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Abstract: Herein, this work elucidates the synthesis of the Pd-MoS2 catalyst for application
in methanol-mediated overall water splitting. The scanning electron microscope (SEM) and
transmission electron microscope (TEM) pictures offer an exciting nanostructured shape
of the Pd-MoS2, depicting a high surface area. Further, high-resolution TEM (HRTEM)
pictures confirm the lattice plane (100), lattice spacing (0.26 nm), and hexagonal crystal
structure of the Pd-MoS2. Moreover, high-angle annular dark-field (HAADF) images and
related color maps disclose the Mo, S, and Pd elements of the Pd-MoS2. The Pd-MoS2

catalyst exhibits lower overpotentials of 224.6 mV [methanol-mediated hydrogen evolution
reaction (MM-HER)] at −10 mA cm−2 and 133 mV [methanol-mediated oxygen evolution
reaction (MM-OER)] at 10 mA cm−2. Further, the Pd-MoS2 illustrates noteworthy stability
for 15.5 h for MM-HER and 18 h for MM-OER by chronopotentiometry test. Excitingly, the
Pd-MoS2∥Pd-MoS2 cell reveals a small potential of 1.581 V compared to the MoS2∥MoS2 cell
(1.648 V) in methanol-mediated overall water splitting. In addition, the Pd-MoS2∥Pd-MoS2

combination reveals brilliant durability over 18 h at 10 mA cm−2.

Keywords: Pd-MoS2; methanol-mediated hydrogen evolution reaction; methanol-mediated
oxygen evolution reaction (MM-OER); methanol-mediated overall water splitting; outstanding
stability

1. Introduction
Currently, the rising global population and fast industrialization have led to record en-

ergy consumption, blinking a keen interest in future energy sources [1]. Fascinatingly, fossil
fuels are a main energy source for industry, irrigation, and transportation, contributing
to critical environmental challenges, such as pollution and greenhouse gas emissions [2].
Therefore, these issues highlight the necessity to transition toward sustainable, green,
and clean energy sources [3]. Remarkably, hydrogen is a hopeful clean energy source
that has the potential to transform energy systems, offering a sustainable substitution for
fossil fuels due to its high energy, which could considerably reach carbon neutrality and
eco-friendly combustion and mitigate climate change impacts [4]. Intriguingly, electro-
chemical water splitting is a scalable, effective, and simple technique for hydrogen energy
production involving the decomposition of water (H2O) into oxygen (O2) and hydrogen
(H2) [5]. Attractively, the overpotentials and Tafel slopes mainly affect the hydrogen and
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oxygen productivity during the electrochemical water splitting, which is very important
for hydrogen and oxygen generation [6]. Recently, methanol-mediated hydrogen evolution,
methanol-mediated oxygen evolution reaction (MM-OER), and methanol-mediated overall
water splitting have extended significant attention due to more efficient alternatives to
traditional water splitting [7]. Combining methanol (CH3OH) into the KOH electrolyte
during the electrochemical water splitting process can lower the energy barrier for hy-
drogen energy production [8]. Excitingly, it can considerably decrease the overpotential,
thereby reducing the energy input for hydrogen energy production. Interestingly, this
approach opens new pathways for using methanol, which can be produced sustainably
from biomass or captured carbon dioxide, further enhancing the environmental bene-
fits [9]. Furthermore, methanol-mediated processes present a captivating alternative that
could improve efficiency and stability for sustainable energy generation. Various Pt-based
nanomaterials are currently used for hydrogen evolution reactions [10,11]. However, ruthe-
nium and iridium-based nanomaterials are utilized for oxygen evolution reactions [12,13].
Amusingly, their expensive nature and scarcity in the crust of the earth limit their possible
usage as catalysts for sustainable and commercial hydrogen generation. Therefore, it is
necessary to develop cutting-edge, low-cost catalysts operating at lower overpotentials
while maintaining high durability, a prerequisite for a hydrogen energy-based economy,
addressing energy demands and environmental sustainability for future generations.

Transition metal dichalcogenides (TMDs) illustrate a family of two-dimensional (2D)
layered structures through the well-known MX2 formula, in which X is a chalcogen (such
as S, Se, and Te) and M is a transition metal (such as Mo, W, and Ti) [14]. In addition, TMDs
reveal exclusive electronic, optical, and magnetic characteristics due to their typical 2D
nature. The 2D layers of the TMDs are attached by weak van der Waals forces [15]. MoS2

