distribution of carbon and fluorine
elements, indicating a poor dispersion of graphene within the PVDF matrix in contrast to
the 2 min IR-annealed films.
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3.2. Raman Spectroscopy

Raman spectroscopy was used to characterize the nanocomposites’ quality and thick-
ness since it is non-destructive and has a high spatial and spectral resolution. For graphene,
the sp2 carbon bonds result in a high polarization of π bonds, which gives an intense Raman
signal. Figure 4 shows the Raman spectra of Gr/PVDF; the films were annealed using
the infrared light at different times (2, 4, 6, and 8 min) obtained from 500 to 3000 cm–1.
The spectra show four dominant peaks at approximately 1079, 1317, 1551, and 2675 cm–1.
The film that was annealed for 2 min indicated a high intensity, and the film that was
annealed for 8 min indicated the least intensity. The intensity peak at 1079 cm–1 indicated a
formation of the alpha phase of PVDF. It appeared predominantly for the film annealed for
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2 min, whereas films annealed for 4, 6, and 8 did not show any dominant peak for PVDF.
The most prominent peaks in the PVDF Raman spectrum are associated with the C–F
stretching and bending modes, as well as the skeletal vibrations of the carbon backbone.
Three dominant peaks at 1317, 1551, and 2675 cm−1 were attributed to graphene D, G, and
2D bands, respectively. The G band corresponds to the vibration of the carbon atoms in the
graphene lattice, while the 2D band arises from the double resonance process involving
two phonons.
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The average intensity ratios of I2D/IG and ID/IG bands for all films indicated the
presence of multi-layer graphene. In our work, the graphene used in this work has three–
four layers. The single-layer graphene exhibited neither piezoresistive behavior nor low
resistance, making it less suitable for sensor applications. The ID/IG ratio for all films was
an average of about 0.22, indicating that the film had few defects. The piezoresistive effect
in graphene is intricately tied to the intensity ratios of the Raman peaks I2D/IG and ID/IG.
In this study, the calculated intensity ratios for various IR annealing times ranging from 0,
2, 4, 6, and 8 min were examined. The I2D/IG ratios were found to be 0.42, 0.29, 0.38, 0.05,
and 0.14, respectively; while the ID/IG ratios were measured at 0.20, 0.44, 0.24, 0.03, and
0.17 for the corresponding annealing times. These ratios are the key indicators of structural
changes and defects within the graphene lattice induced by mechanical strain. The I2D/IG
ratio reflects the degree of graphene layer stacking and the extent of sp2 hybridization;
while the ID/IG ratio indicates the presence of structural defects such as vacancies, edges,
or grain boundaries. When pressure is applied, it alters the lattice structure of graphene,
influencing the material’s electrical resistance. Therefore, the changes in the ratios of I2D/IG
and ID/IG are important since they provide insights into the piezoresistive behavior of
graphene, allowing for precise characterization and optimization in sensor applications.
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3.3. Sensor Performance and Testing

Different films were fabricated for this process; these films were fabricated using the
same fabrication procedures, materials, and process parameters. The films were analyzed
and tested to evaluate their uniformity, electrical properties, and other relevant parameters
for this study. This process was conducted to check the reproducibility of the fabrication
process and identify any sources of variability or inconsistencies, thus enhancing the
reliability and validity of the findings. The response of the Gr/PVDF films to varying
external pressures is illustrated in Figures 5 and 6a–d. Four different pressure ranges were
applied to the films—that is, 17, 34, 51, and 68 kPa—to compare the linearity, sensitivity,
and repeatability of the five prepared films. The sensor response (∆R/R, where, ∆R is
the change in resistance and R0 is the initial resistance) showed a linear increase with an
increase in applied pressure, as shown in Figure 7a. The trendline is also with the error
bars, and the coefficient of determination (R2) for all films is above 0.991. Linearity is one
of the key parameters by which to measure the performance of a pressure sensor since it
reflects the stability of sensor sensitivity [24,25] The sensitivity (S) is another important
parameter in determining the sensing performance of a pressure sensor; it can be defined
as S = (∆R/R0)/∆P, where ∆P is the change in the applied pressure.
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The films that were annealed for 8, 4, and 2 min indicated a relatively high sensitivity
of 0.10 kPa–1, 0.07 kPa–1, and 0.07 kPa–1, respectively. The film annealed for 6 min and the
as-deposited film had a relatively low sensitivity of 0.05 kPa–1 and 0.04 kPa–1. Figure 7a
shows a clear response for all the films; the film annealed for 2 and 8 min indicated a
high response for all the applied pressure compared with the other films. It was further
determined that annealing for 8 min induced high sensitivity and low stability. The
film annealed for 8 min also produced inconsistent electrical signals, with more cycles of
repeated loading/unloading and sudden changes in pressure. This inconsistency might
have been caused by the nanocomposite becoming more crystalline and the substrate losing
its flexibility due to the high exposure to heat. This is also confirmed by the low intensity
and the absence of the PVDF peaks in the Raman spectra of this film.
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It can be concluded from this comparative analysis that annealing the films for 2 min
using infrared light showed an improved sensitivity compared with all other films. This
is attributed to the annealing effects, which enhance the conductivity by reducing the
graphene defects. The annealing process also helps to improve the interconnection in
the interface between graphene and PVDF, which enhances the conductive pre-networks.
The applied pressure causes an increase in the conductivity because of the increase in
elastic deformation, which leads to an increase in the contact sites of the graphene and
PVDF [26,27]. This improvement can also be attributed to the lower agglomeration of the
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graphene in the matrix and better dispersion. Annealing also helps in the formation of the
beta phase of PVDF, which is responsible for outstanding electrical characteristics. Finally,
the PVDF binder helps the active material to mitigate the stresses of contraction and to
maintain the adhesion of graphene to the conductive network, which is important in the
repeatability and reproducibility test [28,29]. All fabricated sensors were tested for more
than 1000 cycles and found to be very stable. There was no statistically noticeable change
in sensor response, response time, or recovery time was found.

