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Abstract: A Z-scheme heterojunction photo(electro)catalyst was fabricated by coupling sulfonic
acid-modified graphitic carbon nitride (SA-g-CN) with bismuth oxyiodide (BiOI). The SA-g-CN
component was prepared via wet-impregnation, while BiOI was synthesized through a hydrothermal
method. Comprehensive characterization elucidated the structural and morphological properties of
the resulting composite. The SA-g-CN/BiOI exhibited exceptional performance in both photocatalytic
degradation of tartrazine (TTZ) and photoelectrochemical oxygen evolution reaction (OER). Notably,
98.26% TTZ removal was achieved within 60 min of irradiation, while an OER onset potential
of 0.94 V (vs. Ag/AgCl) and a high photocurrent density of 6.04 mA were recorded under AM
1.5G illumination. Band energy calculations based on Mott–Schottky measurements confirmed the
formation of a Z-scheme heterojunction, which facilitated efficient charge separation and transfer,
thereby enhancing catalytic activity. These findings establish the SA-g-CN/BiOI composite as a
promising candidate for sustainable energy generation and environmental remediation applications.

Keywords: sulfonic acid; g-C3N4; BiOI; heterojunction; tartrazine; photodegradation; water-splitting

1. Introduction

Semiconductor photocatalysis presents a multifaceted approach to addressing pressing
global challenges. By harnessing solar energy, these materials can initiate the decomposition
of water into hydrogen and oxygen, providing a sustainable pathway to clean fuel produc-
tion [1–4]. Concurrently, they can effectively degrade organic pollutants within aquatic
environments through the generation of reactive oxygen species. This dual functionality
underscores the potential of semiconductor photocatalysis as a pivotal technology for both
energy generation and environmental remediation [5–7]. Tartrazine, a synthetic azo dye
ubiquitously employed in food products, poses significant environmental challenges due to
its recalcitrance and potential toxicity [8–10]. Conventional wastewater treatment processes
often prove ineffective in removing this contaminant. Photocatalysis, a green technology,
presents a promising avenue for the degradation of such persistent organic pollutants. This
process leverages light energy to generate highly reactive species, such as hydroxyl radicals,
capable of oxidizing organic compounds into harmless byproducts [11–14].

Graphitic carbon nitride (g-C3N4) and bismuth oxyiodide (BiOI), distinguished by
their favorable band structures and visible light absorption, have emerged as prospective
photocatalysts. A non-toxic polymeric semiconductor, g-C3N4 has an optical bandgap of
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approximately 2.5–2.7 eV. It exhibits several desirable properties, including high tempera-
ture and chemical stability, a wide range of visible-light absorption, a suitable surface for
immobilizing other materials, and the potential for bandgap tuning. However, g-C3N4 also
suffers from limitations such as a rapid charge recombination rate and limited surface area
in its bulk form [15]. Nevertheless, their practical application is hindered by limitations
such as rapid charge recombination and suboptimal photocatalytic efficiency [16–18]. To
address these challenges, strategies including metal/nonmetal doping, heterojunction
formation and surface functionalization have been explored.

Sulfonic acid functionalization of g-C3N4 is anticipated to introduce additional active
sites, enhance the adsorption of organic pollutants, and facilitate charge carrier mobility
through the creation of hydrophilic domains [19–21]. The augmented hydrophilicity is
expected to promote the adsorption and subsequent degradation of organic contaminants,
while improved charge separation can facilitate efficient electron transfer and the generation
of reactive oxygen species essential for pollutant degradation [22]. Beyond environmental
remediation, the pursuit of sustainable energy production is paramount. Photoelectro-
chemical water splitting, a process that harnesses solar energy to decompose water into
hydrogen and oxygen, offers a promising pathway to renewable energy generation. This
process relies on photocatalysts to absorb sunlight, generate charge carriers, and drive
the oxidation of water at the anode (OER) and the reduction of protons at the cathode
(HER) [23–26].

In this work, we investigated the synthesis and characterization of a novel sulfonic
acid-functionalized SA-g-CN/BiOI heterojunction catalyst for the effective degradation of
tartrazine under visible light irradiation. Additionally, the photoelectrochemical oxygen
evolution reaction performance of the synthesized catalyst will be assessed to evaluate its
potential for solar energy conversion. The as-synthesized catalysts were analyzed through
various spectroscopic and microscopic techniques. This multifaceted approach aims to
develop a multifunctional material exhibiting enhanced efficiency and stability for both
environmental remediation and energy production applications.

