The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of Compounds 1–3
2.2. Magnetic Properties of Compounds 1–3
3. Experimental Section
3.1. General Information
3.2. The preparation of Compounds 1–3
3.3. X-ray Crystallography
3.4. Magnetic Measurements
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Natterer, F.D.; Yang, K.; Paul, W.; Willke, P.; Choi, T.; Greber, T.; Heinrich, A.J.; Lutz, C.P. Reading and writing single-atom magnets. Nature 2017, 543, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.; Kaizu, Y. Lanthanide double-decker complexes functioning as magnets at the single-molecular level. J. Am. Chem. Soc. 2003, 125, 8694–8695. [Google Scholar] [CrossRef] [PubMed]
- Rinehart, J.D.; Long, J.R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2011, 2, 2078–2085. [Google Scholar] [CrossRef]
- Sorace, L.; Cristiano, B.C.; Gatteschi, D. Lanthanides in molecular magnetism: Old tools in a new field. Chem. Soc. Rev. 2011, 40, 3092–3104. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide single-molecule magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef] [PubMed]
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal–ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Gupta, T.; Rajaraman, G. How strongly are the magnetic anisotropy and coordination numbers correlated in lanthanide based molecular magnets? J. Chem. Sci. 2014, 126, 1569–1579. [Google Scholar] [CrossRef]
- Chilton, N.F. Design criteria for high-temperature single-molecule magnets. Inorg. Chem. 2015, 54, 2097–2099. [Google Scholar] [CrossRef] [PubMed]
- Gregson, W.; Chilton, N.F.; Ariciu, A.; Tuna, F.; Crowe, I.F.; Lewis, W.; Blake, A.J.; Collison, D.; McInnes, E.J.L.; Winpenny, R.E.P.; et al. A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. Chem. Sci. 2016, 7, 155–165. [Google Scholar] [CrossRef]
- Ungur, L.; Chibotaru, L.F. Magnetic anisotropy in the excited states of low symmetry lanthanide complexes. Phys. Chem. Chem. Phys. 2011, 13, 20086–20090. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Collison, D.; McInnes, E.J.L.; Winpenny, R.E.P.; Soncini, A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 2013, 4, 2551. [Google Scholar] [CrossRef] [PubMed]
- Ganivet, C.R.; Ballesteros, B.; de la Torre, G.; Clemente-Juan, J.M.; Coronado, E.; Torres, T. Influence of peripheral substitution on the magnetic behavior of single-ion magnets based on homo-and heteroleptic TbIII bis(phthalocyaninate). Chem. Eur. J. 2013, 19, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Chen, Y.C.; Zheng, Y.Z.; Lin, W.Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L.F.; Tong, M.L. Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chem. Sci. 2013, 4, 3310–3316. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liu, J.L.; Ungur, L.; Liu, J.; Li, Q.W.; Wang, L.F.; Ni, Z.P.; Chibotaru, L.F.; Chen, X.M.; Tong, M.L. Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets. J. Am. Chem. Soc. 2016, 138, 2829–2837. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R. An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chem. Sci. 2016, 7, 5181–5191. [Google Scholar] [CrossRef]