3.4. Temperature Effect on Pressure Sensor Sensitivity of Gr/PVDF Nanocomposite

The variation of resistance with the pressure of the Gr/PVDF films was also inves-
tigated at an elevated temperature of 50 ◦C. The composite film was annealed for 2 min,
and the as-deposited film was utilized for this comparative test. The 2 min annealed film
was used since it showed an improved sensitivity compared with the other annealed films.
Figure 8 shows the pressure response at room temperature and a constant temperature of
50 ◦C. The IR-annealed film, compared with the as-deposited film, has the highest response
for all the applied pressures. Figure 9 gives a clear illustration of the relative resistance
change and pressure response for these nanocomposite films. These experimental results
show that the response at 50 ◦C was higher than at room temperature for all films, indicating
a considerable influence of temperature on the nanocomposites.
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The linearity and repeatability of the resistance change rate (∆R/R) with pressure did
not change compared with the films at room temperature. This study shows that it is crucial
to investigate the influence of temperature on the behavior of the Gr/PVDF nanocomposite
pressure sensors. It is also important to characterize the behavior of these composites
across different temperature ranges to understand the sensitivity and response behavior
of the sensor clearly. The effect of temperature with respect to the Gr/PVDF composite
is complex due to the complex nature of the polymer matrix and the effect of its material
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properties [30,31]. The interaction between these materials is affected by temperature,
therefore affecting the sensitivity of the pressure sensor.
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Graphene exhibits moderately high electrical conductivity at room temperature, and
when pressure is applied, the interatomic distances in the graphene lattice change, pro-
viding high pressure sensitivity. The elevated temperatures decrease the conductivity of
the graphene by changing the electron–phonon coupling, impacting the overall sensor
performance. The low-density polyethylene substrate used may also have some influence
on the sensitivity of the sensor because the increase in temperature causes the substrate
to thermally expand, therefore stretching the Gr/PVDF membrane, which leads to an
increase in resistance. From this study, the pressure sensitivity of the Gr/PVDF composite
is influenced by the temperature, and the effects are complex. These effects depend on
factors such as material properties, the interconnection between the two materials, the
applied temperature range, and the substrate used [32–34].

3.5. Temperature Dependence on Electrical Conductivity

The variation of the logarithm of electrical conductivity against the reciprocal of tem-
perature for graphene, as-deposited Gr/PVDF, and 2 min IR-annealed Gr/PVDF nanocom-
posites is shown in Figure 10. The temperature dependence on the electrical conductiv-
ity of these films was measured in the room temperature to 150 ◦C temperature range.
Figure 10 shows a decreasing trend in conductivity with increasing temperature; this can be
described by the Arrhenius equation s = s0 ∗ exp

(
− Ea

Kb ∗ T

)
, where s is the conductivity,

so is the pre-exponential factor, Ea is the activation energy, T is temperature, and Kb is the
Boltzmann constant. The calculated activation energy for graphene, as-deposited Gr/PVDF,
and 2 min IR-annealed Gr/PVDF was found to be 0.03, 0.14, and 0.09 eV/K, respectively.
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The observed characteristic shows the semiconductor nature of the graphene, which may
be due to the transfer of carriers from the valence band to the conduction band [35,36].
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Gr/PVDF, and 2 min IR-annealed Gr/PVDF nanocomposites in a temperature range of 25–150 ◦C.

