Noble-Metal Chalcogenide Nanotubes
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
System | Zigzag (n,0) | Armchair (n,n) |
---|---|---|
PtS2 | 36.60 | 35.71 |
PtSe2 | 42.47 | 41.22 |
PdS2 | 29.71 | 28.46 |
PdSe2 | 32.50 | 31.38 |
MoS2 [46] | 57.50 | 50.90 |
WS2 [46] | 58.14 | 59.68 |
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Pauling, L. The structure of the chlorites. Proc. Natl. Acad. Sci. USA 1930, 16, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and Cylindrical Structures of Tungsten Disulfide. Nature 1992, 360, 444. [Google Scholar] [CrossRef]
- Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nested fullerene-like structures. Nature 1993, 365, 113–114. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.W.; Bando, Y.; Golberg, D.; Li, M.S. Growth of Single-Crystal Indium Nitride Nanotubes and Nanowires by a Controlled-Carbonitridation Reaction Route. Adv. Mater. 2004, 16, 1833–1838. [Google Scholar] [CrossRef]
- Spahr, M.; Bitterli, P.; Nesper, R.; Mueller, M.; Krumeich, F.; Nissen, H.U. Redoxaktive Nanoröhren aus Vanadiumoxid. Angew. Chem. 1998, 110, 1339–1342. [Google Scholar] [CrossRef]
- Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Titania Nanotubes Prepared by Chemical Processing. Adv. Mater. 1999, 11, 1307–1311. [Google Scholar] [CrossRef]
- Yada, M.; Mihara, M.; Mouri, S.; Kuroki, M.; Kijima, T. Rare Earth (Er, Tm, Yb, Lu) Oxide Nanotubes Templated by Dodecylsulfate Assemblies. Adv. Mater. 2002, 14, 309–313. [Google Scholar] [CrossRef]
- Radovsky, G.; Popovitz-Biro, R.; Stroppa, D.G.; Houben, L.; Tenne, R. Nanotubes from Chalcogenide Misfit Compounds: Sn–S and Nb–Pb–S. Acc. Chem. Res. 2014, 47, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Q.; Sekine, T.; Brigatti, K.S.; Firth, S.; Tenne, R.; Rosentsveig, R.; Kroto, H.W.; Walton, D.R.M. Shock-Wave Resistance of WS2 Nanotubes. J. Am. Chem. Soc. 2003, 125, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Kaplan-Ashiri, I.; Cohen, S.R.; Gartsman, K.; Rosentsveig, R.; Ivanovskaya, V.; Heine, T.; Seifert, G.; Wagner, H.D.; Tenne, R. Mechanical properties of individual WS2 nanotubes. Electron. Prop. Synth. Nanostruct. 2004, 723, 306–312. [Google Scholar]
- Kaplan-Ashiri, I.; Cohen, S.R.; Gartsman, K.; Rosentsveig, R.; Seifert, G.; Tenne, R. Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 2004, 19, 454–459. [Google Scholar] [CrossRef]
- Kaplan-Ashiri, I.; Cohen, S.R.; Gartsman, K.; Rosentsveig, R.; Ivanovskaya, V.; Heine, T.; Seifert, G.; Wagner, H.D.; Tenne, R. Direct tensile tests of individual WS2 nanotubes. Mater. Sci. Forum 2005, 475–479, 4097–4102. [Google Scholar]
- Kaplan-Ashiri, I.; Cohen, S.R.; Gartsman, K.; Ivanovskaya, V.V.; Heine, T.; Seifert, G.; Wiesel, I.; Wagner, H.D.; Tenne, R. On the Mechanical Behavior of WS2 Nanotubes under Axial Tension and Compression. Proc. Natl. Acad. Sci. USA 2006, 103, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Kaplan-Ashiri, I.; Tenne, R. Mechanical Properties of WS2 Nanotubes. J. Clust. Sci. 2007, 18, 549–563. [Google Scholar] [CrossRef]
- Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S.R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791–793. [Google Scholar]
- Rothschild, A.; Cohen, S.R.; Tenne, R. WS2 nanotubes as tips in scanning probe microscopy. Appl. Phys. Lett. 1999, 75, 4025. [Google Scholar] [CrossRef]
- Komarneni, M.R.; Yu, Z.; Burghaus, U.; Tsverin, Y.; Zak, A.; Feldman, Y.; Tenne, R. Characterization of Ni-Coated WS2 Nanotubes for Hydrodesulfurization Catalysis. Isr. J. Chem. 2012, 52, 1053–1062. [Google Scholar] [CrossRef]
- Zhang, W.; Ge, S.; Wang, Y.; Rafailovich, M.H.; Dhez, O.; Winesett, D.A.; Ade, H.; Shafi, K.V.; Ulman, A.; Popovitz-Biro, R. Use of functionalized WS2 nanotubes to produce new polystyrene/polymethylmethacrylate nanocomposites. Polymer 2003, 44, 2109–2115. [Google Scholar] [CrossRef]
- Unalan, H.E.; Yang, Y.; Zhang, Y.; Hiralal, P.; Kuo, D.; Dalal, S.; Butler, T.; Cha, S.N.; Jang, J.E.; Chremmou, K.; et al. ZnO Nanowire and WS2 Nanotube Electronics. IEEE Trans. Electron Devices 2008, 55, 2988–3000. [Google Scholar] [CrossRef]
- Wang, G.X.; Bewlay, S.; Yao, J.; Liu, H.K.; Dou, S.X. Tungsten Disulfide Nanotubes for Lithium Storage. Electrochem. Solid-State Lett. 2004, 7, A321–A323. [Google Scholar] [CrossRef]
- Hua, M.; Zhanliang, T.; Feng, G.; Jun, C.; Huatang, Y. Synthesis, characterization and hydrogen storage capacity of MS2 (M = Mo, Ti) nanotubes. Front. Chem. China 2006, 1, 260–263. [Google Scholar]
- Chen, J.; Li, S.L.; Tao, Z.L.; Gao, F. Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 2003, 980–981. [Google Scholar] [CrossRef]
- Remskar, M.; Mrzel, A.; Jesih, A.; Leperevy, F. Metal-Alloyed NbS2 Nanotubes Synthesized by the Self-Assembly of Nanoparticles. Adv. Mater. 2002, 14, 680–684. [Google Scholar] [CrossRef]
- Coleman, K.S.; Sloan, J.; Hanson, N.A.; Brown, G.; Clancy, G.P.; Terrones, M.; Terrones, H.; Green, M.L.H. The Formation of ReS2 Inorganic Fullerene-like Structures Containing Re4 Parallelogram Units and Metal–Metal Bonds. J. Am. Chem. Soc. 2002, 124, 11580–11581. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tao, Z.L.; Li, S.L.; Fan, X.B.; Chou, S.L. Synthesis of TiSe2 Nanotubes/Nanowires. Adv. Mater. 2003, 15, 1379–1382. [Google Scholar] [CrossRef]
- Li, P.; Stender, C.L.; Ringe, E.; Marks, L.D.; Odom, T.W. Synthesis of TaS2 Nanotubes from Ta2O5 Nanotube Templates. Small 2010, 6, 1096–1099. [Google Scholar] [CrossRef] [PubMed]
- Miro, P.; Audiffred, M.; Heine, T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43, 6537–6554. [Google Scholar] [CrossRef] [PubMed]
- Nicolosi, V.; Chhowalla, M.; Kanatzidis, M.G.; Strano, M.S.; Coleman, J.N. Liquid Exfoliation of Layered Materials. Science 2013, 340. [Google Scholar] [CrossRef]
- Remskar, M.; Skraba, Z.; Regula, M.; Ballif, C.; Sanjines, R.; Levy, F. New crystal structures of WS2: Microtubes, ribbons, and ropes. Adv. Mater. 1998, 10, 246–249. [Google Scholar] [CrossRef]
- Catherine, M.; Zelenski, P.K.D. Template Synthesis of Near-Monodisperse Microscale Nanofibers and Nanotubules of MoS2. J. Am. Chem. Soc. 1998, 120, 734–742. [Google Scholar]
