Metal Substitution Effect on a Three-Dimensional Cyanido-Bridged Fe Spin-Crossover Network
Abstract
:1. Introduction
2. Results and Discussions
2.1. Syntheses
2.2. Crystal Structures and Spectroscopic Properties
2.3. Magnetic Properties
3. Materials and Methods
3.1. Syntheses
3.2. Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gütlich, P.; Goodwin, H.A. Spin Crossover in Transition Metal Compounds; Springer: New York, NY, USA, 2004. [Google Scholar]
- Halcrow, M.A. Spin Crossover Materials: Properties and Applications; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Gütlich, P.; Hauser, A.; Spiering, H. Thermal and Optical Switching of Iron (II) Complexes. Angew. Chem. Int. Ed. Engl. 1994, 33, 2024–2054. [Google Scholar] [CrossRef]
- Decurtins, S.; Gütlich, P.; Köhler, C.P.; Spiering, H.; Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole–iron (II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 1984, 105, 1–4. [Google Scholar] [CrossRef]
- Hauser, A. Intersystem Crossing in Fe(II) Coordination Compounds. Coord. Chem. Rev. 1991, 111, 275–290. [Google Scholar] [CrossRef]
- Real, J.A.; Andres, E.; Munoz, M.C.; Julve, M.; Granier, T.; Bousseksou, A.; Varret, F. Spin Crossover in a Catenan Supramolecular System. Science 1995, 268, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Halder, G.J.; Kepert, C.J.; Moubaraki, B.; Murray, K.S.; Cashion, J.D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 2002, 298, 1762–1765. [Google Scholar] [CrossRef] [PubMed]
- Renz, F.; Oshio, H.; Ksenofontov, V.; Waldeck, M.; Spiering, H.; Gütlich, P. Strong field iron (II) complex converted by light into a long-lived high-spin state. Angew. Chem. Int. Ed. 2000, 39, 3699–3700. [Google Scholar] [CrossRef]
- Gaspar, A.B.; Seredyuk, M.; Gütlich, P. Spin crossover in metallomesogens. Coord. Chem. Rev. 2009, 253, 2399–2413. [Google Scholar] [CrossRef]
- Ould Moussa, N.; Molnar, G.; Bonhommeau, S.; Zwick, A.; Mouri, S.; Tanaka, K.; Real, J.A.; Bousseksou, A. Selective Photoswitching of the Binuclear Spin Crossover Compound {[Fe(bt)(NCS)2]2(bpm)} into Two Distinct Macroscopic Phases. Phys. Rev. Lett. 2005, 94, 107205. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, D.; Margadonna, S.; Kosaka, W.; Ohkoshi, S.; Brunelli, M.; Prassides, K. X-ray Illumination Induced Fe(II) Spin Crossover in the Prussian Blue Analogue Cesium Iron Hexacyanochromate. J. Am. Chem. Soc. 2006, 128, 8358–8363. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, R.; Cammarata, M.; Lorenc, M.; Matar, S.; Létard, J.-F.; Lemke, H.-T.; Collet, E. Ultrafast Light-Induced Spin-State Trapping Photophysics Investigated in Fe(phen)2(NCS)2 Spin-Crossover Crystal. Acc. Chem. Res. 2015, 48, 774–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trzop, E.; Zhang, D.; Pineiro-Lopez, L.; Valvarde-Munoz, F.J.; Munoz, M.C.; Palatinus, L.; Guerin, L.; Cailleau, H.; Real, J.A.; Collet, E. First Step towards a Devil’s Staircase in Spin-Crossover Materials. Angew. Chem. Int. Ed. 2016, 55, 8675–8679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, O.; Martinez, C.J. Spin-transition polymers: From molecular materials toward memory devices. Science 1998, 279, 44–48. [Google Scholar] [CrossRef]
- Molnar, G.; Salmon, L.; Nicolazzi, W.; Terki, F.; Bousseksou, A. Emerging properties and applications of spin crossover nanomaterials. J. Mater. Chem. C 2014, 2, 1360–1366. [Google Scholar] [CrossRef]