Another factor contributing to this trend is the increase in electron-phonon interac-
tions, leading to electron scattering due to a high temperature of the phonons, which
hinders the movement of charge carriers in the material. The presence of PVDF polymer
introduce complexity to the variation of electrical conductivity with temperature. The
properties of polymers can change significantly with temperature due to their complex
nonlinear behavior, phase transitions, and sensitivity to thermal degradation [37]. It is
important to carry out a detailed characterization for Gr/PVDF composites to understand
their temperature dependence because exact temperature dependence can vary based on
the specific materials, their preparation methods, and the intended application. PVDF
is also a multi-functional polymer exhibiting piezoelectricity, piezoresistive, or ferroelec-
tricity properties, which change significantly with temperature, making it challenging
to determine the precise behavior of graphene and Gr/PVDF composites over a range
of temperatures [38].

3.6. Mechanical Properties of the Gr/PVDF Nanocomposite

The mechanical properties of the different film samples were measured using a uni-
versal testing machine (UTM). Figure 11a shows the load versus extension for the 2 min
IR-annealed and the as-deposited films. Figure 11b,c depict the variation of resistance
and strain in the composites, respectively. The tests on the two films were conducted at
a constant elongation velocity of 100 µm/min at room temperature, and the change in
resistance of the thin films was recorded with a multimeter. The load versus elongation
was monitored until the breaking point of the electrical connection was reached.

The change in resistance followed linear variation up to a strain value of approxi-
mately 0.38 for the annealed film and 0.12 for the as-deposited film and then exponentially
increased. The annealed film had a maximum stretch of up to 7 mm at 14 N of applied
load before a loss of conductivity, while the as-deposited film had a stretch of 5 mm at
12 N. It is observed that the as-deposited film exhibits a higher response compared with
the 2 min IR-annealed film under a force ranging from 8 N to 10 N. The exact reason
for this phenomenon is currently unknown. The higher stretch value in annealed film
can be attributed to an improvement in the interconnection between the graphene and
PVDF. Annealing enhances the cross-links and reduces the graphene defects. The tensile
strength and Young’s modulus of polymer-based nanocomposites depend on the polymer
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matrixes. The mechanical properties can also be enhanced via good interfacial interactions
and the synergistic effect of the fillers [38,39]. The graph of load versus extension gives
us more insight into the stretchability property of the fabricated pressure sensor. This is
another important characteristic of a reliable sensor that is used in applications where they
may be subjected to mechanical loading and unloading, such as wearable devices and
biomedical sensors.
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3.7. Hysteresis in a Gr/PVDF Nanocomposite

Hysteresis study for Gr/PVDF nanocomposite is important in designing pressure
sensors that offer accurate and reliable measurements because the sensor is involved in
mechanical deformation. Figure 12a depicts the relationship between the applied force and
the displacement during the loading and unloading cycles in annealed and as-deposited
Gr/PVDF nanocomposite films. The as-deposited film had a larger area under the hysteresis
loop than the IR-annealed film. The plot shown in Figure 12b indicates that both films had
linear resistance changes with displacement. These results give insight into the composite
mechanical behavior, sensitivity, and dynamic response. Hysteresis can also be used to
analyze the sensor’s durability and reliability since it is subjected to repetitive loading and
unloading cycles. This can also provide information about Gr/PVDF nanocomposite fatigue
and degradation, which is essential for dynamic sensor applications. Hysteresis behavior
can be influenced by several factors, such as annealing, the interconnection between
graphene and PVDF matrix, the substrate used, and the composition of nanocomposites,
such as the ratio between graphene concentration and the polymer matrix [40,41]. Finally,
further studies and characterization are needed to understand this behavior. The electrical
conductivity of the nanocomposite under different loading and unloading conditions can
also be carried out to assess its performance in different electronic sensor applications.
Table 2 gives a summary of the electrical and mechanical properties of graphene, PVDF,
and the experimental data for Gr/PVDF nanocomposite.
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Figure 12. (a) Hysteresis loop for 2 min IR-annealed and as-deposited Gr/PVDF nanocomposite.
(b) Relation between resistance (kΩ) and displacement (mm) for 2 min IR-annealed and as-deposited
films to investigate the mechanical properties of the nanocomposites. The arrows show the loading
and unloading cycles.

