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Abstract: Ferromagnetic cluster spin wave theory (FCSWT) provides an exact and concise description
of the low-energy excitations from the ferromagnetic ground state in finite magnetic systems,
such as bounded magnetic molecules. In particular, this theory is applicable to the description
of experimental inelastic neutron scattering (INS) spectra at low temperatures. We provide a detailed
conceptual overview of the FCSWT. Additionally, we introduce a pictorial representation of calculated
wavefunctions, similar to the usual depiction of vibrational normal modes in molecules. We argue
that this representation leads to a better intuitive understanding of the excitations, their symmetry
properties, and has links to the energy and wavevector dependence of intensity in the neutron
scattering experiments. We apply FCSWT and illustrate the results on a series of examples with
available low-temperature INS data, ranging from the Mn10 supertetrahedron, the Mn7 disk to the
Mn6 single molecule magnet.

Keywords: ferromagnetic molecules; single molecule magnet; Ising model; magnetic exchange;
spin waves

1. Introduction

Understanding the ground state and excitations is key to all branches of magnetism, including
the magnetism in molecules [1–3]. The low-temperature, low-energy magnetism in molecules is
typically characterized by relatively few quantities such as the ground state spin, S, or the magnetic
anisotropy, D, in the ground state [3–5]. This often is sufficient to describe the basic features observed in
experiments. However, obviously, often a much deeper understanding is required, and when put under
the magnifying glass the magnetism in molecules in fact can reveal a fascinatingly rich and unique
set of phenomena. Recent examples would include spin Möbius strip state in odd antiferromagnetic
wheels, quantum phase interference and Néel vector tunneling, proximity to quantum critical point
in the Fe10Gd10 molecular wheel, precise detection of entanglement between molecular qubits by
neutron scattering, and many more [6–10]. In all these cases, the most pertinent features are not
sufficiently well covered by a set of numbers such as S and D, but require a detailed inspection of
the structure of the magnetic ground state and the elementary excitations. These are most cleanly
observed at low temperatures (where “low” depends on the excitation spectrum and thus on the
detailed system at hand), and in this work we accordingly will be concerned with low temperatures,
or in fact zero temperature.

One of the most successful theories in magnetism for describing magnetic ground states and
elementary excitations is spin wave theory (SWT) [1,2,11]. In fact, the term “spin wave theory” does not
refer to one single theory, but to a family of theories which use a number of different theoretical tools
and approaches. However, all these theories share a common ground in that they start from the
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assumption of an ordered ground state, which in fact could be regarded as the hallmark feature of the
spin wave theories.

SWT is widely applied to extended magnets, in one, two, and three dimensions [12–15].
The elementary excitations correspond to waves, where the spins precess around the polarized
orientation in the ground state, with phase differences between the spins described by a wave vector.
Applications of SWT to magnetic clusters as small as magnetic molecules, which typically contain
a dozen or so magnetic centers or less, is in contrast very scarce. This is so for a number of reasons,
one is that the starting assumption of an ordered ground state is strictly never realized, and the validity
of the SWT procedure is thus questionable. A notable exception is the class of magnetic molecules in
which predominant ferromagnetic exchange interactions between the spins in the molecule stabilize
the ferromagnetic or fully polarized ground state. Here, the theoretical methods of SWT become exact
at zero temperature, for molecules of any size or composition. Luckily, this comprises quite a number
of experimentally relevant magnetic molecules, such as high-spin molecules, Lanthanide containing
clusters, or single molecule magnets.

Few molecules with antiferromagnetic couplings were analyzed using SWT techniques [16–22].
The focus in this work is however on the ferromagnetically coupled clusters, for which SWT is
guaranteed to work exactly for the ground state and the zero-temperature excitations. When applied
to small, bounded ferromagnetic clusters, the SWT techniques and their results are similar in many
respects to those in extended systems, but also notable differences exist. Therefore, in order to make
the distinction apparent, and to avoid potential confusion, we use the term Ferromagnetic Cluster Spin
Wave Theory (FCSWT) for the set of techniques relevant in bounded clusters.

It should be mentioned that the use of the word “spin wave” in the context of bounded spin
systems is not totally appropriate. This is because the excitations are not waves in the strict sense.
The situation is in fact very analogous to that in elastic media, where in the extended systems the
normal modes form e.g., acoustic waves, while in the bounded systems such as molecules the normal
modes are recognized as vibrations. So it is with the magnetic normal modes discussed in this work:
in the extended magnetic systems they form spin waves, while in the bounded spin clusters they form
excitations in analogy to the vibrations in molecules. However, in the absence of better language,
we simply call them “spin waves” too.

The purpose of this article is threefold. First, the concepts of FCSWT are introduced in both
a review and tutorial-like manner. That is, the few descriptions of FCSWT available in the literature
are presented in more detail and with greater accuracy, and the discussion is extended by some
simple examples for better illustration of the concepts. Second, a graphical representation of the
elementary magnetic excitations or spin waves, respectively, is introduced. This should provide
great help for better understanding the physics of these excitations, and provide guidance to
experimentalists. Graphical representations of e.g., molecular orbitals obtained from density functional
theory (DFT) or of molecular vibrations using vibrational coordinates have proven highly useful
in research. The representation presented in this work will hopefully establish a similarly useful
tool for studying ferromagnetic molecules. Finally, FCSWT is applied to three different molecules,
the Mn10 supertetrahedron [23], a Mn7 disk-like molecule [24], and a Mn6 single molecule magnet [25].
These three molecules were studied previously using inelastic neutron scattering (INS), which permits
direct observation of spin wave excitations and which is thus a primary tool for their experimental
investigation [3,26]. The availability of these data facilitates a comparison to the results of FCSWT.
Furthermore, these molecules are well suited for FCSWT, but each of them emphasizes a different
characteristic aspect. FCSWT analyses were reported before for Mn10 and Mn7 [23,24], which are
reviewed here and significantly extended. Single molecule magnets were, to the best of our knowledge,
not yet analyzed with FCSWT, and indeed some additional new aspects need to be considered.

SWT is very well known to physicists, but less so to chemists. The presentation in this work is
accordingly geared towards chemists, and where possible analogies to methods familiar to chemists
are mentioned. In fact, the basic methods required for applying FCSWT in practice are all part of
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standard chemistry textbooks. The main new aspect is that they are applied in a different context here.
Experimental methods and the calculation of experimental observables such as INS intensities are not
discussed, not to overload the presentation. It is mentioned in passing that FCSWT can be a useful tool
for a variety of experiments, such as INS [3], four-dimensional polarized neutron spectroscopy [27],
paramagnetic nuclear resonance [28], and others.