- Gütlich, P.; Link, R.; Steinhäuser, H. Mössbauer-Effect Study of the Thermally Induced Spin Transition in Tris(2-picolylamine)iron(II) Chloride. Dilution Effect in Mixed Crystals of [FexZn1−x(2-pic)3]Cl2·C2H5OH (x = 0.15, 0.0029, 0.0009). Inorg. Chem. 1978, 9, 2509–2514. [Google Scholar] [CrossRef]
- Ganguli, P.; Gütlich, P.; Müller, E.W. Effect of metal dilution on the spin-crossover behavior in [FexM1−x(phen)2(NCS)2] (M = Mn, Co, Ni, Zn). Inorg. Chem. 1982, 21, 3429–3433. [Google Scholar] [CrossRef]
- Haddad, M.S.; Federer, W.D.; Lynch, M.W.; Hendrickson, D.N. An explanation of unusual properties of spin-crossover ferric complexes. J. Am. Chem. Soc. 1980, 102, 1468–1470. [Google Scholar] [CrossRef]
- Martin, J.-P.; Zarembowitch, J.; Bousseksou, A.; Dworkin, A.; Haasnoot, J.G.; Varret, F. Solid State Effects on Spin Transitions: Magnetic, Calorimetric, and Mössbauer-Effect Properties of [FexCo1−x(4,4′-bis-1,2,4-triazole)2(NCS)2]·H2O Mixed-Crystal Compounds. Inorg. Chem. 1994, 33, 6325–6333. [Google Scholar] [CrossRef]
- Tayagaki, T.; Galet, A.; Molnar, G.; Munoz, M.C.; Zwick, A.; Tanaka, K.; Real, J.A.; Bousseksou, A. Metal Dilution Effects on the Spin-Crossover Properties of the Three-Dimensional Coordination Polymer Fe(pyrazine)[Pt(CN)4]. J. Phys. Chem. B 2005, 109, 14859–14867. [Google Scholar] [CrossRef] [PubMed]
- Krivokapic, I.; Chakraborty, P.; Enachescu, C.; Bronisz, R.; Hauser, A. Low-Spin→High-Spin Relaxation Dynamics in the Highly Diluted Spin-Crossover System [FexZn1−x(bbtr)3](ClO4)2. Inorg. Chem. 2011, 50, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Enachescu, C.; Walder, C.; Bronisz, R.; Hauser, A. Thermal and Light-Induced Spin Switching Dynamics in the 2D Coordination Network of {[Zn1−xFex(bbtr)3](ClO4)2}∞: The Role of Cooperative Effects. Inorg. Chem. 2012, 51, 9714–9722. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Siegler, M.-A.; Costa, J.-S.; Fu, W.-T.; Bonnet, S. Effect of Metal Dilution on the Thermal Spin Transition of [FexZn1–x(bapbpy)(NCS)2]. Eur. J. Inorg. Chem. 2013, 2013, 1033–1042. [Google Scholar] [CrossRef]
- Paradis, N.; Chastanet, G.; Palamarciuc, T.; Rosa, P.; Varret, F.; Boukheddaden, K.; Létard, J.-F. Detailed Investigation of the Interplay Between the Thermal Decay of the Low Temperature Metastable HS State and the Thermal Hysteresis of Spin-Crossover Solids. J. Phys. Chem. C 2015, 119, 20039–20050. [Google Scholar] [CrossRef]
- Baldé, C.; Desplanches, C.; Létard, J.-F.; Chastanet, G. Effects of metal dilution on the spin-crossover behavior and light induced bistability of iron(II) in [FexNi1−x(bpp)2](NCSe)2. Polyhedron 2017, 123, 138–144. [Google Scholar] [CrossRef]
- Kahn, O.; Gatteschi, D.; Miller, J.S.; Palacio, F. NATO ARW Molecular Magnetic Materials; Kluwer Academic Publishers: London, UK, 1991. [Google Scholar]
- Dunbar, K.R.; Heintz, R.A. Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. Prog. Inorg. Chem. 1997, 45, 283–391. [Google Scholar] [CrossRef]
- Miller, J.S.; Drillon, M. Magnetism–Molecules to Materials; Wilely-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Train, C.; Gruselle, M.; Verdaguer, M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets. Chem. Soc. Rev. 2011, 40, 3297–3312. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Tokoro, H. Photomagnetism in Cyano-Bridged Bimetal Assemblies. Acc. Chem. Res. 2012, 45, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, S.; Mallah, T.; Ouahès, R.; Veillet, P.; Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 1995, 378, 701–703. [Google Scholar] [CrossRef]