Table 2. The approximate response time for the films for the recovery when IR light is turned on and off.

Material Youngs
Modulus

Electrical
Conductivity

Activation
Energy (Ea)

Pressure
Sensitivity Ref.

Graphene 1000 ± 100 GPa 104–106 S/cm – – [42,43]

PVDF 2.5–3.2 GPa 10–11–10–8 S/cm – – [44,45]

As-deposited
Gr/PVDF 10.2 GPa 1.23 S/cm 0.03 eV/K 0.047 (This work)

2 min IR-annealed
Gr/PVDF 27.1 GPa 2.48 S/cm 0.14 eV/K 0.072 (This work)

4. Challenges and Future Research Efforts of Gr/PVDF Nanocomposite

This study indicates that the IR annealing of Gr/PVDF nanocomposite improves
the performance of the sensor and provides a greater potential for commercialization.
However, further improvements are required to optimize the sensor applications. The
interconnection of the nanocomposite and the adhesion of Gr/PVDF to the substrate
is important. The improvement in the adhesion of the Gr/PVDF to the substrate helps
improve the mechanical stability of the sensor during the continuous loading and unloading
pressure cycles. Improving the adhesion will also improve the durability, repeatability, and
reproducibility characteristics of the sensor.

The interconnection between graphene and the polymer matrix can be improved
by different coating techniques and by optimizing the annealing process. Even though
graphene’s unique properties are very promising for flexible polymer sensors, there are
still a few challenges that need to be investigated. For example, different polymer materials
have been used to synthesize graphene-based composites in the past [46,47]. However,
none of these polymers exhibit a strong piezoresistive behavior compared with PVDF. The
preparation process needs to be addressed so that a well-dispersed composite is achieved.
This will help reduce the traps of charges within the interfaces to give a superconductive
composite. The dielectric properties of the composite should also be further investigated;
this will help to address the electrical polarizability and molecular dynamics in polymers
and other nanomaterials. Also, the thermal conductivity and the interfacial thermal resis-
tance in the composites are important to study. Furthermore, as the thermal properties are
optimized, the mechanical properties of the nanocomposites should be addressed for the
ideal application of the nanocomposites [48,49].
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It is a challenge to obtain real pressure change at high temperatures in Gr/PVDF
nanocomposites due to the temperature-dependent resistance of the material, as shown in
Figure 10. However, few techniques can be utilized to address this issue. First, researchers
can calibrate the resistance–temperature relationship of the nanocomposite to accurately
compensate for temperature variations during pressure measurements. Also, they can
utilize temperature-controlled environments or incorporate temperature sensors directly
into the experimental setup to monitor and adjust for temperature fluctuations in real-time.
By accounting for temperature effects, precise pressure measurements at high-temperature
conditions can be derived to facilitate the characterization and optimization of Gr/PVDF
nanocomposites for various applications.

Advanced research efforts should be carried out to understand the sensitivity of
nanocomposites towards various applications. The main challenges in the use of Gr/PVDF
nanocomposites involve the attainment of better graphene dispersion and fine poly-
mer/graphene interfaces. Due to the tendency of graphene aggregation, homogeneous
dispersal has been found essential to enhance the properties of the graphene/polymer.
Improving the compatibility of the polymer/graphene is essential to improve the crystal-
lization, viscoelastic properties, and storage modulus of the nanocomposites. With these
future research efforts, the full potential of the Gr/PVDF nanocomposites will be realized,
which will aid us in achieving the commercialization of the practical application of the
Gr/polymer nanocomposites [50].

5. Conclusions

A highly sensitive pressure sensor was developed using Gr/PVDF composite film
deposited on a PE substrate utilizing a solvent casting process. The intensity ratio of IG/I2D,
estimated via Raman spectroscopy, indicated that the fabricated Gr/PVDF nanocomposite
film had a multi-layered graphene present. The films annealed with IR light for 2 min
exhibited a fast response during the loading and unloading process, as well as exceptional
mechanical stability. The annealing of Gr/PVDF enhanced its electrical conductivity,
mechanical strength, and thermal stability due to the improvement of the interconnection
between the graphene and PVDF matrix. This improved interconnection is responsible
for the highly sensitive pressure sensor because the conducting networks are improved
within the composite medium. This work shows that Gr/PVDF nanofilms can be utilized
for future electronics and potential applications in various sectors, such as the aerospace
and automotive industries, as well as in biomedical applications.
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