2. Results and Discussion

Field-emission scanning electron microscopy (FESEM) was employed to characterize
the surface morphology of the synthesized materials. The as-prepared g-C3N4 (g-CN)
exhibited a typical 2D lamellar sheet-like structure (Figure 1a), providing a suitable platform
for the subsequent integration of semiconductor nanoparticles. Energy-dispersive X-ray
(EDX) spectroscopy confirmed the composition of g-CN, with a C/N atomic ratio of 0.82,
approximating the theoretical value of 0.75 (Figure 1a’). Sulfonic acid functionalization did
not alter the fundamental 2D morphology of g-CN (SA-g-CN) (Figure 1b). The successful
introduction of -SO3H groups was verified by EDX analysis (Figure 1b’). BiOI exhibited a
distinctive thin nanoplate structure (Figure 1c), as revealed by FESEM. The corresponding
elemental composition is presented in Figure 1c’. The g-CN/BiOI composite displayed a
homogeneous distribution of BiOI nanoparticles on the g-C3N4 surface (Figure 1d). EDX
analysis confirmed the presence of all constituent elements (Figure 1d’). The SA-g-CN/BiOI
nanocomposite maintained the morphological characteristics of g-CN/BiOI (Figure 1e),
emphasizing the role of the 2D lamellar structure of SA-g-CN. EDX analysis of SA-g-
CN/BiOI (Figure 1e’) corroborated the presence of all expected elements. Additionally,
elemental mapping analysis of SA-g-CN/BiOI (Figure 1f) visually confirms the successful
sulfonic acid functionalization, the uniform distribution of BiOI on the g-C3N4 surface, and
the formation of a heterojunction composite.
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Figure 1. FESEM images and EDX spectra of as-synthesized g-CN (a,a’), sulfonic acid-functionalized 
AS-g-CN (b,b’), BiOI (c,c’), g-CN/BiOI (d,d’), and AS-g-CN/BiOI (e,e’). Elemental mapping of AS-g-
CN/BiOI heterojunction composite (f). 
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packing and interlayer stacking of the graphitic g-CN structure (JCPDS No. 87-1526) [27]. 
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sponding to the (001), (102), (110), (103), (004), (200), (114), (212), (115), and (204) planes, 
respectively. These diffraction patterns confirmed the formation of a tetragonal phase 
(space group P4/nmm) for the BiOI nanoplates (JCPDS No. 96-434-1501) [28]. The XRD 
patterns of both g-CN/BiOI and SA-g-CN/BiOI composites displayed characteristic peaks 
corresponding to both SA-g-CN (marked as spades) and BiOI (marked as diamonds), 
providing evidence for the successful formation of heterojunction structures. 

Fourier transform infrared spectroscopy (FTIR) investigation (Figure 2b) was em-
ployed to identify the functional groups and chemical bonds present in the synthesized 
nanomaterials. The FTIR spectra of pristine g-CN and SA-g-CN, recorded in the 400–4000 
cm−1 region, exhibited characteristic vibrational bands. Pure g-CN displayed characteristic 
absorption bands between 1200 and 1600 cm−1, attributed to the C–N heterocycles within 
the heptazine units. A sharp peak at 807 cm−1 corresponded to the stretching vibrations of 
C–N–C moieties in the triazine ring [29]. In contrast, the spectrum of SA-g-CN revealed 
additional peaks at 615 and 796 cm−1, assigned to the bending vibrations of –SO and C–N–
S groups, respectively, indicating the successful incorporation of sulfonic acid functional 
groups. Furthermore, the presence of surface sulfonic groups was confirmed by vibra-
tional bands at 968 and 1124 cm−1. A broad absorption band observed between 3060 cm−1 

Figure 1. FESEM images and EDX spectra of as-synthesized g-CN (a,a′), sulfonic acid-functionalized
AS-g-CN (b,b′), BiOI (c,c′), g-CN/BiOI (d,d′), and AS-g-CN/BiOI (e,e′). Elemental mapping of
AS-g-CN/BiOI heterojunction composite (f).

X-ray diffraction (XRD) (Figure 2a) analysis revealed characteristic peaks at approxi-
mately 13.0◦ and 27.6◦ in both pristine g-CN and SA-g-CN, corresponding to the (100) and
(002) crystal planes, respectively. These peaks are attributed to the in-plane structural pack-
ing and interlayer stacking of the graphitic g-CN structure (JCPDS No. 87-1526) [27]. While
CN-SAF exhibited a similar diffraction pattern, a reduction in the intensity of the 27.6◦

peak was observed, indicating an increased interlayer spacing due to the incorporation of
surface-functionalized sulfonic groups. XRD patterns of pure BiOI exhibited characteristic
peaks at 9.65◦, 29.6◦, 31.6◦, 37.0◦, 39.3◦, 45.9◦, 51.3◦, 55.1◦, 60.2◦, and 61.5◦, corresponding
to the (001), (102), (110), (103), (004), (200), (114), (212), (115), and (204) planes, respectively.
These diffraction patterns confirmed the formation of a tetragonal phase (space group
P4/nmm) for the BiOI nanoplates (JCPDS No. 96-434-1501) [28]. The XRD patterns of both
g-CN/BiOI and SA-g-CN/BiOI composites displayed characteristic peaks corresponding
to both SA-g-CN (marked as spades) and BiOI (marked as diamonds), providing evidence
for the successful formation of heterojunction structures.