- Hatlevik, Ø.; Buschmann, W.E.; Zhang, J.; Manson, J.L.; Miller, J.S. Enhancement of the Magnetic Ordering Temperature and Air Stability of a Mixed Valent Vanadium Hexacyanochromate(III) Magnet to 99 °C (372 K). Adv. Mater. 1999, 11, 914–918. [Google Scholar] [CrossRef]
- Holmes, S.M.; Girolami, G.S. Sol−Gel Synthesis of KVII[CrIII(CN)6]·2H2O: A Crystalline Molecule-Based Magnet with a Magnetic Ordering Temperature above 100 °C. J. Am. Chem. Soc. 1999, 121, 5593–5594. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Mizuno, M.; Hung, G.J.; Hashimoto, K. Magnetooptical Effects of Room Temperature Molecular-Based Magnetic Films Composed of Vanadium Hexacyanochromates. J. Phys. Chem. B 2000, 104, 9365–9367. [Google Scholar] [CrossRef]
- Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; et al. Molecules to build solids: High TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord. Chem. Rev. 1999, 190, 1023–1047. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Einaga, Y.; Fujishima, A.; Hashimoto, K. Magnetic properties and optical control of electrochemically prepared iron–chromium polycyanides. J. Electroanal. Chem. 1999, 473, 245–249. [Google Scholar] [CrossRef]
- Herrera, J.M.; Marvaud, V.; Verdaguer, M.; Marrot, J.; Kalisz, M.; Mathonière, C. Reversible Photoinduced Magnetic Properties in the Heptanuclear Complex [MoIV(CN)2(CN–CuL)6]8+: A Photomagnetic High-Spin Molecule. Angew. Chem. Int. Ed. 2004, 43, 5468–5471. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Tokoro, H.; Hozumi, T.; Zhang, Y.; Hashimoto, K.; Mathonière, C.; Bord, I.; Rombaut, G.; Verelst, M.; Cartier dit Moulin, C.; et al. Photo-induced magnetization in copper octacyanomolybdate. J. Am. Chem. Soc. 2006, 128, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Mahfoud, T.; Molnar, G.; Bonhommeau, S.; Cobo, S.; Salmon, L.; Demont, P.; Tokoro, H.; Ohkoshi, S.; Boukheddaden, K.; Bousseksou, A. Electric-Field-Induced Charge-Transfer Phase Transition: A Promising Approach toward Electrically Switchable Devices. J. Am. Chem. Soc. 2009, 131, 15049–15054. [Google Scholar] [CrossRef] [PubMed]
- Bleuzen, A.; Marvaud, V.; Mathonière, C.; Sieklucka, B.; Verdaguer, M. Photomagnetism in Clusters and Extended Molecule-Based Magnets. Inorg. Chem. 2009, 48, 3453–3466. [Google Scholar] [CrossRef] [PubMed]
- Pajerowski, D.M.; Andrus, M.J.; Gardner, J.E.; Knowles, E.S.; Meisel, M.W.; Talham, D.R. Persistent Photoinduced Magnetism in Heterostructures of Prussian Blue Analogues. J. Am. Chem. Soc. 2010, 132, 4058–4059. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, N.; Tokoro, H.; Hamada, Y.; Namai, A.; Matsuda, T.; Kaneko, S.; Ohkoshi, S. Photoinduced magnetization with a high Curie temperature and a large coercive field in a Co–W bimetallic assembly. Adv. Funct. Mater. 2012, 20, 2089–2093. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Arimoto, Y.; Hozumi, T.; Seino, H.; Mizobe, Y.; Hashimoto, K. Two-dimensional metamagnet composed of cyano-bridged CuII–WV bimetallic assembly. Chem. Commun. 2003, 22, 2772–2773. [Google Scholar] [CrossRef]
- Kato, K.; Moritomo, Y.; Takata, M.; Sakata, M.; Umekawa, M.; Hamada, N.; Ohkoshi, S.; Tokoro, H.; Hashimoto, K. Direct Observation of Charge Transfer in Double-Perovskite-Like RbMn[Fe(CN)6]. Phys. Rev. Lett. 2003, 91, 255502. [Google Scholar] [CrossRef] [PubMed]
- Tokoro, H.; Matsuda, T.; Nuida, T.; Moritomo, Y.; Ohoyama, K.; Dangui, E.D.L.; Boukheddaden, K.; Ohkoshi, S. Visible-light-induced reversible photomagnetism in rubidium manganese hexacyanoferrate. Chem. Mater. 2008, 20, 423–428. [Google Scholar] [CrossRef]
