Supplementary Materials: Photophysics of BODIPY Dyes as Readily Designable Photosensitisers in Light-Driven Proton Reduction

Laura Dura, Maria Wächtler, Stephan Kupfer, Joachim Kübel, Johannes Ahrens, Sebastian Höfler, Martin Bröring, Benjamin Dietzek, Torsten Beweries

S2	Volumetric curves (as measured) and Hg experiments
S3	Stationary emission spectra
S5	Stern Volmer experiments
S8	Transient absorption spectra
S11	Quantum chemical calculations
S21	Analysis of transient absorption data
S23	ESI-MS data

Volumetric Curves

Figure S1. Volumetric curves (original data) as measured using multicomponent catalyst systems sensitized by **4–8** containing 10 mL of a 1 mM solution of the PS in THF, 1 mL of a 1 mM solution of [PdCl₂(PPh₃)]₂ in THF, 3 mL water, and 8 mL TEA.

Figure S2. Comparison of volumetric curves (original data) as measured using multicomponent catalyst systems containing 10 mL of a 1 mM solution of in THF, 1 mL of a 1 mM solution of [PdCl₂(PPh₃)]₂ in THF, 3 mL water, 8 mL TEA, and 250 µL Hg.

Stationary Emission Spectra

Figure S3. Normalised emission spectra of pure BODIPY dyes 1–3 measured in THF, $c = 5 \times 10^{-5}$ M, $\lambda_{exc} = 350$ nm.

Figure S4. Normalised emission spectra of pure BODIPY dyes **4–8** measured in THF, $c = 5 \times 10^{-5}$ M, $\lambda_{exc} = 350$ nm.

Figure S5. Emission spectra of pure BODIPY dyes **4–6** and a **6**-sensitised multicomponent catalyst system after 20 h of irradiation measured in THF, $c = 5 \times 10^{-5}$ M, $\lambda_{exc} = 350$ nm.

Stern-Volmer Experiments

Figure S6. Example for stationary Stern-Volmer experiments with *meso*-methyl substituted BODIPY dyes. Fluorescence quenching with triethylamine (TEA) was observed on a 5×10⁻⁵ M solution of **3** in THF.

Figure S7. Example for stationary Stern-Volmer experiments with *meso*-mesityl substituted BODIPY dyes. Fluorescence quenching with triethylamine (TEA) was observed on a 5×10^{-5} M solution of **8** in THF.

Figure S8. Stern-Volmer plots of fluorescence quenching experiments on BODIPY dyes with TEA.

Stern–Volmer Kinetics

Figure S9. Stern–Volmer Plots from emission lifetime quenching with TEA.

4			5			7		
c(TEA)	τ_{em} / ns^*	$\tau_0/\tau_{em}-1$	c(TEA)	τ_{em} / ns^*	$\tau_0/\tau_{em}-1$	c(TEA)	$ au_{em} / ns^*$	$\tau_0/\tau_{em}-1$
0	4.62	0	0	0.32	0	0	5.02	0
0.01198	4.11	0.12	0.01793	0.32	0	0.03571	4.16	0.21
0.02393	3.65	0.26	0.03577	0.31	0.03	0.05344	3.95	0.27
0.03583	3.25	0.42	0.05352	0.28	0.14	0.07108	3.71	0.35
			0.17536	0.25	0.28			
			0.34239	0.24	0.33			

Table S1. Lifetimes and parameters for the Stern–Volmer Plots.

*+/- 1%

ns Time-Resolved Transient Absorption Spectra and Kinetics

Figure S10. Transient absorption spectra at chosen delay times (black, red, green) upon excitation with the pump pulse centred at 535 nm and stationary absorption spectrum (grey) of **6** in THF.

Figure S11. Transient absorption spectra at chosen delay times (black, red, green) upon excitation with the pump pulse centred at 530 nm and stationary absorption spectrum (grey) of **7** in THF.

Figure S12. Transient absorption spectra at chosen delay times (black, red, green) upon excitation with the pump pulse centred at 560 nm and stationary absorption spectrum (grey) of **8** in THF.

Figure S13. Transient absorption spectra at chosen delay times (black, red, green) upon excitation with the pump pulse centred at 500 nm and stationary absorption spectrum (grey) of **4** in THF.

Figure S14. ns- transient absorption decay kinetics of the long-lived triplet state of **5** at chosen probe wavelengths.

Figure S15. ns- transient absorption decay kinetics of the long-lived triplet state of 6 at chosen probe wavelengths.