2. Concepts

2.1. Basics

As indicated in the introduction, several techniques exist for pursuing spin wave calculations.
For the ferromagnetic case, which is the topic of this work, they all produce identical, and in fact exact
results for the zero-temperature excitations. That is, the calculated energies and wavefunctions are the
exact eigenvalues and eigenstates of the Hamiltonian.

The Hamiltonian considered in this work consists of Heisenberg exchange and ligand-field terms,
and is written as:

Ĥ = −∑
i,j

JijŜi·Ŝj + ∑
i

Di

(
Ŝ2

i,z −
1
3

)
(1)

with the standard meaning of the symbols. The length of the i-th spin is denoted as si, and the number
of spin centers in the cluster is N. As alluded to in the introduction, the single requirement for the
presented methods to be valid is that the ground state contains the fully polarized ferromagnetic state:

|M = Mmax〉 = |M1 = s1, M2 = s2, . . . , MN = sN〉 (2)

or its opposite |M = −Mmax〉. Here, M denotes the magnetic quantum number or eigenvalue of the
z-component of the total spin operator Ŝz and Mi the magnetic quantum number of the i-th spin center.
The total spin quantum number will be denoted as S. The quantum numbers S and M are restricted by
the maximum values Mmax = Smax = ∑N

i = 1 si, which are achieved in the fully polarized state.
Any spin system for which the states |M = ±Mmax〉 are ground state will in the context of this

work be called ferromagnetic. Accordingly, the coupling constants, Jij, need not to be all ferromagnetic
(Jij > 0), some can be antiferromagnetic (Jij < 0), but their overall effect must be such that the states
Equation (2) are ground state. This happens in a relatively large class of molecules, which could be
characterized as “ferromagnetically coupled with Ising anisotropy”.

The Hamiltonian Equation (1) is not the most general Hamiltonian which permits a fully
polarized ground state. Examples would be systems with additional higher-order ligand-field
terms (see also Section 3.3), Ising exchange interactions, applied magnetic fields, and others.
However, it is general enough to present the FCSWT procedures comprehensively, and includes
systems of interest, such as several single molecule magnets and lanthanide containing clusters.
It should not be difficult to extend the results to other systems.

In this work, two SWT techniques are presented. The first is, so to say, the simplest possible,
and relies on basic quantum mechanical concepts. We will find it most convenient for practical
calculations. The second method uses the formalism of boson raising and lowering operators, and is the
standard approach in physics. It will provide us with deeper insight into the excitations calculated
with the first method. The methods will be introduced in two steps: first, the case of a dimer will be
treated, and then the results will be generalized to arbitrary clusters.

2.2. Dimers

The Hamiltonian of a dimer with isotropic exchange coupling reads:

Ĥ = −JŜ1·Ŝ2 (3)
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and its eigenvalues and states are well known, E(S) = − 1
2 JS(S + 1) and |S, M〉. Let’s first consider

a spin-1/2 dimer, for which s1 = s2 = 1/2 and Smax = Mmax = 1. Its singlet and triplet eigenstates
are:

|S = 0, M = 0〉 =
1√
2

(∣∣∣∣12 ,−1
2

〉
−
∣∣∣∣−1

2
,

1
2

〉)
(4)

|S = 1, M = 1〉 =

∣∣∣∣12 ,
1
2

〉
(5a)

|S = 1, M = 0〉 =
1√
2

(∣∣∣∣12 ,−1
2

〉
+

∣∣∣∣−1
2

,
1
2

〉)
(5b)

|S = 1, M = −1〉 =

∣∣∣∣−1
2

,−1
2

〉
(5c)

with a standard notation of the states. Obviously, for a ferromagnetic interaction (J > 0), the fully
polarized states |M = ±Mmax〉 or |S = 1, M = ±1〉, respectively, are ground states. Let’s pick the
state |M = Mmax〉. We can then further observe that the subspace for M = Mmax − 1 = 0 consists
of two states. Moreover, we can construct a basis for this subspace by applying the lowering spin
operator of each spin site, Ŝ−i , to the fully polarized state:

|i = 1〉 ≡ 1√
2s1

Ŝ−1 |M = Mmax〉 =

∣∣∣∣−1
2

,
1
2

〉
(6a)

|i = 2〉 ≡ 1√
2s2

Ŝ−2 |M = Mmax〉 =

∣∣∣∣12 ,−1
2

〉
. (6b)

This method for constructing a basis |i〉 for the subspace M = Mmax − 1 works always,
for arbitrary number N of spin centers and arbitrary spin lengths si, because: (i) there are as many
spin centers and thus operators Ŝ−i as there are states in the subspace; (ii) the states generated by
applying Ŝ−i to |M = Mmax〉 are mutually orthogonal; and (iii) the states generated by applying Ŝ−i
to |M = Mmax〉 all belong to the magnetic quantum number M = Mmax − 1. We thus have created
a complete basis, and the eigenenergies and wave functions belonging to M = Mmax − 1 are obtained
by diagonalizing the Hamiltonian matrix in this basis, Hij =

〈
i
∣∣Ĥ∣∣j〉. Note that by construction

the dimension of the matrix Hij is equal to the number N of spin centers in the system, or two in
the present case. The calculation of the matrix elements is straightforward; a general formula will
be given in the next chapter. In the present case, the eigenstates and energies can be obtained by
inspection, yielding:

|k = 0〉 =
1√
2
(|i = 1〉 + |i = 2〉) (7a)

|k = 1〉 =
1√
2
(|i = 1〉 − |i = 2〉) (7b)

where k is introduced as an arbitrary label to index the states. It is easily confirmed that the
states |k = 0〉 and |k = 1〉 are exactly the states |S = 1, M = 0〉 and |S = 0, M = 0〉, respectively.
Thus, the procedure of constructing a basis for M = Mmax − 1 by applying the lowering spin
operators Ŝ−i to the fully polarized state |M = Mmax〉, and diagonalizing the Hamiltonian matrix in
this basis, has provided us with the exact eigenstates and energies in that subspace. The resulting set
of eigenstates are called “spin waves” (the justification is given later).