- Vertelman, E.J.M.; Lummen, T.T.A.; Meetsma, A.; Bouwkamp, M.W.; Molnar, G.; Loosdrecht, P.H.M.; Koningsbruggen, P.J. Light- and Temperature-Induced Electron Transfer in Single Crystals of RbMn[Fe(CN)6] H2O. Chem. Mater. 2008, 20, 1236–1238. [Google Scholar] [CrossRef]
- Tokoro, H.; Nakagawa, K.; Imoto, K.; Hakoe, F.; Ohkoshi, S. Zero thermal expansion fluid and oriented film based on a bistable metal-cyanide polymer. Chem. Mater. 2012, 24, 1324–1330. [Google Scholar] [CrossRef]
- Kosaka, W.; Nomura, K.; Hashimoto, K.; Ohkoshi, S. Observation of an Fe(II) Spin-Crossover in a Cesium Iron Hexacyanochromate. J. Am. Chem. Soc. 2005, 127, 8590–8591. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Kosaka, W.; Matsuda, T.; Ohkoshi, S. Observation of an Iron(II) Spin-Crossover in an Iron Octacyanoniobate-Based Magnet. Angew. Chem. Int. Ed. 2008, 47, 6885–6887. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Imoto, K.; Tsunobuchi, Y.; Takano, S.; Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 2011, 3, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Takano, S.; Imoto, K.; Yoshikiyo, M.; Namai, A.; Tokoro, H. 90-degree optical switching of output second-harmonic light in chiral photomagnet. Nat. Photonics 2014, 8, 65–71. [Google Scholar] [CrossRef]
- Imoto, K.; Takemura, M.; Nakabayashi, K.; Miyamoto, Y.; Orisaku, K.K.; Ohkoshi, S. Syntheses, crystal structures, and magnetic properties of Mn–Nb and Co–Nb cyanido-bridged bimetallic assemblies. Inorg. Chim. Acta 2015, 425, 92–99. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B 1997, 56, 11642–11652. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Abe, Y.; Fujishima, A.; Hashimoto, K. Design and Preparation of a Novel Magnet Exhibiting Two Compensation Temperatures Based on Molecular Field Theory. Phys. Rev. Lett. 1999, 82, 1285–1288. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Herrera, J.M.; Franz, P.; Podgajny, R.; Pilkington, M.; Biner, M.; Decurtins, S.; Stoeckli-Evans, H.; Neels, A.; Garde, R.; Dromzée, Y.; et al. Three-dimensional bimetallic octacyanidometalates [MIV{(μ-CN)4MnII(H2O)2}2·4H2O]n (M = Nb, Mo, W): Synthesis, single-crystal X-ray diffraction and magnetism. Comptes Rendus Chim. 2008, 47, 6885–6887. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
Crystal system | Tetragonal | Tetragonal | Tetragonal | Tetragonal | Tetragonal | Tetragonal |
Space group | I41/a | I41/a | I41/a | I41/a | I41/a | I41/a |
a(b)/Å | 20.2893(5) | 20.2683(5) | 20.2572(6) | 20.2453(8) | 20.2203(12) | 20.2105(1) |
c/Å | 15.0224(5) | 15.0156(5) | 15.0154(6) | 15.0151(8) | 15.0047(13) | 15.0066(13) |
V/Å3 | 6184.1(3) | 6168.5(3) | 6161.6(3) | 6154.2(5) | 6134.8(8) | 6129.7(7) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imoto, K.; Takano, S.; Ohkoshi, S.-i. Metal Substitution Effect on a Three-Dimensional Cyanido-Bridged Fe Spin-Crossover Network. Inorganics 2017, 5, 63. https://doi.org/10.3390/inorganics5040063
Imoto K, Takano S, Ohkoshi S-i. Metal Substitution Effect on a Three-Dimensional Cyanido-Bridged Fe Spin-Crossover Network. Inorganics. 2017; 5(4):63. https://doi.org/10.3390/inorganics5040063
Chicago/Turabian StyleImoto, Kenta, Shinjiro Takano, and Shin-ichi Ohkoshi. 2017. "Metal Substitution Effect on a Three-Dimensional Cyanido-Bridged Fe Spin-Crossover Network" Inorganics 5, no. 4: 63. https://doi.org/10.3390/inorganics5040063
APA StyleImoto, K., Takano, S., & Ohkoshi, S. -i. (2017). Metal Substitution Effect on a Three-Dimensional Cyanido-Bridged Fe Spin-Crossover Network. Inorganics, 5(4), 63. https://doi.org/10.3390/inorganics5040063