comprises hexagonally packed Mo atoms between two layers of S atoms [16]. Additionally,
TMDs have gained significant consideration for their vibrant applications in several fields,
such as electronics, optoelectronics, and catalysis, making them a crucial theme of research
in materials science and nanotechnology [17,18]. Therefore, monolayer MoS2 endows
a direct optical band gap of approximately 1.8 eV, making it suitable for optoelectronic
device fabrication [19]. Additionally, MoS2 exhibits excellent mechanical flexibility, high
chemical stability, and strong spin-orbit [20]. The MoS2’s fashionable characteristics offer
its research in various applications, such as transistors, sensors, and flexible electronic
devices, because of its high carrier mobility and scalability [21]. Also, MoS2 is demon-
strated as an exciting catalyst for hydrogen generation reactions and other electrochemical
processes [22]. Additionally, MoS2’s optical properties are harnessed in photodetectors
and light-emitting devices [23,24]. The MoS2 is synthesized through various physical
and chemical methods, each offering distinct advantages. Further, the high-quality MoS2

monolayers are produced using the mechanical exfoliation method by peeling off layers
from bulk crystals [25]. In addition, the MoS2 thin films are developed on many substrates
by chemical vapor deposition (CVD), which allows for large-area, scalable, and uniform
thin films for various commercial applications [26]. Moreover, the Mo and S precursor
solution react under controlled temperature and pressure, yielding tunable morphology
and properties of the MoS2 using the hydrothermal and solvothermal methods [27,28]. Fur-
ther, the MoS2 can be found in various morphologies depending on the synthesis method
and conditions, including nanosheets [29], nanorods [30], nanotubes [31], nanowires [32],
nanoflowers [33], and quantum dots [34]. Fascinatingly, two-dimensional MoS2 nanosheets
are the most common form, offering large surface areas and high aspect ratios. On the other
hand, three-dimensional MoS2 nanotubes and nanoflowers deliver unique morphological
topographies, which can enhance electrocatalytic activities. Interestingly, zero-dimensional
MoS2 quantum dots are generally suitable in optoelectronic applications due to their size-
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tunable optical and electronic properties [35]. Moreover, the MoS2 nanomaterial is used in
batteries, fuel cells, and supercapacitors because of its high capacity and stability [36–38].
Interestingly, MoS2 is also used in water purification and sensing in ecological applications
because of its high reactivity and large surface area [39,40]. Fascinatingly, the MoS2 enables
its use in drug delivery and cancer therapy due to its biocompatibility and photothermal
properties [41,42]. However, the 2D layered MoS2 emphasizes its potential applications in
advanced technologies due to its multifunctional nature. Therefore, tuning the structural
and morphological properties of the MoS2 by doping or constructing heterostructures has
been significantly studied, which offers enhanced performance in different applications.
Fascinatingly, Pd doping in the MoS2 can alter the electronic properties and create more
active sites, facilitating greater adsorption and dissociation of water electrolysis during
methanol-mediated overall water splitting, which makes it a highly effective catalyst for
sustainable hydrogen energy generation.

In this paper, we studied the methanol-mediated hydrogen evolution reaction (MM-
HER), methanol-mediated oxygen evolution reaction (MM-OER), and methanol-mediated
overall water splitting (MM-OWS) of the Pd-doped MoS2 (Pd-MoS2) catalyst, which is a
promising 2D nanomaterial for sustainable hydrogen generation through electrocatalytic
water splitting. Interestingly, the presence of methanol with the KOH electrolyte works as
a co-reactant, significantly boosting the electrocatalytic activities of the methanol-mediated
overall water splitting, facilitating the adsorption process and also supporting to alleviate
the transitional active sites on the surface of the Pd-MoS2 electrocatalyst, thereby enhancing
the rate of reaction kinetics. Fascinatingly, it is observed that the Pd-MoS2 catalyst illustrates
outstanding catalytic performances and excellent stability. The Pd-MoS2∥Pd-MoS2 cell
elucidates a lower potential of 1.581 V and tremendous durability throughout 18 h at
10 mA cm−2. Therefore, it is concluded that the Pd-MoS2 catalyst can be an excellent
nanomaterial for hydrogen energy generation for commercial applications.

2. Results and Discussion
Figure 1a elucidates the XRD patterns of the Pd-doped MoS2 and MoS2. It is ob-

served that the XRD spectra illustrate the lattice planes (002), (101), and (110) to MoS2

and Pd-doped MoS2. Therefore, it is concluded that the XRD patterns suggest the fruitful
preparation of the MoS2 and Pd-doped MoS2, which is well matched with the JCPDS card
No. 37-1492 [43]. Further, an XPS study was executed to examine the chemical composition
of the Pd-doped MoS2. Figure 1b–d elucidate the XPS patterns of the Pd-doped MoS2

nanostructure. Figure 1b depicts the XPS patterns of Mo 3d peaks, which illustrates the
various peaks such as Mo4+ 3d5/2 (228.72 eV), Mo4+ 3d3/2 (231.85 eV), and Mo6+ 3d3/2

(234.88 eV). Figure 1c portrays the XPS spectrum of the S 2p peaks, revealing S2− 2p5/2

at 161.45 eV and S2− 2p1/2 at 162.83 eV. In addition, the observed Pd 3d peaks are Pd0

3d5/2 (335.5 eV), Pd2+ 3d5/2 (337.7 eV), Pd0 3d3/2 (340.56 eV), and Pd2+ 3d3/2 (342.2 eV).
Similar reports on MoS2 have been discussed in the literature, which justifies our XPS
results [44–46]. Therefore, it is determined that the XPS patterns approve the successful
synthesis of the Pd-doped MoS2.