Fourier transform infrared spectroscopy (FTIR) investigation (Figure 2b) was employed
to identify the functional groups and chemical bonds present in the synthesized nanoma-
terials. The FTIR spectra of pristine g-CN and SA-g-CN, recorded in the 400–4000 cm−1

region, exhibited characteristic vibrational bands. Pure g-CN displayed characteristic ab-
sorption bands between 1200 and 1600 cm−1, attributed to the C–N heterocycles within
the heptazine units. A sharp peak at 807 cm−1 corresponded to the stretching vibrations of
C–N–C moieties in the triazine ring [29]. In contrast, the spectrum of SA-g-CN revealed
additional peaks at 615 and 796 cm−1, assigned to the bending vibrations of –SO and C–N–S
groups, respectively, indicating the successful incorporation of sulfonic acid functional
groups. Furthermore, the presence of surface sulfonic groups was confirmed by vibrational
bands at 968 and 1124 cm−1. A broad absorption band observed between 3060 cm−1 and
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3300 cm−1 was attributed to the stretching vibrations of –NH, =NH, and –OH groups
originating from uncreated amino groups and adsorbed water [30]. On the other hand,
the FTIR analysis revealed a characteristic peak at 571.5 cm−1 attributed to the symmetric
stretching vibration of the Bi-O bond in BiOI. Additionally, strong absorption bands were
observed within the 1300–1700 cm−1 region, likely associated with the presence of organic
impurities or adsorbed species. A broad and intense peak centered around 3350 cm−1

indicated the presence of adsorbed water molecules, with contributions from both bending
(∼1650 cm−1) and stretching (∼3500–3000 cm−1) vibrational modes of hydroxyl groups
(–OH) [31]. Correspondingly, the FTIR spectra of g-CN/BiOI and SA-g-CN/BiOI exhibit the
combined vibrational bands of SA-g-CN and BiOI, which confirms the excellent formation
of heterojunction composite.

Inorganics 2024, 12, x FOR PEER REVIEW 4 of 15 
 

 

and 3300 cm−1 was attributed to the stretching vibrations of –NH, =NH, and –OH groups 
originating from uncreated amino groups and adsorbed water [30]. On the other hand, 
the FTIR analysis revealed a characteristic peak at 571.5 cm−1 attributed to the symmetric 
stretching vibration of the Bi-O bond in BiOI. Additionally, strong absorption bands were 
observed within the 1300–1700 cm−1 region, likely associated with the presence of organic 
impurities or adsorbed species. A broad and intense peak centered around 3350 cm−1 in-
dicated the presence of adsorbed water molecules, with contributions from both bending 
(∼1650 cm−1) and stretching (∼3500–3000 cm−1) vibrational modes of hydroxyl groups (–
OH) [31]. Correspondingly, the FTIR spectra of g-CN/BiOI and SA-g-CN/BiOI exhibit the 
combined vibrational bands of SA-g-CN and BiOI, which confirms the excellent formation 
of heterojunction composite. 

 
Figure 2. X-ray diffraction patterns (a) and Fourier-transform infrared spectra (b) of g-CN, sulfonic 
acid-functionalized SA-g-CN, BiOI, g-CN/BiOI, and SA-g-CN/BiOI. 

X-ray photoelectron spectroscopy (XPS) was employed to investigate the chemical 
environment and bonding interactions within the catalytic nanocomposites. Figure 3a pre-
sents survey spectra (0 to 1000 eV) of SA-g-CN, BiOI, and SA-g-CN/BiOI, confirming the 
presence of the expected elements. High-resolution spectra of C 1s, N 1s, Bi 4f, O 1s, and 
I 3d are shown in Figure 3b–f. Deconvolution of the C 1s spectra from pristine SA-g-CN 
and SA-g-CN/BiOI revealed two peaks at 284.76 and 287.9 eV, attributed to C–C and N–
C=N bonds, respectively. Similarly, the N 1s spectra exhibited peaks at 398.52 and 400.21 
eV, corresponding to pyridinic and graphitic nitrogen. Compared to the pristine SA-g-
CN, the C 1s and N 1s peaks in SA-g-CN/BiOI shifted to higher binding energies. This 
suggests an increase in electron density/cloud or a change in the electronic structure of 
SA-g-CN upon contact with BiOI under light irradiation, possibly due to interfacial charge 
transfer. Further XPS analysis of the S 2p region (Figure S1) revealed two distinct peaks at 

Figure 2. X-ray diffraction patterns (a) and Fourier-transform infrared spectra (b) of g-CN, sulfonic
acid-functionalized SA-g-CN, BiOI, g-CN/BiOI, and SA-g-CN/BiOI.

