A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. UV–Vis and Fluorescent Spectra
2.3. Lipophilicity
2.4. Cell Imaging
3. Materials and Methods
3.1. General Experimental Information
3.2. Synthesis and Characterization
3.3. Photophysical Properties
- Φref: The values of fluorescence quantum yield of the reference.
- I: integrated emission intensity.
- OD: optical density at the excitation wavelength.
- d: the refractive index of solvents. dDMSO = 1.478, dH2O = 1.333.
3.4. Determination of the Octanol–Water Partition Coefficients (Log P)
3.5. Live Cell Imaging
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cozzi, P.G. Metal-Salen Schiff Base Complexes in Catalysis: Practical Aspects. Chem. Soc. Rev. 2004, 33, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Venkataramanan, N.S.; Kuppuraj, G.; Rajagopal, S. Metal–Salen Complexes as Efficient Catalysts for the Oxygenation of Heteroatom Containing Organic Compounds—Synthetic and Mechanistic Aspects. Coord. Chem. Rev. 2005, 249, 1249–1268. [Google Scholar] [CrossRef]
- Baleizão, C.; Garcia, H. Chiral Salen Complexes: An Overview to Recoverable and Reusable Homogeneous and Heterogeneous Catalysts. Chem. Rev. 2006, 106, 3987–4043. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.C.; Sutar, A.K. Catalytic Activities of Schiff Base Transition Metal Complexes. Coord. Chem. Rev. 2008, 252, 1420–1450. [Google Scholar] [CrossRef]
- Miyasaka, H.; Saitoh, A.; Abe, S. Magnetic Assemblies Based on Mn(III) Salen Analogues. Coord. Chem. Rev. 2007, 251, 2622–2664. [Google Scholar] [CrossRef]
- Wezenberg, S.J.; Kleij, A.W. Material Applications for Salen Frameworks. Angew. Chem. Int. Ed. 2008, 47, 2354–2364. [Google Scholar] [CrossRef] [PubMed]
- Kleij, A.W. Zinc-Centred Salen Complexes: Versatile and Accessible Supramolecular Building Motifs. Dalton Trans. 2009, 4635–4639. [Google Scholar] [CrossRef] [PubMed]
- Erxleben, A. Transition Metal Salen Complexes in Bioinorganic and Medicinal Chemistry. Inorg. Chim. Acta 2017. [Google Scholar] [CrossRef]
- Yin, H.-Y.; Tang, J.; Zhang, J.-L. Introducing Metallosalens into Biological Studies: The Renaissance of Traditional Coordination Complexes. Eur. J. Inorg. Chem. 2017, 5085–5093. [Google Scholar] [CrossRef]
- Giannicchi, I.; Brissos, R.; Ramos, D.; de Lapuente, J.; Lima, J.C.; Cort, A.D.; Rodriguez, L. Substituent Effects on the Biological Properties of Zn-Salophen Complexes. Inorg. Chem. 2013, 52, 9245–9253. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.E.; Arnal, A.A.; Neidle, S.; Vilar, R. Stabilization of G-Quadruplex DNA and Inhibition of Telomerase Activity by Square-Planar Nickel(II) Complexes. J. Am. Chem. Soc. 2006, 128, 5992–5993. [Google Scholar] [CrossRef] [PubMed]
- Arola-Arnal, A.; Benet-Buchholz, J.; Neidle, S.; Vilar, R. Effects of Metal Coordination Geometry on Stabilization of Human Telomeric Quadruplex DNA by Square-Planar and Square-Pyramidal Metal Complexes. Inorg. Chem. 2008, 47, 11910–11919. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.H.; Karim, N.H.; Parkinson, G.N.; Gunaratnam, M.; Petrucci, V.; Todd, A.K.; Vilar, R.; Neidle, S. Molecular Basis of Structure-Activity Relationships between Salphen Metal Complexes and Human Telomeric DNA Quadruplexes. J. Med. Chem. 2012, 55, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Abd Karim, N.H.; Mendoza, O.; Shivalingam, A.; Thompson, A.J.; Ghosh, S.; Kuimova, M.K.; Vilar, R. Salphen Metal Complexes as Tunable G-Quadruplex Binders and Optical Probes. RSC Adv. 2014, 4, 3355–3363. [Google Scholar] [CrossRef]