Figure 2a,b reveal the SEM of the MoS2 at 2 µm and 1 µm scales. It shows the layered
sphere-like morphology of the MoS2. Figure 2c,d display the SEM of the Pd-doped MoS2 at
different locations and magnifications. The SEM pictures in Figure 2c,d provide detailed
insights into the morphology of Pd-doped MoS2 nanolayers grown on Ni foam. Figure 2c
elucidates the SEM image at a 5 µm scale to explore the large view of the Pd-MoS2. Further,
Figure 2d depicts the SEM image at a 2 µm scale of the Pd-MoS2. It is observed that the
Pd-MoS2 deposited on the Ni-foam shows very thin layers. Interestingly, Pd doping may
significantly influence the crystallinity, uniformity, and fine-edge nanolayer of the Pd-MoS2.
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Moreover, various features such as growth conditions, synthesis temperature, time, doping
concentration, and annealing process also play vital roles in shaping the morphology of the
MoS2 [47,48]. Amazingly, it is apparent from SEM morphologies that the Pd-MoS2 offers a
high surface area and wrinkled nanolayers, which can be beneficial for methanol-mediated
hydrogen, oxygen evolution, and methanol-mediated overall water splitting. Likewise, the
shape of the Pd-MoS2 and MoS2 are also discussed using the TEM. Figure 3a–c divulge
the TEM morphologies of Pd-MoS2 at 50 nm, 10 nm, and 5 nm scale bars, respectively.
Figure 3d–f unveil the TEM pictures of Pd-MoS2 at 100 nm, 50 nm, and 10 nm scale
bars, respectively. Figure 3d discloses the TEM pictures at a 100 nm scale bar to discover
the morphology and layer shape of the Pd-MoS2. Figure 3e,f illustrate the even higher
magnification TEM images at 50 nm and 10 nm scales to check the layer bending and layers
overlapping on each other. Interestingly, it is also observed from TEM that the Pd-MoS2

nanolayers are stacked or slightly exfoliated, which is vital for applications depending on
surface interactions, such as methanol-mediated overall water splitting. Interestingly, these
TEM images at different scales collectively enhance the understanding of the structural
properties of the Pd-MoS2, indicating the successful synthesis of the Pd-MoS2 nanomaterial
and its potential applicability in methanol-mediated oxygen, hydrogen evolution, and
methanol-mediated overall water splitting.
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In addition, the high-resolution transmission electron microscope (HRTEM) pictures
and fast Fourier transform (FFT) pictures deliver a comprehensive indulgence of the
structural features of Pd-MoS2. Figure 4a–e unveil the HRTEM pictures, magnified HRTEM
images, and FFT patterns of the Pd-MoS2. Figure 4a portrays the HRTEM images of
Pd-MoS2, illustrating various crystallites with lattice fringes. Figure 4b,d describe the
enlarged portion of the HRTEM image to measure and discuss the lattice spacings of the
Pd-MoS2. It is seen from HRTEM images that the lattice spacing of Pd-MoS2 is 0.26 nm.
Furthermore, Figure 4c,e define the FFT pattern of Pd-MoS2 from the selected area, as
revealed in Figure 4b,d. FFT patterns illustrate the lattice planes (100) of the Pd-MoS2.
Interestingly, the accuracy and uniqueness of the lattice fringes and FFT patterns suggest
a high-quality synthesis of the Pd-MoS2. Remarkably, the HRTEM and FFT results of
the Pd-MoS2 show the successful synthesis of the hexagonal crystal phase and are well
coordinated with the JCPDS card no. 37-1492 [49]. In addition, we studied the elemental
analysis of Pd-MoS2 using elemental mapping. Figure 5 exhibits the HAADF result and
analogous color maps of the Pd-MoS2, which shows the elemental mappings corresponding
to Mo, S, and Pd elements, providing a spatial distribution of these elements of the Pd-MoS2.
Combining the HAADF image and the elemental mappings offers compelling evidence that
Pd-MoS2 was successfully synthesized via the solvothermal method. Figure 5a designates
the high-angle annular dark field (HAADF) outcome of Pd-MoS2. Figure 5b,c portray
the elementals of Mo and S of the Pd-MoS2 from the HAADF image (Figure 5a). The Pd
element mapping is vital for confirming the doping of Pd into the Pd-MoS2 structure, as
exposed in Figure 5d.
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The methanol-mediated oxygen evolution reaction (MM-OER) is a significant elec-
trochemical procedure for fuel cells. Figure 6 illustrates the MM-OER of the MoS2 and
Pd-MoS2 electrocatalysts at 5 mV s−1 in 1 M methanol + 1 M KOH. Figure 6a shows the
LSV results of the Pd-MoS2 and MoS2 electrocatalysts at 5 mV s−1 for the MM-OER. It is
seen that the Pd-MoS2 electrocatalyst unveils superior electrocatalytic performance for the
MM-OER compared to the pure MoS2 electrocatalyst. Furthermore, the current density
defines the maximum current achieved during the MM-OER for the MoS2 and Pd-MoS2 cat-
alysts. In addition, higher peak current densities designate higher electrocatalytic MM-OER
activities, signifying that the Pd-MoS2 electrocatalyst can facilitate a better MM-OER rate
than the pure MoS2 electrocatalyst. Further, the inset in Figure 6a illustrates the low-scale
results of LSV for Pd-MoS2 and MoS2 catalysts for MM-OER to elucidate the trends near
the 10 mA cm−2. Figure 6b displays the overpotentials of MoS2 and Pd-MoS2 catalysts
for MM-OER at 10 mA cm−2. The observed overpotentials of the Pd-MoS2 and MoS2 are
133 mV and 160 mV at 10 mA cm−2, respectively. Stimulatingly, palladium (Pd) in Pd-MoS2