Quantum Chemical Evaluation

Figure S16. MOs of the AS (12,11), comprising the entire $\pi\pi^*$ system of **2**, used in the MS-CASPT2//CASSCF reference calculations. Grey line indicates to the occupation of the MOs within the Hartree-Fock wavefunction.

- 9										
	MS-CASP7	۲ 2			TD-PBE0					
	Transition	weight	E^e /	λ/	f	Transition	weight /	E^e /	λ/	f
			eV	nm			%	eV	nm	
S ₀	HF	83	-	-	-	-	-	-	-	-
S_1	$69 \rightarrow 70$	57	2.72	456	0.672	$69 \rightarrow 70$	95 (99)	3.06	405	0.523
	$68 \rightarrow 70$	15						(2.96)	(419)	(0.641)
S ₂	$68 \rightarrow 70$	52	3.76	330	0.071	$68 \rightarrow 70$	96 (98)	3.65	340	0.062
	$69 \rightarrow 70$	13						(3.67)	(338)	(0.058)
	DE	12								
S ₃	$67 \rightarrow 70$	58	3.93	315	0.042	$67 \rightarrow 70$	99 (99)	3.88	320	0.030
	DE	15						(3.92)	(316)	(0.046)
S ₄	DE	37	4.46	288	0.042	$66 \rightarrow 70$	91 (93)	4.94	251	0.138
	$66 \rightarrow 70$	26						(4.90)	(253)	(0.194)
	$69 \rightarrow 74$	8								
T_1	$69 \rightarrow 70$	82	1.99	623	-	$69 \rightarrow 70$	98 (98)	1.55	800	_
								(1.59)	(782)	
T ₂	$68 \rightarrow 70$	72	3.23	384	0.004	$68 \rightarrow 70$	95 (95)	2.86	434	-
								(2.91)	(426)	
T 3	$67 \rightarrow 70$	67	3.40	365	0.005	$67 \rightarrow 70$	86 (83)	2.98	416	-
						$66 \rightarrow 70$	8 (11)	(3.04)	(408)	
T 4	$66 \rightarrow 70$	69	3.92	316	0.176	$66 \rightarrow 70$	88 (85)	3.44	361	-
	$67 \rightarrow 70$	5				$67 \rightarrow 70$	8 (12)	(3.45)	(359)	

Table S2. Leading transitions, excitation energies (in eV), wavelengths (in nm), and oscillator strengths obtained by MS-CASPT2 (gas phase) and by TDDFT using the PBE0 functional for the low-lying singlet and triplet states of **2**. TDDFT values are given in gas phase and in THF (in parentheses).

Table S3. MOs involved in leading transitions of low-lying bright excited singlet state (S1) and low-lying triplet states (T1-T3) within the fully optimized singlet ground state equilibrium structure of **2**. **2** (optimized S0 geometry)

Table S4. Excited and ground state energies of S₀, S₁, T₁, T₂, and T₃ within optimized equilibrium geometries of S₀, S₁ and T₁ for dyes of **4–8**. All numbers are given relative to the ground state energy (S₀) in the optimized S₀ structure.

	Equilibrium Geometry															
		4				5	5 6			7			8			
		S_0	S_1	T_1	S ₀	S_1	T_1									
Λ	S_0	0.00	0.04	0.13	0.00	0.04	0.12	0.00	0.05	0.09	0.00	0.04	0.11	0.00	0.04	0.10
/ e	S_1	2.91	2.71	2.91	2.81	2.63	2.84	2.75	2.59	2.80	2.80	2.62	2.81	2.69	2.52	2.72
ate)	T_1	1.49	1.41	1.53	1.48	1.45	1.53	1.54	1.56	1.59	1.46	1.41	1.51	1.43	1.40	1.48
(sta	T_2	2.83	2.88	3.13	2.68	2.66	2.94	2.61	2.57	2.83	2.68	2.69	2.97	2.63	2.63	2.91
E_{ϵ}	T 3	3.00	2.99	3.15	2.92	2.94	3.10	2.79	2.73	3.38	2.99	3.00	3.15	2.87	2.88	3.09

Table S5. MOs involved in leading transitions of bright excited singlet states (and low-lying triplet states (T₁-T₃)) of **4–8** within the S₀ equilibrium structure and bright triplet excited states (triplet-to-triplet) within the T₁ equilibrium structure.

Table S6: Leading transitions, excitation energies (in eV), wavelengths (in nm), oscillator strengths and $\langle s^2 \rangle$ expectation value (spin-contamination) of bright UV-VIS excitations (singlet and triplet)

obtained at the TDDFT level of theory in THF for dyes 4-8. Singlet-to-singlet and triplet-to-triplet
excitations were obtained within the respective equilibrium structure.