- Zhou, C.Q.; Liao, T.C.; Li, Z.Q.; Gonzalez-Garcia, J.; Reynolds, M.; Zou, M.; Vilar, R. Dinickel-Salphen Complexes as Binders of Human Telomeric Dimeric G-Quadruplexes. Chem. Eur. J. 2017, 23, 4713–4722. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, S.; Gonzalez-Garcia, J.; Pensa, E.; Albrecht, T.; Vilar, R. A Redox-Activated G-Quadruplex DNA Binder Based on a Platinum(IV)-Salphen Complex. Angew. Chem. Int. Ed. 2018, 57, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Hai, Y.; Chen, J.J.; Zhao, P.; Lv, H.; Yu, Y.; Xu, P.; Zhang, J.-L. Luminescent Zinc Salen Complexes as Single and Two-Photon Fluorescence Subcellular Imaging Probes. Chem. Commun. 2011, 47, 2435–2437. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Chen, J.-J.; Hai, Y.; Zhan, J.; Xu, P.; Zhang, J.-L. Rational Design of Znsalen as a Single and Two Photon Activatable Fluorophore in Living Cells. Chem. Sci. 2012, 3, 3315–3320. [Google Scholar] [CrossRef]
- Chen, J.J.; Jing, J.; Chang, H.; Rong, Y.; Hai, Y.; Tang, J.; Zhang, J.L.; Xu, P. A Sensitive and Quantitative Autolysosome Probe for Detecting Autophagic Activity in Live and Prestained Fixed Cells. Autophagy 2013, 9, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Zhang, J.-L. Combining Myeloperoxidase (Mpo) with Fluorogenic Znsalen to Detect Lysosomal Hydrogen Peroxide in Live Cells. Chem. Sci. 2013, 4, 2947–2952. [Google Scholar] [CrossRef]
- Xie, D.; Jing, J.; Cai, Y.-B.; Tang, J.; Chen, J.-J.; Zhang, J.-L. Construction of an Orthogonal Znsalen/Salophen Library as a Colour Palette for One- and Two-Photon Live Cell Imaging. Chem. Sci. 2014, 5, 2318–2327. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, M.; Yin, H.Y.; Jing, J.; Xie, D.; Xu, P.; Zhang, J.L. A Photoactivatable Znsalen Complex for Super-Resolution Imaging of Mitochondria in Living Cells. Chem. Commun. 2016, 52, 11583–11586. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, Y.; Yin, H.Y.; Xu, G.; Zhang, J.L. Precise Labeling and Tracking of Lipid Droplets in Adipocytes Using a Luminescent Znsalen Complex. Chem. Asian J. 2017, 12, 2533–2538. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Failla, S.; Finocchiaro, P.; Oliveri, I.P.; Purrello, R.; di Bella, S. Supramolecular Aggregation/Deaggregation in Amphiphilic Dipolar Schiff-Base Zinc(II) Complexes. Inorg. Chem. 2010, 49, 5134–5142. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.K.; MacLachlan, M.J. Fibrous Aggregates from Dinuclear Zinc(II) Salphen Complexes. Dalton Trans. 2010, 39, 7310–7319. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.B.; Zhan, J.; Hai, Y.; Zhang, J.L. Molecular Assembly Directed by Metal-Aromatic Interactions: Control of the Aggregation and Photophysical Properties of Zn-Salen Complexes by Aromatic Mercuration. Chem. Eur. J. 2012, 18, 4242–4249. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Failla, S.; Finocchiaro, P.; Oliveri, I.P.; di Bella, S. Aggregation Properties of Bis(Salicylaldiminato)Zinc(Ii) Schiff-Base Complexes and Their Lewis Acidic Character. Dalton Trans. 2012, 41, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, G.; Oliveri, I.P.; Punzo, F.; Thompson, A.L.; di Bella, S.; Failla, S. Structure and Aggregation Properties of a Schiff-Base Zinc(Ii) Complex Derived from Cis-1,2-Diaminocyclohexane. Dalton Trans. 2015, 44, 13040–13048. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, R.; Ballistreri, F.P.; Gangemi, C.M.A.; Toscano, R.M.; Tomaselli, G.A.; Pappalardo, A.; Sfrazzetto, G.T. Chiral Zn-Salen Complexes: A New Class of Fluorescent Receptors for Enantiodiscrimination of Chiral Amines. New J. Chem. 2017, 41, 911–915. [Google Scholar] [CrossRef]
- Tang, J.; Cai, Y.-B.; Jing, J.; Zhang, J.-L. Unravelling the Correlation between Metal Induced Aggregation and Cellular Uptake/Subcellular Localization of Znsalen: An Overlooked Rule for Design of Luminescent Metal Probes. Chem. Sci. 2015, 6, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xie, D.; Yin, H.Y.; Jing, J.; Zhang, J.L. Cationic Sulfonium Functionalization Renders Znsalens with High Fluorescence, Good Water Solubility and Tunable Cell-Permeability. Org. Biomol. Chem. 2016, 14, 3360–3368. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Ke, X.-S.; Tang, J.; Zhang, J.-L. Tris(Znsalen) Cryptand Minimizes Znsalen Aggregation Arising from Intermolecular Zn···O Interaction. Chin. Chem. Lett. 2015, 26, 937–941. [Google Scholar] [CrossRef]