is recognized for its brilliant electrocatalytic properties in MM-OER, which can enable the
adsorption and activation of methanol and other intermediates more effectively than the
MoS2 catalyst [50]. Figure 6c exhibits the Tafel curves of MoS2 and Pd-MoS2 catalysts for
MM-OER. The Pd-MoS2 and MoS2 electrocatalysts divulge the Tafel slopes of 112 mV dec−1

and 148 mV dec−1, respectively. Captivatingly, the Tafel slope delivers insight into the
rate-determining process and the efficiency of Pd-MoS2 and MoS2 catalysts in promoting
the kinetics of MM-OER. Interestingly, the Pd-MoS2 is a more efficient catalyst for MM-OER
than pure MoS2, supported by its lower Tafel slope, as revealed in Figure 6c. In addition,
the low Tafel slope of the Pd-MoS2 catalyst elucidates faster MM-OER reaction kinetics
and a more effective electrocatalytic process, attributing to the advantageous effects of
Pd doping. Further, Figure 6d displays the LSV plots of the Pd-MoS2 at 5 mV s−1, which
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depicts 157 mV, and 133 mV overpotential without and with methanol-mediated OER at
10 mA cm−2, respectively. Therefore, it is concluded that methanol played a decisive role in
the reduction in overpotentials during methanol-mediated OER. Figure 6e interprets the EIS
plots of the MoS2 and Pd-MoS2 at respective overpotentials of MM-OER, which depicts the
small series and charge-transfer resistance of the Pd-MoS2 compared with MoS2. Figure 6f
unveils the stability results of the Pd-MoS2 catalyst during MM-OER throughout 18 h at
10 mA cm−2. Further, it is perceived that the Pd-MoS2 catalyst performs consistently better
for 18 h, suggesting its resilience and competence for long-term use without degradation in
MM-OER application at 10 mA cm−2.
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Figure 6. Electrocatalytic methanol-mediated OER. (a) LSV results, (b) overpotential graphs, and
(c) Tafel graphs of the Pd-MoS2 and MoS2 electrocatalysts. (d) LSV curves of the Pd-MoS2 without
and with methanol. (e) EIS plots of the Pd-MoS2 and MoS2 electrocatalysts. (f) Durability assessment
at 10 mA cm−2 of the Pd-MoS2 catalyst over 18 h.

Figure 7 illustrates the methanol-mediated hydrogen evolution reaction (MM-HER)
of Pd-MoS2 and MoS2 catalysts. Figure 7a shows the LSV results of Pd-MoS2 and MoS2