Some notational comments. The state created by applying the lowering spin operators Ŝ−i to
the fully polarized state describes a spin deviation at the site i. These states will be called “local spin
deviations” and the associated wave functions will be written as |i〉 or |j〉. The spin wave states will be
written as |k〉 or |q〉, where the values of k (q) may be chosen as appropriate (if not specified otherwise
the states are indexed by integers running from 0 to N − 1).
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For the spin-1/2 dimer, one arrives at the picture shown in Figure 1. The spin-1/2 dimer exhibits
four eigenstates, one of them is the fully polarized ground state, and two of them are calculated by
using FCSWT. For the spin-1/2 dimer this is sufficient to completely construct the energy spectrum,
since the “missing” fourth state belongs to the S = 1 multiplet, and thus must be degenerate to
the fully polarized state and can be constructed by repeated application of the total spin lowering
operator Ŝ− = ∑i Ŝ−i . In the general case, the information obtained from FCSWT will not be
sufficient to arrive at a complete energy spectrum (not even close to that), as upcoming examples will
demonstrate. However, FCSWT provides a complete description of the excitations relevant at zero
temperature. For instance, the neutron scattering intensity is subject to the selection rules ∆S = 0,±1
and ∆M = 0,±1 [3]. These imply that, at zero temperature, only transitions with energies matching
the excitation energies of the spin waves are allowed. The argument applies analogously to other
experimental techniques. This is an important finding, and the foundation for the usefulness of FCSWT
in practical work.
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Figure 1. Sketch of the energy spectrum of a ferromagnetic spin-1/2 dimer, with the spin wave
excitations emerging from the |M = Mmax〉 state indicated by arrows.

Before proceeding to the case of a general spin cluster, it is interesting to discuss some extensions.
It might be tempting to apply the approach also to the antiferromagnetic dimer (J < 0). The antiparallel
alignment of the spins in the ground state, as it is obtained in the classical model, might be translated
into the quantum state |↑↓〉 = | + 1/2,−1/2〉 (or its opposite), which is known as the Néel state [2].
However, here, application of the lowering spin operators Ŝ−i does not produce a viable basis, nor does
the diagonalization of the associated Hamiltonian matrix yield reasonable states. This is obviously due
to the fact that the Néel state is not an eigenstate of the Heisenberg Hamiltonian Equation (3). Only for
systems which undergo an antiferromagnetic phase transition is the ground state correctly described
by the Néel state [1,2], and this can happen only in extended systems [2]. Bounded spin systems
such as magnetic molecules do not exhibit magnetic phase transitions. Therefore, applying SWT to
antiferromagnetic molecules is not justified in general, and needs a careful case-to-case analysis [18,21].
An analogous deficiency occurs in ferromagnetic clusters with easy-axis anisotropy, where a state
similar to |S = 1, M = 0〉 would be ground state. These findings explain the limitation in this work
to “ferromagnetic systems with Ising anisotropy”, as defined before.

Also dimers with spins larger than 1/2 are illustrative examples (we continue with discussing
ferromagnetic systems). The application of the lowering spin operators Ŝ−i to the fully polarized ground
state yields two spin waves, which shall again be denoted as |k = 0〉 and |k = 1〉 (their expansion
in terms of |M1, M2〉 functions is of course different from Equation (6)). For the case s1 = s2 = 1,
Smax = Mmax = 2, which is discussed exemplarily, the energy spectrum is shown in Figure 2,
where also the situation of a dimer with additional Ising type anisotropy is presented.



Inorganics 2018, 6, 49 6 of 25

Inorganics 2018, 6, 49  5 of 24 

 

fully polarized state and can be constructed by repeated application of the total spin lowering 

operator �̂�− = ∑ �̂�𝑖
−

𝑖 . In the general case, the information obtained from FCSWT will not be sufficient 

to arrive at a complete energy spectrum (not even close to that), as upcoming examples will 

demonstrate. However, FCSWT provides a complete description of the excitations relevant at zero 

temperature. For instance, the neutron scattering intensity is subject to the selection rules ∆𝑆 = 0, ±1 

and ∆𝑀 = 0, ±1 [3]. These imply that, at zero temperature, only transitions with energies matching 

the excitation energies of the spin waves are allowed. The argument applies analogously to other 

experimental techniques. This is an important finding, and the foundation for the usefulness of 

FCSWT in practical work. 

 

Figure 1. Sketch of the energy spectrum of a ferromagnetic spin-1/2 dimer, with the spin wave 

excitations emerging from the |𝑀 = 𝑀𝑚𝑎𝑥⟩ state indicated by arrows. 

Before proceeding to the case of a general spin cluster, it is interesting to discuss some extensions. 

It might be tempting to apply the approach also to the antiferromagnetic dimer ( 𝐽 < 0 ). The 

antiparallel alignment of the spins in the ground state, as it is obtained in the classical model, might 

be translated into the quantum state | ↑↓⟩ = | + 1/2, −1/2⟩ (or its opposite), which is known as the 

Néel state [2]. However, here, application of the lowering spin operators �̂�𝑖
− does not produce a 

viable basis, nor does the diagonalization of the associated Hamiltonian matrix yield reasonable 

states. This is obviously due to the fact that the Néel state is not an eigenstate of the Heisenberg 

Hamiltonian Equation (3). Only for systems which undergo an antiferromagnetic phase transition is 

the ground state correctly described by the Néel state [1,2], and this can happen only in extended 

systems [2]. Bounded spin systems such as magnetic molecules do not exhibit magnetic phase 

transitions. Therefore, applying SWT to antiferromagnetic molecules is not justified in general, and 

needs a careful case-to-case analysis [18,21]. An analogous deficiency occurs in ferromagnetic clusters 

with easy-axis anisotropy, where a state similar to |𝑆 = 1, 𝑀 = 0⟩ would be ground state. These 

findings explain the limitation in this work to “ferromagnetic systems with Ising anisotropy”, as 

defined before. 

Also dimers with spins larger than 1/2 are illustrative examples (we continue with discussing 

ferromagnetic systems). The application of the lowering spin operators �̂�𝑖
− to the fully polarized 

ground state yields two spin waves, which shall again be denoted as |𝑘 = 0⟩ and |𝑘 = 1⟩ (their 

expansion in terms of |𝑀1, 𝑀2⟩ functions is of course different from Equation (6)). For the case 𝑠1 =

𝑠2 = 1, 𝑆𝑚𝑎𝑥 = 𝑀𝑚𝑎𝑥 = 2, which is discussed exemplarily, the energy spectrum is shown in Figure 2, 

where also the situation of a dimer with additional Ising type anisotropy is presented. 

 

Figure 2. Sketch of the energy spectrum of a ferromagnetic spin-1 dimer, with the spin wave 

excitations emerging from the |𝑀 = 𝑀𝑚𝑎𝑥⟩ state indicated by arrows. Left: isotropic dimer; right: 

dimer with Ising type anisotropy. 