X-ray photoelectron spectroscopy (XPS) was employed to investigate the chemical
environment and bonding interactions within the catalytic nanocomposites. Figure 3a
presents survey spectra (0 to 1000 eV) of SA-g-CN, BiOI, and SA-g-CN/BiOI, confirming
the presence of the expected elements. High-resolution spectra of C 1s, N 1s, Bi 4f, O
1s, and I 3d are shown in Figure 3b–f. Deconvolution of the C 1s spectra from pristine
SA-g-CN and SA-g-CN/BiOI revealed two peaks at 284.76 and 287.9 eV, attributed to C–C
and N–C=N bonds, respectively. Similarly, the N 1s spectra exhibited peaks at 398.52 and
400.21 eV, corresponding to pyridinic and graphitic nitrogen. Compared to the pristine
SA-g-CN, the C 1s and N 1s peaks in SA-g-CN/BiOI shifted to higher binding energies.
This suggests an increase in electron density/cloud or a change in the electronic structure of
SA-g-CN upon contact with BiOI under light irradiation, possibly due to interfacial charge
transfer. Further XPS analysis of the S 2p region (Figure S1) revealed two distinct peaks at
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164.79 and 168.11 eV, indicative of –SH and –SO3H groups, respectively, confirming the
successful sulfonic acid functionalization of g-CN. Due to spectral overlap with bismuth,
the S 2p spectrum of SA-g-CN/BiOI could not be clearly distinguished. The Bi 4f spectrum
exhibited two prominent peaks at 158.13 and 163.54 eV, corresponding to the Bi3+ states
of Bi 4f7/2 and Bi 4f5/2. The O 1s spectrum of SA-g-CN was deconvoluted into two
peaks at 531.55 and 533.46 eV, attributed to the –SO3H and –OH groups of the sulfonic
acid functional groups. In SA-g-CN/BiOI, the O 1s spectrum showed peaks at 529.94 and
532.06 eV, corresponding to Bi–O and surface-bound hydroxyl (–OH) groups, respectively.
The I 3d spectrum of BiOI displayed two significant peaks at 619.08 and 630.57 eV, attributed
to I 3d5/2 and I 3d3/2. The observed higher binding energy shifts for Bi 4f and I 3d in the
SA-g-CN/BiOI heterojunction catalyst suggest an increased electron density, likely due to
enhanced photogenerated charge transfer across the heterojunction interface.
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The optical absorption properties of the prepared samples were investigated using
UV-Vis diffuse reflectance spectroscopy (UV-DRS) (Figure 4a). Both pristine g-CN and SA-
g-CN exhibited absorption edges at approximately 469.8 nm, indicating a primary response
to the UV region of the spectrum. In contrast, BiOI demonstrated enhanced visible light ab-
sorption with a band edge centered at approximately 690 nm. Interestingly, the g-CN/BiOI
and SA-g-CN/BiOI composites displayed red-shifted absorption edges, reaching approx-
imately 685 nm and 715 nm, respectively. These results suggest that the incorporation
of BiOI significantly improved visible light absorption and potentially reduced bandgap
energies, which are essential parameters for efficient photo(electro)catalytic processes.
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The bandgap energy (Eg) was estimated through Tauc plots (Figure 4b) constructed
using the Kubelka–Munk function (Equation (1)) [32]. This equation relates the absorption
coefficient (α) to the photon energy (hν):

αhν = A(hν − Eg)n (1)

where A is a proportionality constant, h = Planck’s constant, Eg = bandgap energy, and n is
a transition coefficient with values of 1/2 for direct allowed transitions and 2 for indirect
allowed transitions. The calculated bandgap energies (Eg) for g-CN, SA-g-CN, BiOI, g-
CN/BiOI, and SA-g-CN/BiOI were determined to be 2.64, 2.60, 1.86, 1.88, and 1.77 eV,
respectively. The substantial reduction in the Eg of the SA-g-CN/BiOI heterojunction
suggests a synergistic interplay between the electronic and optical properties of SA-g-CN
and BiOI, potentially contributing to enhanced photo(electro)catalytic activities.

The electrochemical properties of the semiconductor materials were characterized
through Mott–Schottky analysis (Figure 4c–e) in the presence of 0.1 M Na2SO4. The
flat-band potential (Efb) of the semiconductor materials can be determined using the Mott–
Schottky plot (1/C2 vs. potential) by extrapolating the linear portion to the point where
it intercepts the X-axis (Vfb + kT/e) (Equation (2)). This Efb value also corresponds to the
Fermi level since band bending becomes negligible at the Efb potential. In n-type and
p-type semiconductors, the Fermi level aligns with the conduction band (Ecb) and valence
band (Evb) edges, respectively [33].

1/C2 = (2/(εε0eNd)) × (V − Vfb − kT/e) (2)

Evb = Ecb + Eg (3)

Mott–Schottky analysis revealed flat band potentials (Efb) of –1.27, –1.11, and –1.28 V
for g-CN, SA-g-CN, and BiOI, respectively. Valence band potentials (Evb) were subsequently
calculated using Equation (3), resulting in values of +1.33, +1.53, and +0.58 V, respectively.
Based on the determined Eg, Ecb, and Evb values from DRS-Tauc and Mott–Schottky
analyses, the corresponding band energy diagrams are presented in Figure 4f.

Photoluminescence (PL) spectroscopy was employed to investigate charge carrier
dynamics, specifically photoexcitation and recombination processes (Figure 5a). Pris-
tine g-CN exhibited an emission peak centered at approximately 475 nm, while sulfonic
acid-functionalized SA-g-CN displayed a blue-shifted emission at around 445 nm. PL
emission intensity is directly correlated with the rate of charge carrier recombination
during photocatalytic and photoelectrochemical processes. Notably, g-CN/BiOI and SA-g-
CN/BiOI composites demonstrated significantly reduced PL intensities compared to their
pristine counterparts, indicating suppressed charge recombination due to the formation
of heterojunction interfaces. This phenomenon is anticipated to contribute to enhanced
photoelectrochemical performance.