electrocatalysts in 1 M methanol + 1 M KOH at 5 mV s−1. The MM-HER process illustrated
in Figure 7a demonstrates that the Pd-MoS2 catalyst offers superior performance compared
to pure MoS2. Further, it is also observed that nanomaterial modifications using Pd are
important for developing efficient and cost-effective Pd-MoS2 catalysts for MM-HER [51].
The LSV plots of MoS2 and Pd-MoS2 catalysts reveal a substantial understanding of the
electrocatalytic activity during MM-HER at 5 mV s−1. Figure 7b displays an overpotential
plot of the Pd-MoS2 and MoS2 electrocatalysts at −10 mA cm−2 for MM-HER. It is ob-
served that the Pd-MoS2 electrocatalyst divulges a lesser overpotential value of 224.6 mV
compared with the pure MoS2 catalyst of 251.8 mV at −10 mA cm−2. Further, the de-
cline in overpotential from 251.8 mV of the pure MoS2 catalyst to 224.6 mV of Pd-doped
MoS2 can attain the same reaction rate with less energy input because of a vast surface
area and excellent conductivity. The improvement in electrocatalytic performance in 1 M
methanol + 1 M KOH during MM-HER is due to Pd doping, which can be attributed to
several factors such as increased electronic conduction, better active site availability on the
Pd-MoS2 surface, and synergistic effects between Pd and MoS2, developing a cost-effective
and efficient MM-HER catalyst for clean and green hydrogen production [52]. Figure 7c
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exhibits the Tafel curves of Pd-MoS2 and MoS2 catalysts for MM-HER. Interestingly, the
Pd-MoS2 catalyst exhibits a low Tafel curve of 113 mV dec−1 comparable to the MoS2

catalyst of 115 mV dec−1. It is detected that the Pd-doped MoS2 catalyst displays a slightly
lower Tafel slope compared to the pure MoS2 catalyst, demonstrating upgraded charge
transfer kinetics and overall catalytic effectiveness in the methanol-mediated hydrogen
evolution reaction for hydrogen generation. On the other hand, the importance of Tafel
slope enhancement lies in faster reaction kinetics, higher energy efficiency, and greater
commercial feasibility, which makes the Pd-MoS2 catalyst an auspicious candidate for
MM-HER application [46]. Moreover, a low Tafel slope of the Pd-MoS2 catalyst corre-
sponds to the lower overpotential essential for achieving a −10 mA cm−2, as exposed in
Figure 7c, representing less energy consumption for hydrogen generation, which offers
methanol-mediated hydrogen generation process more energy efficient. Further, Figure 7d
displays the LSV plots of the Pd-MoS2 at 5 mV s−1 without and with methanol-mediated
HER. Interestingly, it is observed that the overpotentials are 269.6 mV, and 224.6 mV at
−10 mA cm−2 during without and with methanol-mediated HER, respectively. Figure 7e
explores the EIS spectra of the MoS2 and Pd-MoS2 at respective overpotentials of MM-HER,
which portrays the low series and charge-transfer resistance of the Pd-MoS2 compared
with MoS2. Figure 7f unveils a chronopotentiometry test to uncover the stability test of the
Pd-MoS2 during MM-HER at −10 mA cm−2. It is observed that the stability of the Pd-MoS2

catalyst slightly increased from 195.9 mV to 228.5 mV −10 mA cm−2. Fascinatingly, the
Pd-MoS2 electrocatalyst exhibits unique nanolayered morphology, which delivers a high
transport of charge carriers and plenty of active sites on the catalyst surface, facilitating
effective mass transport and enhanced exposure of active sites with the 1 M KOH and 1 M
methanol electrolyte ions, leading to excellent stability [53].
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Figure 8a–f illustrate the methanol-mediated overall water splitting (MM-OWS) of Pd-
MoS2∥Pd-MoS2 and MoS2∥MoS2 cells. Figure 8a shows the LSV results of the MoS2∥MoS2

cell and Pd-MoS2∥Pd-MoS2 cell for MM-OWS in a 1 M KOH + 1 M methanol electrolyte at
5 mV s−1. The catalytic performances of Pd-MoS2∥Pd-MoS2 and MoS2∥MoS2 are assessed
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by investigating the cell potential at 10 mA cm−2 in the LSV plot. Further, it is seen from
LSV plots that the Pd doping ominously enriches the electrocatalytic activities of the Pd-
MoS2∥Pd-MoS2 cell compared with the MoS2∥MoS2 cell in methanol-mediated overall water
splitting (MM-OWS). Figure 8b displays the cell potentials of the Pd-MoS2∥Pd-MoS2 cell
and MoS2∥MoS2 cell for MM-OWS at 10 mA cm−2. Fascinatingly, the lower potential of the
Pd-MoS2∥Pd-MoS2 cell (1.581 V) compared to the MoS2∥MoS2 cell (1.648 V) may be due to
the alterations of electronic properties, synergistic, and adsorption effects introduced by Pd
doping, which makes the Pd-MoS2∥Pd-MoS2 cell a more efficient for methanol-mediated
overall water splitting. Further, Figure 8c illustrates the LSV curves of the Pd-MoS2∥Pd-MoS2