S = 0

S = 1

E

M0 1-1

k=0

k=1

M=Mmax

isotropic

S = 0

S = 1

E

M0 2-2

S = 2

1-1

k=1

k=0

M0 2-2 1-1

k=1

k=0

Ising

Figure 2. Sketch of the energy spectrum of a ferromagnetic spin-1 dimer, with the spin wave excitations
emerging from the |M = Mmax〉 state indicated by arrows. Left: isotropic dimer; right: dimer with
Ising type anisotropy.

In both the isotropic and the Ising dimers, the fully polarized states are ground states.
As before, FCSWT provides the complete zero-temperature excitation spectrum, as observable in
e.g., INS. For an isotropic spin cluster the spin wave with the lowest energy, or the state |k = 0〉,
respectively, must correspond to the M = Mmax − 1 component of the ferromagnetic ground-state
spin multiplet. That is, the state |k = 0〉must be identical to the state |S = Smax, M = Mmax − 1〉,
and its excitation energy must be zero (this was also observed before for the spin-1/2 dimer).
In the presence of an Ising anisotropy, the state |k = 0〉 is raised in energy with respect to the
ground state, giving rise to what is known as zero-field splitting (ZFS) [5,29]. One thus arrives at
the conclusion that, at zero temperature, the excitation spectrum consists of N − 1 excitations due to
exchange splitting, plus one ZFS excitation due to anisotropy splitting. One can also infer that the
energy of the lowest spin wave must be equal to or higher than the energy of the fully polarized states,
since otherwise the fully polarized states would not be ground state, and the starting assumption for
the validity of the method be violated. These rules are often useful in practice.

At this point, a further comment is appropriate. The physics which underlies the state |k = 0〉
appears to be different from that of the other states |k > 0〉, in as much as the former corresponds to
a ZFS, and is a component of the ground-state spin multiplet in the isotropic cluster. In fact, the |k = 0〉
state plays a distinctive role, which in bounded spin clusters is associated with a number of subtleties
which need careful attention [18,21]. It would thus be appropriate to exclude the |k = 0〉 state from
the spin wave spectrum [18,21]. However, in the present work, such details are irrelevant and the
|k = 0〉 state will also be called a spin wave.

2.3. General Concept

The observations for the dimer are generic, and valid for general clusters, consisting of arbitrary
number N of spin centers with arbitrary spin lengths si (the exchange and anisotropy parameters are
not arbitrary, they must result in a fully polarized ground state). The method presented previously is
straightforward to extend.

The fully polarized state |M = Mmax〉 is picked again. The local spin deviations are then
defined as:

|i〉 =
1√
2si

Ŝ−i |M = Mmax〉 (8)

where the index runs from i = 1, . . . , N. In this basis, the matrix elements Hij =
〈
i
∣∣Ĥ∣∣j〉 of the

Hamiltonian Equation (1) are calculated to:

Hij = EFδij − Di(2si − 1)δij +

(
∑
n

sn(Jin + Jni)

)
δij −

√
sisj
(

Jij + Jji
)

(9)
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where EF = −∑i,j Jijsisj + ∑i Di
(
s2

i − 1/3
)

is the energy of the fully polarized state. This constant
is irrelevant in the analysis of experiments, and often will be dropped (set to zero). The formula has
an intuitive structure: the first three terms come from the Ŝi,zŜj,z and Ŝ2

i,z operators in the Heisenberg
exchange and magnetic anisotropy terms, and thus contribute to the diagonal elements in the
Hamiltonian matrix. The last term however comes from the Ŝi,xŜj,x + Ŝi,yŜj,y =

(
Ŝ+

i Ŝ−j + Ŝ−i Ŝ+
j

)
/2

operators in the Heisenberg exchange term and thus produce non-diagonal elements. It is due to the
latter that the local spin deviations |i〉 are mixed to form new states, the spin waves |k〉. Diagonalization
of the Hamiltonian matrix yields the eigenvalues and eigenstates, or spin wave energies and spin wave
states, εk and |k〉, respectively,

↔
H
→
v k = (εk + EF)

→
v k (10a)

|k〉 = ∑
i

vi,k|i〉 (10b)

where
↔
H represents the Hamiltonian matrix Hij, and

→
v k = (v1,k, v2,k, . . . , vN,k)

T the eigenvector
corresponding to the eigenvalue εk + EF (the eigenvectors can always be chosen to be real).
With knowing the spin wave energies and states, experimental observables such as the neutron
scattering intensity can be calculated and compared to experiment. It should be noted that this is
achieved by diagonalizing a matrix of dimension N, which is generally massively smaller than the
dimension of the Hilbert space of the spin system (even when symmetries are exploited). FCSWT can
thus be handled easily with e.g., computer algebra systems, which makes it a useful and simple tool
in practice.

As an example, for an isotropic, symmetric dimer with s1 = s2 = s, one obtains from
Equation (9): EF = −Js2, H11 = H22 = EF + Js, and H12 = H21 = −Js. Diagonalizing this
2 × 2 matrix is a standard text book example, yielding the eigenvalues ε0 = 0, ε1 = 2Js, and the
(un-normalized) eigenstates

→
v 0 = (1, 1)T and

→
v 1 = (1,−1)T . The two spin wave states are thus

|k = 0〉 = (|i = 1〉 + |i = 2〉)/
√

2 and |k = 1〉 = (|i = 1〉−|i = 2〉)/
√

2, which correspond
exactly to the states given in Equation (7). Note that these results apply to any value of s.

The above procedure, with the key result Equation (9), establishes a straightforward recipe for
calculating the observable zero-temperature excitations. It is, however, somewhat of a deus ex machina.
It, for example, does not suggest an approach for calculating the remaining energies and states in
the energy spectrum, nor higher temperature results. It also does not reveal further insight into the
nature of the excitations. Physicists have thus developed more powerful techniques, which at first may
appear abstract but are actually well suited for intuition.

One widely used technique is to associate the spins with bosons, or the spin lowering and raising
operators Ŝ−i , Ŝ+

i with boson creation and annihilation operators â†
i , âi, respectively [2,11]. This renders

the spin problem into one of boson particles, which have some favorable properties. It comes at the
cost of some approximations (and some subtleties). Nevertheless, the advantages are so numerous
that it has become the standard approach in SWT. Gladly, for the topic of this work, this technique is
again exact [11,30].