The photocatalytic performance of the SA-g-CN/BiOI heterojunction catalyst was
evaluated by monitoring the degradation of tartrazine (TTZ), a synthetic food dye, under
simulated solar light irradiation (300 W Xenon lamp, AM 1.5G filter, 100 mW/cm2). Ap-
proximately 0.02 g of catalyst was dispersed in 100 mL of a 10 mg/L TTZ aqueous solution.
Prior to irradiation, the mixture was stirred in the dark to establish adsorption–desorption
equilibrium. The progress of TTZ degradation was monitored via UV-Vis spectroscopy
at 10 min intervals. Figure 5b presents the TTZ concentration as a function of irradiation
time (C/C0), revealing a 98.26% removal efficiency within 60 min. This represents a 3.06,
2.14, 4.48, 1.56, and 16.48-fold enhancement compared to pristine g-CN (32.09%), SA-g-CN
(45.91%), BiOI (21.9%), g-CN/BiOI (62.65%), and photolysis (32.09%), respectively. The
superior photocatalytic activity of SA-g-CN/BiOI is attributed to a synergistic effect be-
tween SA-g-CN and BiOI. The sulfonic group acts as an electron trap, promoting electron
transfer to the catalyst surface and extending the lifetime of charge carriers. Moreover,
the formation of a heterojunction interface effectively suppresses charge recombination,
thereby enhancing overall photocatalytic efficiency.



Inorganics 2024, 12, 243 8 of 15
Inorganics 2024, 12, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Photoluminescence (PL) spectra (a), tartrazine concentration vs. degradation time (C/C0) 
plot (b), –lnC/C0 kinetics plot (c), and rate constant vs. different catalysts (d). 

The photocatalytic performance of the SA-g-CN/BiOI heterojunction catalyst was 
evaluated by monitoring the degradation of tartrazine (TTZ), a synthetic food dye, under 
simulated solar light irradiation (300 W Xenon lamp, AM 1.5G filter, 100 mW/cm2). Ap-
proximately 0.02 g of catalyst was dispersed in 100 mL of a 10 mg/L TTZ aqueous solution. 
Prior to irradiation, the mixture was stirred in the dark to establish adsorption–desorption 
equilibrium. The progress of TTZ degradation was monitored via UV-Vis spectroscopy at 
10 min intervals. Figure 5b presents the TTZ concentration as a function of irradiation time 
(C/C₀), revealing a 98.26% removal efficiency within 60 min. This represents a 3.06, 2.14, 
4.48, 1.56, and 16.48-fold enhancement compared to pristine g-CN (32.09%), SA-g-CN 
(45.91%), BiOI (21.9%), g-CN/BiOI (62.65%), and photolysis (32.09%), respectively. The su-
perior photocatalytic activity of SA-g-CN/BiOI is attributed to a synergistic effect between 
SA-g-CN and BiOI. The sulfonic group acts as an electron trap, promoting electron trans-
fer to the catalyst surface and extending the lifetime of charge carriers. Moreover, the for-
mation of a heterojunction interface effectively suppresses charge recombination, thereby 
enhancing overall photocatalytic efficiency. 

The kinetics of TTZ photodegradation was assessed by plotting –ln(C/C₀) against 
degradation time (t) (Figure 5c). The linear relationship observed for the SA-g-CN/BiOI 
system indicates pseudo-first-order reaction kinetics, conforming to the equation –
ln(C/C₀) = kt. The calculated rate constants (k) for TTZ photodegradation in the presence 
of various catalysts are presented in Figure 5d. SA-g-CN/BiOI exhibited the highest rate 
constant (0.0534 min−1), surpassing those of g-CN (0.00549 min−1), SA-g-CN (0.00811 
min−1), BiOI (0.00322 min−1), and g-CN/BiOI (0.0132 min−¹). Importantly, all systems 

Figure 5. Photoluminescence (PL) spectra (a), tartrazine concentration vs. degradation time (C/C0)
plot (b), –lnC/C0 kinetics plot (c), and rate constant vs. different catalysts (d).

The kinetics of TTZ photodegradation was assessed by plotting –ln(C/C0) against degra-
dation time (t) (Figure 5c). The linear relationship observed for the SA-g-CN/BiOI system
indicates pseudo-first-order reaction kinetics, conforming to the equation –ln(C/C0) = kt.
The calculated rate constants (k) for TTZ photodegradation in the presence of various
catalysts are presented in Figure 5d. SA-g-CN/BiOI exhibited the highest rate constant
(0.0534 min−1), surpassing those of g-CN (0.00549 min−1), SA-g-CN (0.00811 min−1), BiOI
(0.00322 min−1), and g-CN/BiOI (0.0132 min−¹). Importantly, all systems demonstrated
excellent correlation coefficients (R2) of unity, further supporting the pseudo-first-order
kinetic model.

Electrochemical impedance spectroscopy (EIS) and transient photocurrent (TPC) mea-
surements were employed to investigate charge transfer resistance (Rct) and transient
photoresponse, respectively. EIS spectra (Figure 6a) revealed a significantly lower Rct value
of 9.1 Ω for SA-g-CN/BiOI compared to g-CN (44.5 Ω), SA-g-CN (15.1 Ω), BiOI (50.6 Ω),
and g-CN/BiOI (90.2 Ω). The reduced Rct in SA-g-CN/BiOI is attributed to efficient charge
transfer facilitated by the heterojunction interface and the electron-trapping capability of
the sulfonic group, promoting facile charge transport across the photoanode–electrolyte
interface, and enhancing photoelectrochemical (PEC) performance. TPC measurements
(Figure 6b) were conducted via chronoamperometry (i-t) in 0.1 M NaOH under intermittent
light conditions (10 s on/off cycles) to evaluate charge carrier dynamics. The SA-g-CN/BiOI
nanocomposite exhibited the highest photocurrent response, corroborating the formation
of an efficient heterojunction and the suppression of charge recombination.