- Ding, Y.S.; Chilton, N.F.; Winpenny, R.E.P.; Zheng, Y.Z. On approaching the limit of molecular magnetic anisotropy: A near-perfect pentagonal bipyramidal dysprosium(III) single-molecule magnet. Angew. Chem. Int. Ed. 2016, 55, 16071–16074. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, Z.; Xie, S.; Li, H.L.; Zhu, W.H.; Liu, L.; Dong, X.Q.; He, W.X.; Ren, J.C.; Liu, L.Z.; et al. Tuning the origin of magnetic relaxation by substituting the 3d or rare-earth ions into three isostructural cyano-bridged 3d–4f heterodinuclear compounds. Inorg. Chem. 2015, 54, 10316–10322. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.S.; Day, B.M.; Chen, Y.C.; Tong, M.L.; Mansikkam-ki, A.; Layfield, R.A. A dysprosium metallocene single-molecule magnet functioning at the axial limit. Angew. Chem. Int. Ed. 2017, 56, 11445–11449. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Blagg, R.J.; Ungur, L.; Tuna, F.; Speak, J.; Comar, P.; Collison, D.; Wernsdorfer, W.; McInnes, E.J.L.; Chibotaru, L.; Winpenny, R.E.P. Magnetic relaxation pathways in lanthanide single-molecule magnets. Nat. Chem. 2013, 5, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Chilton, N.F.; Goodwin, C.A.P.; Mills, D.P.; Winpenny, R.E.P. The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. Chem. Commun. 2015, 51, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhang, L.; Wang, C.; Xue, S.F.; Lin, S.Y.; Tang, J.K. Equatorially coordinated lanthanide single ion magnets. J. Am. Chem. Soc. 2014, 136, 4484–4487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Jung, J.; Zhang, L.; Tang, J.K.; Guennic, B.L. Elucidating the magnetic anisotropy and relaxation dynamics of low-coordinate lanthanide compounds. Inorg. Chem. 2016, 55, 1905–1911. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Ding, H.Y.; Meng, Y.S.; Gao, C.; Zhang, X.J.; Meng, Z.S.; Zhang, Y.Q.; Shi, W.; Wang, B.W.; Gao, S. Hydroxide-bridged five-coordinate DyIII singlemolecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chem. Sci. 2017, 8, 1288–1294. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Meng, Y.S.; Zhang, Y.Q.; Meng, Z.S.; Lang, K.; Zhu, Z.L.; Shang, C.F.; Wang, B.W.; Gao, S. A six-coordinate dysprosium single-ion magnet with trigonal-prismatic geometry. Inorg. Chem. 2017, 56, 7320–7323. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, D.N.; Tuna, F.; Bodensteiner, M.; Winpenny, R.E.P.; Layfield, R.A. Single-molecule magnetism in tetrametallic terbium and dysprosium thiolate cages. Organometallics 2013, 32, 1224–1229. [Google Scholar] [CrossRef]
- Blagg, R.J.; Muryn, C.A.; McInnes, E.J.L.; Tuna, F.; Winpenny, R.E.P. Single pyramid magnets: Dy5 pyramids with slow magnetic relaxation to 40 K. Angew. Chem. Int. Ed. 2011, 50, 6530–6533. [Google Scholar] [CrossRef] [PubMed]
- Norel, L.; Darago, L.E.; Guennic, B.L.; Chakarawet, K.; Gonzalez, M.I.; Olshansky, J.H.; Rigaut, S.; Long, J.R. A terminal fluoride ligand generates highly axial magnetic anisotropy in dysprosium complexes. Angew. Chem. Int. Ed. 2018, 130, 1951–1956. [Google Scholar] [CrossRef]
- Yao, M.X.; Zhu, Z.X.; Lu, X.Y.; Deng, X.W.; Jing, S. Rare single-molecule magnets with six-coordinate LnIII ions exhibiting a trigonal antiprism configuration. Dalton Trans. 2016, 45, 10689–10695. [Google Scholar] [CrossRef] [PubMed]
- Latendresse, T.P.; Bhuvanesh, N.S.; Nippe, M. Slow magnetic relaxation in a lanthanide-[1]metallocenophane complex. J. Am. Chem. Soc. 2017, 139, 8058–8061. [Google Scholar] [CrossRef] [PubMed]
- Na, B.; Zhang, X.J.; Shi, W.; Zhang, Y.Q.; Wang, B.W.; Gao, C.; Gao, S.; Cheng, P. Six-coordinate lanthanide complexes: Slow relaxation of magnetization in the dysprosium(III) complex. Chem. Eur. J. 2014, 20, 15975–15980. [Google Scholar] [CrossRef] [PubMed]
- Efthymiou, C.G.; Stamatatos, T.C.; Papatriantafyllopoulou, C.; Tasiopoulos, A.J.; Wernsdorfer, W.; Perlepes, S.P.; Christou, G. Nickel/lanthanide single-molecule magnets: {Ni3Ln} “stars” with a ligand derived from the metal-promoted reduction of di-2-pyridyl ketone under solvothermal conditions. Inorg. Chem. 2010, 49, 9737–9739. [Google Scholar] [CrossRef] [PubMed]