The boson-operator technique essentially replaces each spin center with a harmonic quantum
oscillator, and the Heisenberg exchange describes a coupling of these oscillators. The spin Hamiltonian
Equation (1) thus becomes a Hamiltonian of N coupled quantum oscillators, which is familiar in
many branches of science, such as in the treatment of the elastic modes in molecules (vibrations)
and solids (phonons).

The idea is to start, for a single spin, from its fully polarized alignment, Mi = si, and to treat
the deflection of the spin by one step, Mi → Mi − 1 , as if it was due to the creation of one boson
particle. In operator language (up to second order, which is sufficient for the purposes of this work),
this leads to:

Ŝ−i =
√

2si â†
i (11a)



Inorganics 2018, 6, 49 8 of 25

Ŝ+
i =

√
2si âi (11b)

Ŝi,z = si − â†
i âi (11c)

where â†
i creates and âi annihilates a boson at site i, and are defined as usually by the matrix elements

â†
i |ni〉 =

√
ni + 1|ni + 1〉 and âi|ni〉 =

√
ni
∣∣ni − 1

〉
. Here, |ni〉 denotes an eigenstate of the

number operator â†
i âi, and the boson number ni can assume the values 0, 1, · · · , ∞. By applying

these operators one, so to say, climbs up and down the ladder of states Mi = si, si − 1, si − 2, · · · , as
sketched in Figure 3.Inorganics 2018, 6, 49  8 of 24 
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Figure 3. Sketch of the spin states for a single spin of length si = 3, with the states classified by the
magnetic quantum number Mi or the boson number ni = si −Mi. The boson-operator technique for
representing spins is valid only for small boson numbers or small spin deflections.

Obviously, the creation of one boson at site i exactly produces a spin deflection at this site,
or the state |i〉, which implies:

|i〉 = |ni = 1〉 = â†
i |0〉. (12)

In this picture, the fully polarized state |M = Mmax〉 corresponds to a state with zero bosons,
or the boson vacuum written as |0〉, since in this state all spins are maximally aligned and spin
deflections strictly absent. Exploiting Equation (11), the spin Hamiltonian Equation (1) can be
reformulated in terms of the boson operators, which yields the boson Hamiltonian:

ĤB = EF −∑
i

Di

(
2si â†

i âi − 1
)

â†
i âi + ∑

i,j
sj
(

Jij + Jji
)
â†

i âi −∑
i,j

√
sisj
(

Jij + Jji
)
â†

i âj. (13)

The matrix of the boson Hamiltonian ĤB in the space of the states |i〉 = â†
i |0〉 or the one-boson

sector, respectively, is easily calculated, and exactly reproduces the matrix Hij given in Equation (9).
The two techniques are thus indeed equivalent (with respect to the zero-temperature excitations).

The diagonalization of the boson Hamiltonian ĤB can be accomplished by using the eigenvectors
of the Hamiltonian matrix Hij for introducing new boson operators ĉ†

k , ĉk, which shall be called magnon
operators, and the associated particles as magnons:

ĉ†
k = ∑

i
vi,k â†

i , ĉk = ∑
i

v∗i,k âi. (14)
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The magnon Hamiltonian then assumes the simple form:

ĤM = EF + ∑
k

εk ĉ†
k ĉk (15)

where the energies εk are the eigenvalues obtained before in Equation (10). The eigenstates in the
one-magnon sector, which are the zero-temperature spin wave excitations, are generated by:

|k〉 = ĉ†
k |0〉. (16)

So far, the previous results, obtained with using the spin lowering operator technique, have just
been rediscovered. However, the physical picture has changed considerably, namely to a picture
in which the Heisenberg interactions dress bare particles, leading to new particles, the magnons.
There are N different magnons, distinguished by the index k, and each is associated with an excitation
energy εk for its creation. More importantly, the Hamiltonian describing the magnons is exactly that
of N independent harmonic quantum oscillators, where each oscillator vibrates with frequency εk/h.
This suggests to identify the zero-temperature excitations with the normal modes of the “magnetic
harmonic oscillators”, or spin waves, and the magnons with their quanta. This also establishes
a connection to the normal modes in elastic media, which is exploited in the next chapter.

2.4. Analogy to Vibrations and Pictorial Representation

In this chapter, we will present a graphical representation of the spin wave excitations, in order to
reach a deeper insight into their nature, structure and properties. We will repeatedly stress the analogy
with the elastic motion in molecules or vibrations, respectively. The analogy originates from the fact,
that both systems are described by a set of coupled harmonic oscillators, and that thus mathematical
and pictorial tools widely familiar for the elastic case can largely be carried over to the spin case.

The pictorial representation is based on the solutions of the classical version of the spin
Hamiltonian Equation (1), which are essentially identical to the solutions of the quantum version
discussed before [2]. This is a well-known fact [2,31] (also well known for the elastic case), and roots in
the equivalence of the classical and quantum equations of motion. The treatment is briefly reviewed
here, for establishing the required results in a proper context. Only the isotropic case, Di = 0,
is considered in the following for simplicity; the final results hold equally for the general case.

The equations of motions corresponding to the Hamiltonian Equation (1) read:

d
dt

→
S i = ∑

j

(
Jij + Jji

)(→
S i ×

→
S j

)
=g

µB
}
→
S i ×

→
B e f f (17)

where
→
S i is the spin vector of the i-th spin,

→
B e f f an effective magnetic field, and the remaining symbols

have the standard meaning. The right-hand side of the equation emphasizes the physical interpretation:

The motion of
→
S i is determined by the torque on this spin due to an effective magnetic field generated

by the exchange interaction with the other spins in the cluster. The FCSWT results are obtained by
linearizing the equations of motions i.e., by assuming:

→
S i = si

→
e z + Si,y

→
e y + Si,x

→
e x (18)

with constant projections on the z axis, Si.z ≈ si (the z axis is chosen for the direction of the spins in the
fully polarized state). The equations of motions then lead to the eigenvalue equation:

↔
A
→
c k = }ωk

→
c k (19)
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with the matrix:

Aij =

(
∑
n
(Jin + Jni)sn

)
δij −

(
Jij + Jji

)
si. (20)

For the k-th normal mode, with eigenvalue ωk and eigenvector
→
c k = (c1,k, c2,k, . . . , cN,k)

T

(which can always be chosen real), the solution for the motion of an individual spin becomes:

→
S i(t) =

 ci,kuk cos(ϕk −ωkt)
ci,kuk sin(ϕk −ωkt)

si

 (21)

where uk and ϕk are an arbitrary overall amplitude and phase, which in the following are set to uk = 1
and ϕk = 0, without loss of generality.