Inorganics 2024, 12, 243 9 of 15

Inorganics 2024, 12, x FOR PEER REVIEW 9 of 15 
 

 

demonstrated excellent correlation coefficients (R2) of unity, further supporting the 
pseudo-first-order kinetic model.  

Electrochemical impedance spectroscopy (EIS) and transient photocurrent (TPC) 
measurements were employed to investigate charge transfer resistance (Rct) and transient 
photoresponse, respectively. EIS spectra (Figure 6a) revealed a significantly lower Rct 
value of 9.1 Ω for SA-g-CN/BiOI compared to g-CN (44.5 Ω), SA-g-CN (15.1 Ω), BiOI (50.6 
Ω), and g-CN/BiOI (90.2 Ω). The reduced Rct in SA-g-CN/BiOI is attributed to efficient 
charge transfer facilitated by the heterojunction interface and the electron-trapping capabil-
ity of the sulfonic group, promoting facile charge transport across the photoanode–electro-
lyte interface, and enhancing photoelectrochemical (PEC) performance. TPC measurements 
(Figure 6b) were conducted via chronoamperometry (i-t) in 0.1 M NaOH under intermittent 
light conditions (10 s on/off cycles) to evaluate charge carrier dynamics. The SA-g-CN/BiOI 
nanocomposite exhibited the highest photocurrent response, corroborating the formation of 
an efficient heterojunction and the suppression of charge recombination. 

 
Figure 6. Electrochemical impedance (EIS) spectra (a), transient photocurrent curves (b), photoelec-
trochemical oxygen evolution reaction LSV curves in the presence of 0.1 M Na2SO4 with Na2SO3 hole 
scavenger under AM 1.5G illumination (c), and histogram of photocurrent vs. different catalyst (d). 

The photoelectrochemical (PEC) water oxidation performance of the catalysts was 
assessed via linear sweep voltammetry (LSV) to evaluate oxygen evolution reaction (OER) 
activity. Figure 6c presents LSV polarization curves recorded in 0.1 M Na2SO4 electrolyte 
containing Na2SO3 as a hole scavenger under simulated AM 1.5G illumination. A 

Figure 6. Electrochemical impedance (EIS) spectra (a), transient photocurrent curves (b), photoelec-
trochemical oxygen evolution reaction LSV curves in the presence of 0.1 M Na2SO4 with Na2SO3 hole
scavenger under AM 1.5G illumination (c), and histogram of photocurrent vs. different catalyst (d).

The photoelectrochemical (PEC) water oxidation performance of the catalysts was
assessed via linear sweep voltammetry (LSV) to evaluate oxygen evolution reaction (OER)
activity. Figure 6c presents LSV polarization curves recorded in 0.1 M Na2SO4 electrolyte
containing Na2SO3 as a hole scavenger under simulated AM 1.5G illumination. A dis-
cernible enhancement in photocurrent was observed for all catalysts compared to their
respective dark currents. Notably, the SA-g-CN/BiOI heterojunction exhibited the highest
photocurrent density of 6.04 mA, surpassing those of g-CN (4.92 mA), SA-g-CN (5.47 mA),
BiOI (2.54 mA), and g-CN/BiOI (4.1 mA). Moreover, the SA-g-CN/BiOI Z-scheme system
demonstrated a lower onset potential of 0.94 V at a current density of 5 mA compared to
the other catalysts. A comparative summary of photocurrent densities for all materials
is provided in Figure 6d. The formation of a Z-scheme heterojunction interface between
SA-g-CN and BiOI is pivotal in augmenting photocatalytic efficiency. This interfacial re-
gion serves as an effective charge separation center, mitigating recombination losses and
prolonging the lifetime of photogenerated charge carriers.

The recyclability of the SA-g-CN/BiOI Z-scheme composite was assessed through
five consecutive photocatalytic degradation cycles of TTZ (Figure 7a). A slight decrease in
degradation efficiency from 98.31% to 93.24% was observed after the fifth cycle, primarily
attributed to catalyst loss during recovery. Nevertheless, the overall retention of 93.24%
degradation efficiency underscores the robust photocatalytic stability of the composite. To
elucidate the dominant reactive species involved in TTZ degradation, radical trapping
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experiments were conducted using silver nitrate (SN), triethanolamine (TEOA), acrylic
acid (AA), and isopropanol (IPA) as scavengers for electrons (e−), holes (h+), superoxide
radicals (•O2

−), and hydroxyl radicals (•OH), respectively (Figure 7b). The addition of
AA resulted in a significant reduction of degradation efficiency to 51.72%, indicating that
superoxide radicals (•O2

−) play a predominant role in TTZ removal, followed by holes
(h+), hydroxyl radicals (•OH), and electrons (e−).
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To assess the crystalline and chemical stability of the recycled catalysts, X-ray diffrac-
tion (XRD) and Fourier-transform infrared (FTIR) spectroscopy were employed. Figure S2a
presents the XRD patterns of the recycled SA-g-CN/BiOI nanocomposite catalyst after five
successive reaction cycles, demonstrating excellent crystalline stability. Figure S2b shows
the FTIR spectrum of the recycled catalyst, indicating minimal changes in the chemical com-
position, thus confirming its robust chemical stability. These findings collectively suggest
that the as-synthesized SA-g-CN/BiOI photocatalytic heterojunction exhibits remarkable
stability under repeated reaction conditions. The structural integrity of the recycled SA-g-
CN/BiOI heterojunction catalyst was assessed via FESEM analysis (Figure S3a,b), which
confirmed the preservation of the composite’s morphology and structural stability after
five consecutive catalytic cycles. This observation underscores the catalyst’s robust nature
and its potential for long-term application.