- Yin, H.-Y.; Tang, J.; Zhang, J.-L. Luminescent Metal Salen Complex as Intracellular Microviscosity Fluorescent Sensor. Sci. Sin. Chim. 2016, 47, 267–276. [Google Scholar]
- Tang, J.; Yin, H.Y.; Zhang, J.L. A Luminescent Aluminium Salen Complex Allows for Monitoring Dynamic Vesicle Trafficking from the Golgi Apparatus to Lysosomes in Living Cells. Chem. Sci. 2018. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Billodeaux, D.R. Aluminum Salen Complexes and Tetrabutylammonium Salts: A Binary Catalytic System for Production of Polycarbonates from CO2 and Cyclohexene Oxide. Inorg. Chem. 2005, 44, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Reich, B.J.; Greenwald, E.E.; Justice, A.K.; Beckstead, B.T.; Reibenspies, J.H.; North, S.W.; Miller, S.A. Ene-Diamine Versus Imine-Amine Isomeric Preferences. J. Org. Chem. 2005, 70, 8409–8416. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Wei, T.; Lü, X.; Hui, Y.; Song, J.; Zhao, S.; Wong, W.; Jones, R.A. Hetero-Trinuclear near-Infrared (Nir) Luminescent Zn2Ln Complexes from Salen-Type Schiff-Base Ligands. New J. Chem. 2009, 33, 2326–2334. [Google Scholar] [CrossRef]
- Suh, H.; Song, S.; Ahn, S.; Kim, T.; Kim, B.; Chang, T. Greenhouse Gas Conversion by Homogeneous Salen Catalyst Systems under Very Mild Reaction Condition. J. Korean Chem. Soc. 2013, 57, 525–528. [Google Scholar] [CrossRef]
- Cheng, J.; Ma, X.; Zhang, Y.; Liu, J.; Zhou, X.; Xiang, H. Optical Chemosensors Based on Transmetalation of Salen-Based Schiff Base Complexes. Inorg. Chem. 2014, 53, 3210–3219. [Google Scholar] [CrossRef] [PubMed]
- Nemec, I.; Herchel, R.; Silha, T.; Travnicek, Z. Towards a Better Understanding of Magnetic Exchange Mediated by Hydrogen Bonds in Mn(III)/Fe(III) Salen-Type Supramolecular Dimers. Dalton Trans. 2014, 43, 15602–15616. [Google Scholar] [CrossRef] [PubMed]
- Akine, S.; Piao, S.; Miyashita, M.; Nabeshima, T. Cage-Like Tris(Salen)-Type Metallocryptand for Cooperative Guest Recognition. Tetrahedron Lett. 2013, 54, 6541–6544. [Google Scholar] [CrossRef]
- Leo, A.; Hansch, C.; Elkins, D. Partition Coefficients and Their Uses. Chem. Rev. 1971, 71, 525–616. [Google Scholar] [CrossRef]
- Bacallao, R.; Garfinkel, A.; Monke, S.; Zampighi, G.; Mandel, L.J. Atp Depletion: A Novel Method to Study Junctional Properties in Epithelial Tissues. J. Cell Sci. 1994, 3301–3313. [Google Scholar]
- Sorensen, M.; Sehested, M.; Jensen, P.B. Effect of Cellular Atp Depletion on Topoisomerase Ii Poisons. Abrogation of Cleavable-Complex Formation by Etoposide but Not by Amsacrine. Mol. Pharmacol. 1999, 55, 424–431. [Google Scholar] [PubMed]
- Komor, A.C.; Barton, J.K. The Path for Metal Complexes to a DNA Target. Chem. Commun. 2013, 49, 3617–3630. [Google Scholar] [CrossRef] [PubMed]
Compound | λabs (log ε)/nm (log M−1cm−1) 2 | λem/nm 3 | τ/ns | Φ 4 |
---|---|---|---|---|
LAl | 308 (4.12), 337 (4.06), 387 (4.07) | 500 | 0.58 | 0.054 |
LAl3 | 315 (4.76), 341 (4.67), 408 (4.66) | 523 | 2.90 | 0.17 |
Compound | Log P |
---|---|
LAl | 0.10 |
LAl3 | 0.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.-Y.; Lai, J.; Tang, J.; Shang, Y.; Zhang, J.-L. A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application. Inorganics 2018, 6, 20. https://doi.org/10.3390/inorganics6010020
Yin H-Y, Lai J, Tang J, Shang Y, Zhang J-L. A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application. Inorganics. 2018; 6(1):20. https://doi.org/10.3390/inorganics6010020
Chicago/Turabian StyleYin, Hao-Yan, Jing Lai, Juan Tang, Yanli Shang, and Jun-Long Zhang. 2018. "A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application" Inorganics 6, no. 1: 20. https://doi.org/10.3390/inorganics6010020
APA StyleYin, H. -Y., Lai, J., Tang, J., Shang, Y., & Zhang, J. -L. (2018). A Cryptand-Type Aluminum Tris(salophen) Complex: Synthesis, Characterization, and Cell Imaging Application. Inorganics, 6(1), 20. https://doi.org/10.3390/inorganics6010020