The classical motion is described by a precession of each spin around the z axis, with a spin

deflection given by the coefficient ci,k in the eigenvector. Importantly, all spins
→
S i precess in phase

(note that for negative ci,k the spin appears to be out of phase by π). The collective precession of the
spins in a normal mode is thus characterized by different deflection angles for each spin, but equal
phases for all spins. This is in difference to waves, or the solutions for extended systems, where the
collective precession is characterized by equal deflection angles but different phases for the spin centers.
It is, however, in close analogy to the elastic case, and we indeed recover the analogy of a celebrated
result for molecular vibrations [32,33]:

All spins precess with identical frequency and all spins involved in the precession pass through,
e.g., the x axis simultaneously.

This is a key finding of this chapter. The Hamilton matrix Hij in Equation (9) and the matrix Aij in
Equation (20) are not identical, but are similar (in the mathematical sense). They thus exhibit identical
eigenvalues, and the classical and quantum eigenvectors are related through:

ci,k =

√
2si

Ck
vi,k (22)

where a factor
√

2 has been included for convenience, and Ck is an obvious normalization constant.
The suggested procedure for obtaining the classical eigenvectors is to diagonalize the quantum
Hamiltonian matrix Equation (9), and then to apply Equation (22).

Based on the classical solution we suggest two pictorial representations. The first consists of
drawing the magnetic core of the molecule, and attaching a deflected arrow and a cone to each
spin center, there the length of the cone corresponds to the spin length si and its radius to

∣∣ci,k
∣∣.

For larger molecules, this representation can become confusing. The second representation consists of
drawing a planar schematic of the magnetic core, and attaching a circle or disk to each spin center,
with a radius given by

∣∣ci,k
∣∣, and an arrow to indicate the location of the tip of the precessing spin

vector. In both representations attention is given to the phases of the spin precession by plotting the
arrows accordingly, i.e., all spins with positive value of ci,k are plotted in one direction, and those
with negative ci,k are plotted with opposite deflection. For the example of a dimer, the two spin wave
states are shown for both representations in Figure 4. It is noted that the latter representation could
also be drawn without the circles or disks, i.e., with only the arrows representing the amplitudes of
the spin deflections ci,k, which would produce pictures in close analogy to those commonly used for
representing molecular vibrations [32,33]. In the following, arrow heads are omitted for clarity.
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Figure 4. Pictorial representation of the spin wave states of a dimer. The two states |k = 0〉 and
|k = 1〉 of Equation (7) are plotted both for the three-dimensional “cone” representation (left) and the
planar “disk” representation (right). The spin vectors are represented by the arrows. The spins are
precessing in phase, which for spins with negative coefficient ci,k results in an “opposite” orientation of
the arrow.

The chapter is concluded with emphasizing that also the mathematical tools familiar for
calculating and analyzing molecular vibrations can be carried over, essentially one-to-one, to the case
of the spin wave excitations. This is especially true for the symmetry concepts, which is outlined
exemplarily for a hypothetical spin cluster of four spin-5/2 spins centered around a spin-12 spin,
see Figure 5a. The presentation follows Reference [23]. This five-spin model will also be of use in the
discussion of the Mn10 cluster in the next chapter. The spin Hamiltonian is given by:

Ĥ = −J′
(
Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4

)
·Ŝ0. (23)

The energies and eigenstates can be trivially calculated using Kambe’s approach [29,34],
the emphasis here is however on the methods discussed in this paper.

The FCSWT procedure starts from the fully polarized state |M = Mmax〉 with Mmax = 22.
The basis states for the subspace with M = Mmax − 1 = 21 are generated by applying Equation (8).
This yields five states |i〉, where i = 0, . . . , 4. The Hamiltonian matrix Hij is calculated with
Equation (9) as:

↔
H = J′


10 −

√
30 −

√
30 −

√
30 −

√
30

−
√

30 12 0 0 0
−
√

30 0 12 0 0
−
√

30 0 0 12 0
−
√

30 0 0 0 12

 + EF (24)

where EF = −120J′.
This matrix can be analytically diagonalized by using its spatial symmetry properties [33].

The point group of the model is Td and the five-dimensional Hilbert space decomposes into the
irreps 2 × A1 + 1 × T2. Instead of using the symmetry group Td, it is easier to view the
spin cluster as a planar four-pointed star (Figure 5a) and exploit its D4 symmetry (the technique
is similar to the descent-in-symmetry technique in ligand-field theory [33]). The C4 symmetry element
implies a quantum number κ with values 0,±π

2 , π, and symmetry adapted linear combinations
(SALCs) |κ〉 ∝ ∑4

n = 1 exp[i(n− 1)κ]|n〉. From the five basis states two symmetry adapted states
with κ = 0 are obtained, namely |A1, 0〉 = |i = 0〉 and |A1, 1〉 ∝ ∑4

i = 1 |i〉. Since the symmetry
group is D4, the two symmetry adapted states generated for κ = ±π

2 are energetically
degenerate and can be linearly combined. We select |T2, 0〉∝ (1 + i)

∣∣κ = +π
2
〉
+ (1− i)

∣∣κ = −π
2
〉
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and |T2, 1〉∝ (1− i)
∣∣κ = +π

2
〉
+ (1 + i)

∣∣κ = −π
2
〉
. Finally, |T2, 2〉∝ κ| = π〉. The following

SALCs result:
|A1, 0〉 = |0〉

|A1, 1〉 = 1
2 (|1〉 + |2〉 + |3〉 + |4〉)

|T2, 0〉 = 1
2 (|1〉 − |2〉 − |3〉 + |4〉)

|T2, 1〉 = 1
2 (|1〉 + |2〉 − |3〉 − |4〉)

|T2, 2〉 = 1
2 (|1〉 − |2〉 + |3〉 − |4〉)

(25)

which also transform according to the irreps of the Td group. In this new basis the Hamiltonian matrix
factorizes to:
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It thus remains to diagonalize a 2 × 2 block, which yields eigenstates with energy 0 and
22 J′, and eigenfunctions |ε0〉 = 0.739|A1, 0〉 + 0.674|A1, 1〉 and |ε4〉 = 0.674|A1, 0〉−0.739|A1, 1〉,
which belong to the irrep A1 of the Td group. In addition, the energy spectrum exhibits a three-fold
degenerate level at an excitation energy of 12 J′, with eigenfunctions