cell at 5 mV s−1 without and with methanol-mediated OWS. Interestingly, it is observed
that the potentials of the Pd-MoS2∥Pd-MoS2 cell are 1.656 V and 1.581 V without and with
methanol-mediated HER at 10 mA cm−2, respectively. Figure 8d,e show the CV plots of
the non-Faradic region of the MoS2 and Pd-doped MoS2 catalysts to evaluate a double-layer
capacitance (Cdl) in 1 M KOH + 1 M methanol. Figure 8f,g elucidate the Cdl of MoS2 and
Pd-doped MoS2 catalysts, which were evaluated by the CV plots of the non-Faradic region
(Figure 8d,e). It is detected that the Pd-MoS2 divulges a high Cdl of 55.1 mF compared to
the MoS2 of 45.7 mF. Figure 8h reveals the stability test of the Pd-MoS2∥Pd-MoS2 cell for
MM-OWS throughout 18 h at 10 mA cm−2. In addition, it offers a cherished understanding
of the stability of the Pd-MoS2∥Pd-MoS2 cell in MM-OWS, signifying the capability for
long-term use over 18 h. The stability at 10 mA cm−2 supports the Pd-MoS2∥Pd-MoS2

cell’s appropriateness for enduring use in electrochemical methanol-mediated overall water
splitting application. Moreover, the strength of the Pd-MoS2∥Pd-MoS2 cell at 10 mA cm−2

for an extended period is decisive for hands-on applications of MM-OWS, as it suggests the
cell can reliably operate under typical conditions without significant degradation. This has
implications for the Pd-MoS2∥Pd-MoS2 cell’s longevity, cost-effectiveness, and commercial
viability. Moreover, the excellent methanol-mediated overall water splitting performances
of the Pd-MoS2 catalyst are due to numerous factors, such as a vast surface area due to a
layered structure for the adsorption and reaction of methanol and protons. Furthermore, Pd
doping improves the catalytic activity by facilitating the dehydrogenation and adsorption of
methanol and improving the hydrogen adsorption sites and the synergistic effects between
the MoS2 and Pd, increasing the electrical conductivity, which is crucial for efficient electron
transfer during both reactions in MM-OER and MM-HER. Figure 8i portrays the schematic
illustration of the operation of the Pd-MoS2∥Pd-MoS2 cell for methanol-mediated overall
water splitting. In the Pd-MoS2∥Pd-MoS2 cell configuration, the anodic side facilitates the
MM-OER reaction, generating electrons and protons; however, the cathodic electrode offers
the reaction mechanism for MM-HER.

Furthermore, Table 1 shows the assessment of the electrocatalytic activities of MoS2-
based catalysts in OER, HER, and OWS. The Co@NC@MoS2 catalyst displays a 297 mV over-
potential and elucidates excellent constancy throughout 10 h in 1.0 M KOH at 10 mA cm−2

for oxygen evolution reaction (OER) in 1 M KOH or 0.5 M H2SO4 [54]. Moreover, the
MoS2@Co catalyst reveals a 370 mV overpotential, exposing brilliant reliability over 20 h
at 10 mA cm−2 for OER [55]. Further, the CoMnCr LDH@MoS2/NF catalyst divulges a
229 mV overpotential with outstanding stability for 24 h at 10 mA cm−2 for OER [56].
Also, the MoS2@CoO catalyst discloses a 325 mV overpotential and good durability for
1000 cycles at 10 mA cm−2 for OER [57]. In addition, the Co-Sv-MoS2 catalyst unveils
190 mV overpotential and robustness for 12 h at 10 mA cm−2 for OER [58]. Interestingly, the
RuO2 catalyst uncovers 199 mV overpotential and strength only for 5.5 h at 10 mA cm−2

for OER [59]. Remarkably, the LSC/MoS2 catalyst exposes a 284 mV overpotential and
long life over 1 h at −10 mA cm−2 for the hydrogen evolution reaction (HER) [60]. Curi-
ously, the 2H-MoS2 catalyst illustrates a 369 mV overpotential and robustness over 24 h at
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−10 mA cm−2 for HER [61]. In addition, the Ni/MoS2-1000 catalyst elucidates a 229 mV
overpotential and toughness over 2000 cycles at −10 mA cm−2 for HER [62]. Furthermore,
the MoS2 catalyst exposes nearly a 240 mV overpotential and robustness for ~47 h at
−10 mA cm−2 for HER [63]. Likewise, the SL-MoS2/CP catalyst reveals the overpotential
of 267 mV at −10 mA cm−2 and long-term stability for 12 h for HER [64]. Remarkably,
the Pt/C (20 wt.%) catalyst reveals a 43 mV overpotential and long endurance for 5000 cy-
cles at −10 mA cm−2 for HER [65]. Further, Fe-(NiS2/MoS2)/CNT∥Fe-(NiS2/MoS2)/CNT
reveals a 1.51 V potential and durability over 8 h at 10 mA cm−2 during overall water split-
ting (OWS) [66]. Additionally, CoFe2O4@MoS2/CC∥CoFe2O4@MoS2/CC displays 1.54 V
potential and cell life for 12 h at 20 mA cm−2 during overall water splitting (OWS) [67].
Interestingly, NiCo-MoS2-CW∥NiCo-MoS2-CW illustrates a 1.69 V potential at 50 mA cm−2