		4				
	Singlet Excite	d States (Opt	imised S	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
S_1	$93 \rightarrow 94 \text{ LE}$	99	2.91	427	0.591	-
S_4	$90 \rightarrow 94 \text{ CT}$	95	3.76	330	0.046	-
S_5	$89 \rightarrow 94 \text{ LE}$	99	3.85	322	0.043	-
	Triplet Excite	d States (Opti	imised T	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
T ₂	$91\beta \rightarrow 93\beta$ LE	93	1.60	774	0.036	2.05
T ₅	$88\beta \rightarrow 93\beta$ LE	90	2.22	560	0.067	2.04
T_8	$94\alpha \rightarrow 96\alpha \text{ CT}$	84	3.27	380	0.195	2.05
	$94\alpha \rightarrow 97\alpha$ LE	10				
T ₁₀	$94\alpha \rightarrow 97\alpha$ LE	83	3.54	351	0.168	2.06
	$94\alpha \rightarrow 96\alpha \text{ CT}$	13				
		5				
	Singlet Excite	d States (Opt	imised S	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	F	$\langle s^2 \rangle$
S_1	$96 \rightarrow 97 \text{ LE}$	97	2.81	441	0.616	-
S ₂	$95 \rightarrow 97 \text{ LE}$	93	3.33	373	0.055	-
S_4	$94 \rightarrow 97 \text{ CT}$	95	3.60	344	0.067	-
S_5	$92 \rightarrow 97 \text{ LE}$	98	3.73	332	0.049	-
	Triplet Excite	d States (Opti	imised T	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
T3	$92\beta \rightarrow 96\beta$ LE	85	1.58	786	0.026	2.05
T ₅	$94\beta \rightarrow 96\beta \ CT$	55	1.99	622	0.068	2.04
	$91\beta \rightarrow 96\beta$ LE	31				
	$92\beta \rightarrow 96\beta$ LE	10				
T ₆	$91\beta \rightarrow 96\beta$ LE	55	2.05	605	0.050	2.04
	$94\beta \rightarrow 96\beta \text{ CT}$	34				
	$95\beta \rightarrow 96\beta$ LE	8				
T10	$97\alpha \rightarrow 100\alpha \text{ CT}$	78	3.28	378	0.284	2.05
	$97\alpha \rightarrow 101\alpha LE$	14				

6						
	Singlet Excite	d States (Opt	imised So	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
S_1	$99 \rightarrow 100 \text{ LE}$	96	2.75	450	0.692	-
S_2	$98 \rightarrow 100 \text{ LE}$	93	3.39	366	0.192	-
S_4	$97 \rightarrow 100 \text{ LE}$	98	3.44	360	0.062	-
S_5	$96 \rightarrow 100 \text{ LE}$	97	3.53	351	0.036	-
	Triplet Excited	d States (Opti	imised T	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
Тз	$97\beta \rightarrow 99\beta$ LE	85	1.42	873	0.015	2.039
	$94\beta \rightarrow 99\beta$ LE	10				
T5	$94\beta \rightarrow 99\beta$ LE	84	1.80	691	0.217	2.038
	$97\beta \rightarrow 99\beta$ LE	10				
T13	$100\alpha \rightarrow 104\alpha \ CT$	51	3.35	370	0.289	2.035
	$100\alpha \rightarrow 105\alpha$ LE	30				
	$90\beta \rightarrow 99\beta$ LE	12				
T14	$90\beta \rightarrow 99\beta$ LE	67	3.44	361	0.025	2.064
	$98\beta \rightarrow 100\beta$ LE	12				
	$100\alpha \rightarrow 104\alpha \ CT$	9				
T16	$100\alpha \rightarrow 105\alpha$ LE	58	3.54	350	0.116	2.044
	$100\alpha \rightarrow 104\alpha \ CT$	38				
		7				
	Singlet Excite	d States (Opt	imised So	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
S_1	$99 \rightarrow 100 \text{ LE}$	97	2.80	443	0.640	-
S ₂	$98 \rightarrow 100 \text{ LE}$	92	3.33	372	0.058	-
S_4	$97 \rightarrow 100 \text{ CT}$	94	3.61	344	0.075	-
S ₅	$95 \rightarrow 100 \text{ LE}$	98	3.74	332	0.049	-
	Triplet Excited	d States (Opti	imised T	Geomet	ry)	
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$
T3	$97\beta \rightarrow 99\beta$ LE	75	1.64	755	0.034	2.05
	$95\beta \rightarrow 99\beta \text{ CT}$	15				
T ₅	$94\beta \rightarrow 99\beta$ LE	79	2.13	583	0.086	2.04
	$95\beta \rightarrow 99\beta \text{ CT}$	12				
T8	$100\alpha \rightarrow 102\alpha \ CT$	86	3.23	384	0.192	2.05
	$100\alpha \rightarrow 103\alpha$ LE	8				
T_1	$100\alpha \rightarrow 103\alpha$ LE	83	3.50	354	0.190	2.06
	$100\alpha \rightarrow 102\alpha \ CT$	11				