The photodegradation of TTZ was evaluated under varying pH conditions (Figure 7c).
The results indicate that TTZ photodegradation decreased with increasing pH from 3 to 11.
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At pH 3, a maximum TTZ photodegradation of 97.89% was achieved, while photodegrada-
tion decreased to 95.86% at pH 5. For pH 7, 9, and 11, TTZ removal percentages were 33.61%,
14.36%, and 13.58%, respectively. These findings suggest that TTZ adsorption onto the SA-
g-CN/BiOI catalyst surface is enhanced at lower pH values due to increased protonation,
leading to stronger electrostatic interactions. Conversely, at higher pH values, the decrease
in protonation reduces TTZ adsorption, resulting in lower photodegradation efficiency.

A proposed photo(electro)catalytic mechanism for the SA-g-CN/BiOI heterojunction
is illustrated in Figure 7d. Bandgap energies (Eg), conduction band (CB), and valence
band (VB) potentials (Ecb and Evb) were determined through DRS and Mott–Schottky
measurements. Calculated Ecb and Evb values for SA-g-CN were −1.11 V and +1.53 V,
respectively, while those for BiOI were −1.28 V and +0.58 V. Notably, the CB of SA-g-CN is
positioned at a less negative potential compared to that of BiOI, while its VB is situated at a
more positive potential.

Upon light irradiation, photogenerated electrons in the CB of SA-g-CN migrate to the
VB of BiOI, recombining with holes. Consequently, electrons accumulate in the CB of BiOI,
while holes concentrate in the VB of SA-g-CN. This spatial separation of charge carriers
effectively inhibits recombination, promoting their participation in redox reactions. The
observed Z-scheme charge transfer mechanism within the SA-g-CN/BiOI heterojunction is
instrumental in enhancing photocatalytic and photoelectrochemical performance.

3. Materials and Methods
3.1. Materials

Dicyandiamide (C2H4N4 ≥ 99%), sulfuric acid (H2SO4 ≥ 99.999%), bismuth nitrate
pentahydrate (Bi(NO3)3 · 5H2O ≥ 99.999%), potassium iodide (KI ≥ 99.0%), polyvinyl pyrro-
lidine (PVP-10,000 MW), methanol (CH3OH ≥ 99.8%), isopropanol (C3H8O ≥ 99.5%), silver
nitrate (AgNO3 ≥ 99.999%), acrylic acid (C3H4O2 ≥ 99%), triethanolamine (TEOA ≥ 98%),
sodium sulfate (Na2SO4 ≥ 99.0%), sodium sulfite (Na2SO3 ≥ 98.0%), sodium hydroxide
(NaOH ≥ 97.0%), potassium chloride (KCl ≥ 99.0%), potassium ferri/ferrocyanide
(K3[Fe(CN)6] ≥ 99.0%/K4[Fe(CN)6]·3H2O ≥ 98.5%), tartrazine (C16H9N4Na3O9S2 ≥ 85%),
and Nafion (C7HF13O5S.C2F4 5 wt.%) were obtained from Sigma-Aldrich, Darmstadt, Ger-
many, and used without further purification. Distilled water (DI) was used as a solvent
throughout the reaction or otherwise stated.

3.2. Instrumentations and Characterizations

The phase composition and crystallographic structure of the prepared samples were
confirmed by X-ray diffraction (XRD) analysis (Cu Kα radiation, λ = 1.5406 Å, PANa-
lytical X’pert Pro, EA Almelo, The Netherlands). The chemical functional groups and
bonding were analyzed through Fourier-transform infrared spectroscopy (FT-IR) with
KBr pellets and a resolution of 4 cm−1 (PerkinElmer, Buckinghamshire, PA, USA), and
X-ray photoelectron spectroscopy (XPS, JEOL-JPS-9030, Tokyo, Japan) with standard Mg
source. The morphology, microstructure, and elemental composition were examined by
field-emission scanning electron microscopy (FE-SEM, JEOL-JSM-7610F, Tokyo, Japan)
equipped with energy-dispersive X-ray spectroscopy (EDX, X-MaxN, Oxford Instruments,
Abingdon, UK). Optical properties were assessed through UV-visible diffuse reflectance
spectroscopy (UV-DRS, Jasco V-770, Tokyo, Japan) and photoluminescence spectroscopy
(PL, Micro PL-UniNanoTech, Gyeonggi-do, Republic of Korea) using 266 nm laser excitation.
Electrochemical properties were studied via linear sweep voltammetry (LSV), electrochem-
ical impedance spectroscopy (EIS), and Mott–Schottky analysis (Autolab PGSTAT128N-
FRA32M, Livonia, MI, USA).