during OWS [68]. Fascinatingly, Co9S8/MnS/MoS2/NF-2∥Co9S8/MnS/MoS2/NF-2 eluci-
dates a 1.55 V potential and feasible operation for 26 h at 2.0 V during OWS [69]. Further,
1T-MoS2/Ni3S2/LDH∥1T-MoS2/Ni3S2/LDH elucidates a potential of 1.55 V and longstand-
ing operation for 20 h during OWS [70]. Interestingly, the present work (Pd-MoS2∥Pd-MoS2

catalyst) illustrates 133 mV and a 224.6 mV overpotential and stability over 18 h and 16 h
during a methanol-mediated OER and methanol-mediated HER. Additionally, the present
work (Pd-MoS2∥Pd-MoS2 cell) reveals a 1.581 V potential and working strength of 18 h dur-
ing methanol-mediated OWS. Therefore, it is concluded that the Pd-doped MoS2 catalyst
reveals excellent electrocatalytic properties in MM-OER, MM-HER, and MM-OWS.
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Figure 8. Electrocatalytic activities of methanol-mediated OWS. (a) LSV curves, (b) cell potentials of the
MoS2∥MoS2 and Pd-MoS2∥Pd-MoS2, and (c) LSV curves of the Pd-MoS2∥Pd-MoS2 without and with
methanol. CV curves of the (d) MoS2 and (e) Pd-MoS2. Cdl graphs of the (f) MoS2 and (g) Pd-doped
MoS2 catalysts. (h) Steadiness test of the Pd-MoS2∥Pd-MoS2 over 18 h at 10 mA cm−2. (i) Graphic
drawing of the Pd-MoS2∥Pd-MoS2 cell configuration in methanol-mediated overall water splitting.
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Table 1. Assessment of the electrocatalytic properties of MoS2-based catalysts in OER, HER, and OWS.

S. No. Catalysts Electrolyte Overpotential
(10 mA cm−2)

Stability
(10 mA cm−2) Ref.

Oxygen evolution reaction (OER)/Methanol-mediated OER (MM-OER)

1 Co@NC@MoS2 1.0 M KOH 297 mV 10 h [54]

2 MoS2@Co 1.0 M KOH 370 mV 20 h [55]

3 CoMnCr LDH@MoS2/NF 1.0 M KOH 229 mV 24 h [56]

4 MoS2@CoO-coated carbon cloth 1.0 M KOH 325 mV 1000 cycles [57]

5 Co-Sv-MoS2 1.0 M KOH 190 mV 12 h [58]

6 RuO2 0.5 M H2SO4 199 mV ~5.5 h [59]

7 Pd-MoS2
(MM-OER)

1.0 M KOH +
1.0 M Methanol 133 mV 18 h This

work

Hydrogen evolution reaction (HER)/Methanol-mediated HER (MM-HER)

8 LSC/MoS2 1.0 M KOH 284 mV 1 h [60]

9 2H-MoS2 0.5 M H2SO4 369 mV 24 h [61]

10 Ni/MoS2-1000 0.5 M H2SO4 229 mV 2000 cycles [62]

11 MoS2 0.5 M H2SO4 ~240 mV ~47 h [63]

12 SL-MoS2/CP 0.5 M H2SO4 267 mV 12 h [64]

13 Pt/C (20 wt.%) 1.0 M KOH 43 mV 5000 cycles [65]

14 Pd-MoS2
(MM-HER)

1.0 M KOH +
1.0 M Methanol 224.6 mV 16 h This

work

Overall water splitting (OWS)/Methanol-mediated OWS (MM-OWS)

15 Fe-(NiS2/MoS2)/CNT∥Fe-
(NiS2/MoS2)/CNT 1.0 M KOH 1.51 V 8 h [66]

16 CoFe2O4@MoS2/CC∥CoFe2O4@MoS2/CC 1.0 M KOH 1.54 V 12 h @20 mA
cm−2 [67]

17 NiCo-MoS2-CW∥NiCo-MoS2-CW 1.0 M KOH 1.69 V
@50 mA cm−2 -- [68]

18 Co9S8/MnS/MoS2/NF-
2∥Co9S8/MnS/MoS2/NF-2 1.0 M KOH 1.55 mV 26 h @2.0 V [69]

19 1T-MoS2/Ni3S2/LDH∥1T-
MoS2/Ni3S2/LDH 1.0 M KOH 1.55 mV 20 h [70]