8								
Singlet Excited States (Optimised So Geometry)								
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$		
S 1	$105 \rightarrow 106 \text{ LE}$	96	2.69	461	0.713	-		
S_2	$104 \rightarrow 106 \; \text{LE}$	94	3.24	383	0.071	-		
S_4	$103 \rightarrow 106 \text{ LE}$	97	3.40	365	0.071	-		
S 5	$102 \rightarrow 106 \text{ CT}$	95	3.53	351	0.109	-		
	Triplet Excited	d States (Opti	imised T	Geomet	ry)			
state	transition	weight / %	E^e / eV	λ / nm	f	$\langle s^2 \rangle$		
T ₄	$100\beta \rightarrow 105\beta$ LE	91	2.00	619	0.138	2.04		
T ₈	$106\alpha \rightarrow 108\alpha \ CT$	88	3.19	389	0.187	2.05		
T 9	$106\alpha \rightarrow 111\alpha$ LE	85						
	$106\alpha \to 108\alpha \; CT$	10	3.47	358	0.221	2.05		

Figure S17. Calculated singlet (in black) and triplet (in red) absorption spectra (THF) of dyes **4–8** within optimised singlet and triplet ground state structures. Triplet absorption spectra are correlated to excited states absorption signals in the transient absorption spectra.

Analysis of fs Transient Absorption Data

Figure S18. Formation of triplet state in **5**: (**A**) transient spectra at selected delay times, (**B**) species spectra resulting from the global fit of the data, the spectrum of the initially populated species is assigned to the singlet state and contains mainly contributions of ground-state bleach and stimulated emission, the spectrum of the subsequently with a time constant of 354 ps populated species agrees well with the spectrum of the long-lived species in ns time-resolved measurements, which is assigned to the triplet state (**C**) kinetic traces at chosen probe wavelengths (line fits). The spectral region around the excitation wavelength (530 nm) was neglected in data evaluation due to a scattered pump.

Figure S19. Formation of triplet state in **6**: (**A**) transient spectra at selected delay times, (**B**) species spectra resulting from the global fit of the data, the spectrum of the initially populated species is assigned to the singlet state and contains mainly contributions of ground-state bleach and stimulated emission, the spectrum of the subsequently with a time constant of 240 ps populated species agrees well with the spectrum of the long-lived species in ns time-resolved measurements, which is assigned to the triplet state (**C**) kinetic traces at chosen probe wavelengths (line fits). The spectral region around the excitation wavelength (530 nm) was neglected in data evaluation due to a scattered pump.

ESI-MS Data

Table S1. ESI MS data of BODIPY dyes before and after photolysis ($\lambda > 420$ nm) of multicomponent catalyst systems with BODIPY dyes as PS, [Pd(PPh₃)Cl₂]₂ as WRC and TEA as SA in THF/H₂O (11:3) at *T* = 25° C.

BODIPY	ESI MS of the pure dye	ESI MS after reaction	Comment
dye			
1	m/z = no fragments could be	$m/z = 266.21 (M-Cl+5H)^+$	Hydrogenated
	assigned yet		fragment
2	$m/z = 285.13 (M+Na)^+$	$m/z = 215.16 (M-BF_2+2H)^+$	Hydrogenated
	263.15 (M+H)+	235.14 (M-2F+11H)+	fragments
	243.15 (M-F)+		
3	$m/z = 512.93 (M-H)^{-1}$	m/z = no fragments could be	
		assigned yet	
4	$m/z = 319.22 (M-BF_2+H)^+$	$m/z = 319.22 (M-BF_2+H)^+$	
5	$m/z = 515.09 (M+Na)^+$	$m/z = 319.22 (M-I-BF_2+H)^+$	Iodine free
	493.11 (M+H)+		fragment
	473.10 (M-BF ₂)+		
6	$m/z = 616.99 (M-H)^{-1}$	$m/z = 319.22 (M-2I-BF_2+H)^+$	Iodine free
			fragment