∣∣εk = 1,2,3
〉
= |T2, k− 1〉,

which belong to the irrep T2.
In passing, it is noted that the 2 × 2 block could also have been block-diagonalized by exploiting

properties deduced in Section 2.1. The Hamiltonian Equation (23) is isotropic, and thus one of
its eigenstates has to correspond to the M = Mmax − 1 component of the fully polarized state
|M = Mmax〉. Therefore, this eigenstate has the same energy as the ground state, i.e., ε0 = 0, and the
corresponding wave function can be obtained by applying the total spin lowering operator Ŝ− to
|M = Mmax〉, which yields Ŝ−|M = Mmax〉 = ∑i

√
2si|i〉. Thus, one of the five eigenstates is already

known, and can be used to block-diagonalize the sector transforming as the irrep A1.
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The resulting spin wave states are sketched in Figure 5b. From the pictorial representation it is
immediately obvious that the spin waves at energies of 0 and 22 J′ indeed belong to the trivial irrep A1.
Also, they form a symmetric and anti-symmetric pair of states with respect to the spin precession of the
central spin and the outer spins. In these two states, the collective spin precession is concentrated on
the central spin, with weaker precession of the outer spins. In contrast, in the three T2 states the central
spin does not contribute to the precession at all, i.e., here the excitation is completely localized on
the outer spin centers. These features are related to non-trivial, observable effects in e.g., the neutron
scattering intensity, as will be discussed further below.

3. Applications

In the following, the zero-temperature excitations of three magnetic molecules, denoted here
as Mn10, Mn7, and Mn6, will be discussed in terms of FCSWT. All three molecules exhibit a fully
polarized ground state, and were studied in detail by INS at low temperatures [23–25]. For Mn10 and
Mn7 the discussion follows Refs. [23,24], for the single molecule magnet Mn6 a FCSWT analysis was
not attempted before. For all three molecules the spin wave matrix Equation (9) can be analytically
diagonalized using symmetry concepts. This is especially true for the Mn10 molecule, for which
the matrix is of dimension 10 × 10 and yet can be fully diagonalized thanks to the molecular Td
point group symmetry. Mn10 thus establishes a showcase example for the application of symmetry
concepts. The Mn7 disk-like molecule is distinguished by its cyclic structure, which results in spin
wave excitations which are similar to “real” waves. Finally, the single molecule magnet Mn6 brings
in the additional aspect of a comparatively large Ising anisotropy. In fact, in contrast to most single
molecule magnets, which are in the so-called strong exchange limit, Mn6 is distinguished by a strong
spin-mixing, which is favorable for experimentally observing the spin wave excitations by INS in
such systems.

3.1. The Mn10 Supetretrahedron

The mixed-valent supertetrahedral aggregate [MnIII
6MnII

4(µ4-O)4(µ3-N3)3(µ3-Br)(Hmpt)6(Br)]
Br0.7(N3)0.3·2MeOH·3MeCN (H3mpt = 3-methylpentan-1,3,5-triol), or Mn10 in short, has received
significant interest due to its high-spin S = 22 ferromagnetic ground state, and the chemical link to
other compounds such as the Mn19 cluster with even larger spin-ground states [35]. The magnetic core
of the cluster consists of six spin-2 MnIII ions halfway along the edges of a tetrahedron of four spin-5/2
MnII ions to form the supertetrahedron shown in Figure 6.
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O: red, N: blue, C: black, H atoms are omitted for clarity); (b) sketch of the exchange couplings in the
Heisenberg Model Equation (27).
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Due to the high molecular symmetry, magnetic anisotropy is negligible, and the Heisenberg
exchange can be characterized by only two different coupling constants, Ja and Jb, describing
the coupling strengths between the MnIII ions and between the MnII and MnIII ions, respectively,
see Figure 6b. The magnetism of the Mn10 cluster can then be described by a Heisenberg Hamiltonian:

Ĥ = −Ja ∑
i,j∈MnI I I

Ŝi·Ŝj − Jb ∑
i∈MnI I ,j∈MnI I I

Ŝi·Ŝj (27)

where in the second term the index j refers to the MnIII ions neighboring the i-th MnII ion.
Both couplings are ferromagnetic supporting the experimentally observed S = 22 ground state,
and were determined to Ja = 18.4 K, Jb = 7.4 K. In the INS spectra, two cold peaks at 3.5 meV
(peak I) and 7.0 meV (peak II) were observed, and associated to spin wave excitations [23].

Following the FCSWT procedure, the basis states in the subspace M = Mmax − 1 are generated
from the component of the ferromagnetic ground state |M = Mmax〉 with Mmax = 22, as described
before in Equation (8), yielding ten states |i〉, where i = 0, . . . , 10. The Hamiltonian matrix
Hij = 〈i|Ĥ|j〉 in this space of basis states can be calculated from Equation (9) to be:Inorganics 2018, 6, 49  14 of 24 
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where 𝑅 = √64𝐽𝑎
2 − 16𝐽𝑎𝐽𝑏 + 41𝐽𝑏

2, 𝛼 = (8𝐽𝑎 + 𝑅 − 𝐽𝑏)/(4√5𝐽𝑏), and 𝛽 = (8𝐽𝑎 − 𝑅 + 𝐽𝑏)/(4√5𝐽𝑏). 
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β = −

√
5 Jb, and the ground state energy EF = −48Ja − 60Jb. Applying group theory methods,

the M = Mmax − 1 subspace decomposes into the irreps 2 × A1 + E + 2 × T2 in Td and the
Hamiltonian matrix is, after a straight forward but lengthy calculation, diagonalized to yield the
eigenvalues and eigenstates:

ε0 = 0

ε1,2,3 = 1
2 (8Ja + 11Jb − R)

ε4 = 11Jb

ε5,6,7 = 1
2 (8Ja + 11Jb + R)

ε8,9 = 12Ja + 5Jb
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where R =
√

64J2
a − 16Ja Jb + 41J2

b , α = (8Ja + R− Jb)/
(

4
√

5Jb

)
, and

β = (8Ja − R + Jb)/
(

4
√

5Jb

)
.

Figure 7 shows concisely the spin waves of Mn10 for Ja/Jb = 2.54, the ratio observed
experimentally. A threefold degenerate first excited state T2 is obtained. In these spin wave modes
only the outer MnII spins show a spin deviation, while the MnIII spins are not involved at all in
the precession. In the next higher lying A1 mode, all MnII ions precess with identical amplitudes,
and so do the MnIII spins, but with spin deflections opposite to the MnII spins. The lowest and highest
A1 modes thus appear to be the symmetric and anti-symmetric pairs with respect to the MnII and
MnIII precessions. The T2 and E modes at higher energies show precession of only the core MnIII

spins: in the threefold degenerate T2 mode, the precessing spins are further apart than in the twofold
degenerate E mode, where neighboring spins precess in counterphase, resulting in the highest-energy
magnon of the system.