20 Pd-MoS2∥Pd-MoS2
(MM-OWS)

1.0 M KOH +
1.0 M Methanol

1.581 V cell
potential 18 h This

work

3. Synthesis Method
All the chemicals used were purchased from Sigma Aldrich, Seoul, Korea. This study

synthesized Pd-doped MoS2 and MoS2 using a solvothermal procedure. Initially, 30 mL of
ethanol and 30 mL of deionized water were dissolved in a 100 mL glass beaker to prepare
the solvent. Subsequently, 16 mg of C2H5NS and 4 mmol of Na2MoO2·2H2O were added
to the solvent and blended using a magnetic stirrer. A Pd solution was obtained by melting
2 mg of PdCl2 in 20 mL of the solvent mixture (10 mL deionized water and 10 mL ethanol)
under sonication and magnetic stirring for several hours until it dissolved. While stirring
the initial mixture, 1 mL of Pd solution was slowly added to the molybdenum and sulfur
precursor solution. Further, the whole solution was then moved into a 100 mL autoclave.
The 2 cm × 3 cm slice of cleaned Ni-foam substrate was placed into the autoclave containing
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the above solution. The Teflon autoclave was closed and preserved in an oven for 18 h at
180 ◦C to facilitate the synthesis. The Ni-foam, now deposited with Pd-doped MoS2, was
cleaned carefully with ethanol and water to exclude undesired residues. Ultimately, the
cleaned Ni-foam was dehydrated in a vacuum oven at 90 ◦C for 15 h. Likewise, MoS2 was
prepared through the above process without a Pd precursor.

The Pd-MoS2 shape was precisely studied by the scanning electron microscope (SEM)
[S-4800 HITACHI, Ltd., Tokyo, Japan]. Furthermore, the structure, morphology, and Pd, S,
and Mo elements of the Pd-MoS2 were analyzed using TEM, HRTEM, and color mapping
by JEOL [JEM-2100F, JEOL Ltd., Tokyo, Japan]. The crystal nanostructures of the Pd-doped
MoS2 and MoS2 were analyzed by X-ray diffraction (XRD) with a PANalytical apparatus.
Additionally, X-ray photoelectron spectroscopy (XPS) was employed to inspect the chem-
ical properties of the Pd-doped MoS2 using a Thermo Scientific system (Winsford, UK)
furnished with the source of an Al K-alpha X-ray (400 µm). In addition, the methanol-
mediated oxygen evolution reaction (MM-OER), methanol-mediated hydrogen evolution
reaction (MM-HER), and methanol-mediated overall water splitting (MM-OWS) of the
Pd-MoS2 and MoS2 electrocatalysts were systematically inspected via the electrochemi-
cal VersaSTAT3 (Princeton Applied Research) workstation. The MM-OER and MM-HER
performances of the Pd-MoS2 and MoS2 catalysts were studied in a three-electrode con-
figuration in a 1.0 M methanol + 1.0 M KOH. The MoS2 and Pd-MoS2 catalysts, graphite
sheet, and Ag/AgCl were employed as working, counter, and reference electrodes, re-
spectively. Further, the MM-OWS was inspected in the two-electrode configuration in
1.0 M KOH + 1.0 M methanol, in which MoS2 or Pd-MoS2 were utilized in both cathode
and anode electrodes. The linear sweep voltammetry (LSV) of the Pd-MoS2 and MoS2

catalysts were examined at 5 mV s−1. In addition, the Tafel graphs of the Pd-MoS2 and
MoS2 catalysts were evaluated via LSV results, by applying η = a + b log j, where b is the
Tafel slope, j is the current density, a is the transfer coefficient, and η is the overpotential.
The observed potential vs. Ag/AgCl was changed in the reversible hydrogen electrode
(RHE) using ERHE = E

◦
Ag/AgCl + EAg/AgCl + 0.059 × pH.

4. Conclusions
In conclusion, this paper explored the potential of palladium (Pd) doping in MoS2

for enhancing catalytic performances in methanol-mediated overall water splitting. The
Pd-MoS2 catalyst highlights several significant advancements and insights, including
enhanced electrocatalytic performances and strength. The Pd doping in MoS2 shows small
Tafel slopes and low overpotential in MM-OER and MM-HER. Further, the Pd-MoS2∥Pd-
MoS2 cell depicts low cell potential and brilliant robustness over 18 h at 10 mA cm−2.
Consequently, it is anticipated that this approach offers a promising route toward practical
and sustainable hydrogen generation because of the unique properties of the Pd-MoS2

electrocatalyst and the beneficial effects of methanol in KOH electrolytes.
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