- Zhu, Y.Q.; Hsu, W.K.; Grobert, N.; Chang, B.H.; Terrones, M.; Terrones, H.; Kroto, H.W.; Walton, D.R.M. Production of WS2 Nanotubes. Chem. Mater 2000, 12, 1190–1194. [Google Scholar] [CrossRef]
- Feldman, Y.; Wasserman, E.; Srolovitz, D.J.; Tenne, R. High-Rate, Gas-Phase Growth of MoS2 Nested Inorganic Fullerenes and Nanotubes. Science 1995, 267, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Gronvold, F.; Rost, E. On the sulfides, selenides and tellurides of palladium. Acta Chem. Scand. 1956, 10, 1620–1634. [Google Scholar] [CrossRef]
- Kjekshus, A.; Gronvold, F. High temperature X-ray study of the thermal expansionn of PtS2, PtSe2, PtTe2 and PdTe2. Acta Chem. Scand. 1959, 13, 1767–1774. [Google Scholar] [CrossRef]
- Gronvold, F.; Haraldsen, H.; Kjekshus, A. On the sulfides, selenides and tellurides of platinium. Acta Chem. Scand. 1960, 14, 1879–1893. [Google Scholar] [CrossRef]
- Wilson, J.A.; Yoffe, A.D. The Transition Metal Dichalcogenides Discussion and Interpretation of Observed Optical, Electrical and Structural Properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Miro, P.; Ghorbani-Asl, M.; Heine, T. Two Dimensional Materials Beyond MoS2: Noble-Transition-Metal Dichalcogenides. Angew. Chem. Int. Ed. 2014, 53, 3015–3018. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Dovesi, R.; Saunders, V.R.; Roetti, R.; Orlando, R.; Zicovich-Wilson, C.M.; Pascale, F.; Civalleri, B.; Doll, K.; Harrison, N.M.; Bush, I.J.; et al. CRYSTAL09 User’s Manual; University of Torino: Torino, Italy, 2009. [Google Scholar]
- Peintinger, M.F.; Oliveira, D.V.; Bredow, T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 2013, 34, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Doll, K. Adsorption on the Pt surface a comparison of a gradient corrected functional and a hybrid functional. Surf. Sci. 2004, 573, 464–473. [Google Scholar] [CrossRef]
- Stoll, H.; Metz, B.; Dolg, M. Relativistic energy-consistent pseudopotentials–recent developments. J. Comput. Chem. 2002, 23, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points For Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Zibouche, N.; Kuc, A.; Heine, T. From layers to nanotubes: Transition metal disulfides TMS2. Eur. Phys. J. B 2012, 85, 49. [Google Scholar] [CrossRef]
- Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zibouche, N.; Kuc, A.; Miró, P.; Heine, T. Noble-Metal Chalcogenide Nanotubes. Inorganics 2014, 2, 556-564. https://doi.org/10.3390/inorganics2040556
Zibouche N, Kuc A, Miró P, Heine T. Noble-Metal Chalcogenide Nanotubes. Inorganics. 2014; 2(4):556-564. https://doi.org/10.3390/inorganics2040556
Chicago/Turabian StyleZibouche, Nourdine, Agnieszka Kuc, Pere Miró, and Thomas Heine. 2014. "Noble-Metal Chalcogenide Nanotubes" Inorganics 2, no. 4: 556-564. https://doi.org/10.3390/inorganics2040556
APA StyleZibouche, N., Kuc, A., Miró, P., & Heine, T. (2014). Noble-Metal Chalcogenide Nanotubes. Inorganics, 2(4), 556-564. https://doi.org/10.3390/inorganics2040556