3.3. Synthesis of Pristine g-C3N4 (g-CN) and Sulfonic acid-Functionalized g-C3N4 (SA-g-CN)

The graphitic carbon nitride (g-CN) was synthesized by a thermal polycondensation
reaction using dicyandiamide as a precursor material. Briefly, 4 g of dicyandiamide was
placed in a silica crucible with the lid after being finely ground and heated in a muffle
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furnace at 550 ◦C for 3 h with a heating ramp of 5 ◦C/min. The pale-yellow g-CN was
obtained and stored for further reactions. Secondly, 1 g of bulk g-CN was added to
the glass bottle containing 0.1 M H2SO4 and stirred at 50 ◦C until all the solvents were
evaporated by the total solvent evaporation (TSE) technique. Later, the obtained powder
was heated at 200 ◦C for 2 h to strengthen the N–SO3H bond and SA-g-CN was obtained
for further applications.

3.4. Synthesis of Pristine BiOI, g-CN/BiOI and SA-g-CN/BiOI Nanocomposites

The solvothermal method was employed for the synthesis of BiOI nanoplates. A
volume of 100 mmol of Bi(NO3).6H2O and 0.2 M of potassium iodide was added to
1:1 ethylene glycol and distilled water mixture (80 mL) and stirred vigorously until the
homogenous mixture was obtained. After that, the homogenous solution was added to the
Teflon-lined autoclave and placed in the muffle furnace at 140 ◦C for 10 h. The obtained
product was washed with DI and ethanol multiple times and dried overnight in a hot-air
oven at 60 ◦C.

The nanocomposites were prepared by the total solvent evaporation (TSE) technique,
and for this, equal amounts of g-CN, SA-g-CN and BiOI were added to the bottle con-
taining 10 mL of methanol and kept for magnetic stirring at 60 ◦C until thorough solvent
vaporization. Then, the obtained g-CN/BiOI and SA-g-CN/BiOI were dried overnight in a
hot-air oven and utilized for further analyses and applications.

3.5. Photo(electro)chemical Measurements and Photocatalytic Applications

The photocatalytic oxidation of tartrazine (TTZ) was performed using pristine and
composite materials. All the degradation reactions were carried out using a 350 W Xenon
arc lamp with AM 1.5G filter (100 mW/cm2) obtained from Enlitech (ALS-300-G2), Taiwan,
and the photoreactor was placed vertically about 40 cm from the light source. In this study,
for the photocatalytic oxidation of TTZ dye, 50 mL (0.010 g L−1) was added with 25 mg of
catalyst and bath-sonicated for even dispersion of the photocatalyst. The photocatalytic
reactor was made of a double-walled Pyrex beaker with a water circulatory system to retain
the optimum temperature throughout the experiment (24 ± 1 ◦C). After 15 min under
stirring in dark conditions, the reactor was placed in the light source and the 3 mL aliquots
were collected at regular intervals to determine the percentage of degradation using a
UV-Vis spectrophotometer.

The Mott–Schottky plots were measured using a Metrohm Autolab potentiostat/
galvanostat (FRA32M module integrated with NOVA). The electrochemical impedance
spectroscopy (EIS) and the transient photocurrent (TPC) measurements were obtained
using the electrochemical workstation (CHI1205B). For the Mott–Schottky measurements,
0.1 M Na2SO4 was used as an electrolyte. And for the photocurrent and EIS measurements,
0.1 M NaOH and 5 mM [Fe(CN)6]3−/4− mixture dispersed in 100 mM KCl were used as
electrolyte solutions, respectively. In these analyses, Ag/AgCl (sat. KCl), a platinum wire,
and a sample-coated indium tin oxide (ITO) plate were used as reference, counter, and
working electrodes, respectively. The working electrode was prepared by cleaning the
required ITO plates using acetone, ethanol, and deionized water, followed by drop casting
the 50 µL of sample solution (i.e., 5 mg of photocatalysts dispersed in 1 mL DI/IPA mixture).
The photo(electro)chemical oxygen evolution reactions (OER) were carried out using the
same three-electrode system using 0.1 M Na2SO4/0.1 M Na2SO3 as the electrolyte solution.

4. Conclusions

In summary, this study successfully demonstrated the fabrication of a high-performance
Z-scheme heterojunction photo(electro)catalyst by integrating sulfonic acid-modified graphitic
carbon nitride (SA-g-CN) with bismuth oxyiodide (BiOI). The resulting composite ex-
hibited exceptional photocatalytic activity, achieving 98.26% degradation of tartrazine
within 60 min of irradiation. Concurrently, the catalyst demonstrated promising photo-
electrochemical water oxidation performance, with an OER onset potential of 0.94 V (vs.
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Ag/AgCl) and a high photocurrent density of 6.04 mA. The synergistic interplay between
SA-g-CN and BiOI, facilitated by the formation of a Z-scheme heterojunction, effectively
promoted charge separation, and suppressed recombination, leading to enhanced catalytic
efficiency. The incorporation of sulfonic acid functional groups further improved charge
carrier dynamics and expanded the light absorption range. This research underscores
the potential of SA-g-CN/BiOI as a versatile and efficient photocatalyst for addressing
environmental and energy-related challenges. Future studies could explore the optimiza-
tion of catalyst composition and structure to further enhance performance and expand its
application scope.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics12090243/s1, Figure S1: XPS core-level spectra of S 2p
of SA-g-CN; Figure S2: XRD diffraction pattern (a) and FTIR spectrum of recycled SA-g-CN/BiOI
heterojunction nanocomposite after five successive reaction cycles (b); Figure S3: FESEM images of
the recycled SA-g-CN/BiOI composite (a,b).
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