- Meihaus, K.R.; Rinehart, J.D.; Long, J.R. Dilution-induced slow magnetic relaxation and anomalous hysteresis in trigonal prismatic dysprosium(III) and uranium(III) complexes. Inorg. Chem. 2011, 50, 8484–8489. [Google Scholar] [CrossRef] [PubMed]
- König, S.N.; Chilton, N.F.; Maichle-Mössmer, C.; Pineda, E.M.; Pugh, T.; Anwander, R.; Layfield, R.A. Fast magnetic relaxation in an octahedral dysprosium tetramethyl-aluminate complex. Dalton Trans. 2014, 43, 3035–3038. [Google Scholar] [CrossRef] [PubMed]
- Meihaus, K.R.; Minasian, S.G.; Lukens, W.W., Jr.; Kozimor, S.A.; Shun, D.K.; Tyliszcak, T.; Long, J.R. Influence of pyrazolate vs N-heterocyclic carbene ligands on the slow magnetic relaxation of homoleptic trischelate lanthanide(III) and uranium(III) complexes. J. Am. Chem. Soc. 2014, 136, 6056–6058. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Beg, M.F.; Rajaraman, G. Role of magnetic exchange interactions in the magnetization relaxation of {3d–4f} single-molecule magnets: A theoretical perspective. Chem. Eur. J. 2016, 22, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Janzen, D.E.; Juchum, M.; Presow, S.R.; Ronson, T.K.; Mohr, W.; Clérac, R.; Feltham, H.L.C.; Brooker, S. Trigonal (−3) symmetry octahedral lanthanide(III) complexes of zwitterionic tripodal ligands: Luminescence and magnetism. Supramol. Chem. 2016, 28, 125–140. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Afonin, M.Y.; Bogomyakov, A.S.; Gamer, M.T.; Roesky, P.W.; Konchenko, S.N. Mono- and dinuclear rare-earth chlorides ligated by a mesityl-substituted β-diketiminate. Eur. J. Inorg. Chem. 2016, 22, 3666–3672. [Google Scholar] [CrossRef]
- Lim, K.S.; Baldovi, J.J.; Jiang, S.D.; Koo, B.H.; Kang, D.W.; Lee, W.R.; Koh, E.K.; Gaita-Ariño, A.; Coronado, E.; Slota, M.; et al. Custom coordination environments for lanthanoids: Tripodal ligands achieve near-perfect octahedral coordination for two dysprosium-based molecular nanomagnets. Inorg. Chem. 2017, 56, 4911–4917. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.J.; Yuan, J.; Zhang, Y.Q.; Sun, H.L.; Liu, C.M.; Kou, H.Z. Chiral six-coordinate Dy(III) and Tb(III) complexes of an achiral ligand: Structure, fluorescence, and magnetism. Dalton Trans. 2017, 46, 13035–13042. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Ren, M.; Bao, S.S.; Li, L.; Zheng, L.M. A luminescent heptanuclear DyIr6 complex showing field-induced slow magnetization relaxation. Chem. Commun. 2014, 50, 8356–8359. [Google Scholar] [CrossRef] [PubMed]
- Tiron, R.; Wernsdorfer, W.; Tuyeras, F.; Scuiller, A.; Marvaud, V.; Verdaguer, M. Hexacyanometalate molecular chemistry: Trinuclear CrNi2 complexes; micro-SQUID magnetisation studies of intermolecular interactions. Polyhedron 2003, 22, 2427–2433. [Google Scholar] [CrossRef]
- Parker, R.J.; Lu, L.D.; Batten, S.R.; Moubaraki, B.; Murray, K.S.; Spiccia, L.; Cashion, J.D.; David Rae, A.; Willis, A.C. Synthesis, crystal structures and magnetic properties of linear and bent trinuclear complexes formed by hexacyanometallates and copper(II) complexes. J. Chem. Soc. Dalton Trans. 2002, 3723–3730. [Google Scholar] [CrossRef]
- Tanaka, R.; Okazawa, A.; Konaka, H.; Sasaki, A.; Kojima, N.; Matsushita, N. Unique Hydration/dehydration-induced vapochromic behavior of a charge-transfer salt comprising viologen and hexacyanidoferrate(II). Inorg. Chem. 2018, 57, 2209–2217. [Google Scholar] [CrossRef] [PubMed]
- Bar, E.; Fuchs, J.; Rieger, D.; Aguilar-Parrilla, F.; Limbach, H.; Fehlhammer, W.P. Molecular and ionic hydrogen isocyanide (CNH) adducts with N–H···O– and “super-short” N–H···N– hydrogen bridges: Metal-stabilized hydrogen bisisocyanides. Angew. Chem. Int. Ed. 1991, 30, 88–90. [Google Scholar] [CrossRef]
- Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.M.; Alemany, P.; Alvarez, S. SHAPE; (Version 2.1); Universitat de Barcelona: Barcelona, Spain, 2013. [Google Scholar]
- Casanova, D.; Alemany, P.; Bofill, J.M.; Alvarez, S. Shape and symmetry of heptacoordinate transition-metal complexes: Structural trends. Chem. Eur. J. 2003, 9, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Haser, R.; Bonnet, B.; Roziere, J. Caractéristiques spectroscopiques des liaisons hydrogène N–H–N très fortes. Études des acides A3(CN)6, (A = H, D; M = Fe, Co) par spectroscopie de vibration. J. Mol. Struct. 1977, 40, 177–189. [Google Scholar] [CrossRef]
- Visinescu, D.; Toma, L.M.; Fabelo, O.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Low-dimensional 3d–4f complexes assembled by low-spin [FeIII(phen)(CN)4]− anions. Inorg. Chem. 2013, 52, 1525–1537. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; VCH Publishers: New York, NY, USA, 1993; ISBN 1-56081-566-3. [Google Scholar]
- Costes, J.P.; Dahan, F.; Dupuis, A.; Laurent, J.P. Nature of the magnetic interaction in the (Cu2+, Ln3+) pairs: An empirical approach based on the comparison between homologous (Cu2+, Ln3+) and (NiLS2+, Ln3+) complexes. Chem. Eur. J. 1998, 4, 1616–1620. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SADABS; Program for Siemens Area Detector Absorption Correction; University of Göttingen: Göttingen, Germany, 1996. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXS97; Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 1997. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Fund. Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | |
---|---|---|---|
Empirical formula | C36H83N24P4O8YFe2 | C36H83N24P4O8DyFe2 | C36H83N24P4O8DyCo2 |
Formula weight | 1304.75 | 1378.34 | 1384.50 |
Temperature/K | 293(2) | 293(2) | 293(2) |
Crystal system | Tetragonal | Tetragonal | Tetragonal |
Space group | I4/mmm | I4/mmm | I4/mmm |
a [Å] | 12.9312(3) | 12.9435(3) | 12.8888(3) |
b [Å] | 12.9312(3) | 12.9435(3) | 12.8888(3) |
c [Å] | 19.4611(10) | 19.5206(10) | 19.3416(8) |
α, β, γ [°] | 90 | 90 | 90 |
Volume [Å3] | 3254.2(2) | 3270.4(2) | 3213.0(2) |
Z | 2 | 2 | 2 |
Dc [g cm−3] | 1.332 | 1.400 | 1.431 |
μ (Mo Kα) [mm−1] | 1.482 | 1.726 | 1.821 |
Total reflections collected | 16866 | 14604 | 16563 |
Uniq reflections (Rint) | 1001(0.0633) | 903(0.0661) | 980(0.0517) |
No. of refined parameters | 144 | 146 | 144 |
R1, wR2 [I ≥ 2σ(I)] | 0.0668, 0.1790 | 0.0449, 0.1250 | 0.0454, 0.1219 |
R1, wR2 (all data) | 0.0840, 0.1932 | 0.0487, 0.1279 | 0.0492, 0.1242 |
Goodness of fit | 1.113 | 1.142 | 1.155 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, X.; Liu, Y.; Li, S.; Xue, A.; Wang, J.; Zhang, C.; Zhu, W.; Sun, H. The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds. Inorganics 2018, 6, 36. https://doi.org/10.3390/inorganics6020036
Xiong X, Liu Y, Li S, Xue A, Wang J, Zhang C, Zhu W, Sun H. The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds. Inorganics. 2018; 6(2):36. https://doi.org/10.3390/inorganics6020036
Chicago/Turabian StyleXiong, Xia, Yangyu Liu, Shan Li, Anqi Xue, Juan Wang, Chi Zhang, Wenhua Zhu, and Haoling Sun. 2018. "The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds" Inorganics 6, no. 2: 36. https://doi.org/10.3390/inorganics6020036
APA StyleXiong, X., Liu, Y., Li, S., Xue, A., Wang, J., Zhang, C., Zhu, W., & Sun, H. (2018). The Exploration and Analysis of the Magnetic Relaxation Behavior in Three Isostructural Cyano-Bridged 3d–4f Linear Heterotrinuclear Compounds. Inorganics, 6(2), 36. https://doi.org/10.3390/inorganics6020036