In Figure 8a, the low-temperature experimental and simulated INS spectrum for Mn10 is shown.
The ferromagnetic ground state is determined by the spin quantum numbers S = 22, M = 22,
and two transitions I and II into states with spin quantum numbers S = 21, M = 21 are observed.
The spin wave energy spectrum and the observed transitions are indicated in the inset to Figure 8a,
showing that the first T2 and second A1 spin wave modes were detected in this experiment. The intense
peak I corresponds to the threefold degenerate T2 mode, and the weaker peak II to the A1 magnon.
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Figure 7. Pictorial representation of the ten spin wave states in the Mn10 cluster. The red points
correspond the MnII spins at the corners of the supertetrahedron and the blue points to the MnIII spins
of the inner octahedron.
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Figure 8. (a) Experimental and simulated inelastic neutron scattering (INS) data of Mn10 at 1.9 K
(from Reference [23]). Two magnetic features I and II are observed, which correspond to excitations
from the ferromagnetic ground state to the first T2 and the second A1 spin wave mode. The inset shows
the spin wave energy spectrum, and arrows indicate the observed INS transitions; (b) calculation of
the Q-dependence of the observed T2 and A1 spin waves. The arrows indicate the expected dominant
component of the Q-modulation based on the eigenvector plot in Figure 7.

It is instructive to compare the spin waves in Mn10 with those obtained for the five-spin model
previously discussed in Section 2.3, see Figure 5. The five-spin model was introduced in Reference [23]
as a low-energy approximation to the full magnetic model of Mn10, by assuming dominant exchange
interactions between the six MnIII spins (Ja � Jb), in which case these behave like a giant spin
s0 = ∑10

i = 5 si = 12. The five-spin model thus reduces the full problem by ignoring the individual
magnetic degrees of freedom within the strongly connected core of s = 2 spins. However, it preserves
a complete description of the weakly bound outer spins, which are responsible for the low-energy
spectrum of the system. Comparison of Figures 5b and 7 shows that the low energy spin wave modes
T2 and A1 in the two models are the same in terms of both energies and wavefunctions. The pictorial
representation of the spin waves provides us with an immediate justification for the success of the
five-spin model for analyzing the low-energy excitations in Mn10.

Based on Figure 7, it is also possible to infer the main INS interference term relevant for each
transition [36]. The INS interference terms lead to a characteristic dependence of the INS intensity as
function of momentum transfer Q. The Q-dependence is thus sensitive to the internal structure of the
wavefunctions involved in the transition, and provides us with an experimentally accessible fingerprint
of the wavefunctions. The three wavefunctions of the lowest T2 magnons have non-zero components
only at the exterior spins at the vertices of the Mn10 supertetrahedron. Based on the dimensions of
the supertetrahedron, the interference term of this transition is expected at low Q of about 1 Å−1.
On the other hand, the wavefunction corresponding to the second A1 mode has non-zero components
on all spins, so that interference is expected to also occur at larger reciprocal space distances. Figure 8b
shows the calculated Q-dependence for the T2 and A1 modes, which are indeed markedly different for
the two cases. The blue and red arrows indicate the reciprocal space distances obtained by the above
simple considerations, clearly showing that the dominant interference terms of the scattering modes
can be anticipated from the pictorial representation of the wavefunctions.

3.2. The Mn7 Disk Molecule

The high ground-state spin (S = 16) mixed-valence manganese disk (NHEt3)[Mn7(N3)6(teaH)6],
or Mn7 in short, was synthesized from a lower-spin (S = 11) Mn7 compound by a replacement of
a peripheral ligand [24]. The fact that a large change of magnetic properties results from a peripheral
chemical modification prompted a detailed investigation of the system [24,37]. The molecular structure
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is shown in Figure 9. Three spin-2 MnIII ions and three spin-5/2 MnII ions are positioned alternately
on the outer hexagon with the remaining spin-5/2 MnII ion in the center of the disk.Inorganics 2018, 6, 49  17 of 24 

 

 

Figure 9. (a) Ball-and-stick representation of the Mn7 molecule (MnII: green; MnIII: yellow; O: red; N: 

blue; C and H atoms are omitted for clarity). The arrows indicate the classical ground state 

configuration; (b) sketch of the exchange couplings in the Heisenberg model Equation (30). 

The Hamiltonian describing the isotropic Heisenberg interactions and single-ion magnetic 

anisotropy in the molecule is written as: 








 









3

1

2

,

6

4

72

3

1

7116

5

4

2

3

1

3
ˆˆˆˆˆˆˆˆˆˆˆ

i

zi

i

i

i

i

i

iib

i

iia SDJJJJH SSSSSSSSSS

. 
(30) 

The single-ion magnetic anisotropy was found to be zero within experimental error (𝐷 = 0), and 

the exchange couplings were determined to 𝐽𝑎 = 𝐽𝑏 = 5.8 K, 𝐽1 = −2.0 K and 𝐽2 = 2.45 K, for one 

of the species [24]. Two cold INS excitations, associated to spin waves, were observed at 0.3 meV and 

1.17 meV [24]. Despite the antiferromagnetic coupling 𝐽1, the fully polarized state |𝑀 = 𝑀𝑚𝑎𝑥⟩ with 

𝑀𝑚𝑎𝑥 = 16 is ground state, and FCSWT is applicable. The spin wave sector is spanned by seven basis 

states obtained by applying the spin-lowering operators to the ground state, Equation (8). The 

Hamiltonian matrix 𝐻𝑖𝑗 in this basis can be calculated using Equation (9) to be a 7 × 7 matrix of the 

following form: 

FE

c

b

b

b

a

a

a

H 













































  
(31) 

with the diagonal elements 𝑎 = −3𝐷 + 5

2
( 𝐽1 + 𝐽𝑎 + 𝐽𝑏), 𝑏 = 5

2
 𝐽2 + 2𝐽𝑎 + 2𝐽𝑏 , 𝑐 = 6𝐽1 + 15

3
 𝐽2 , the off-

diagonal elements 𝛼 = −√5 𝐽𝑎 , 𝛽 = −√5 𝐽𝑏 , 𝛾 = −√5 𝐽1 , 𝛿 = −5

2
 𝐽1 , and the ground state energy 
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4
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Figure 9. (a) Ball-and-stick representation of the Mn7 molecule (MnII: green; MnIII: yellow; O: red;
N: blue; C and H atoms are omitted for clarity). The arrows indicate the classical ground state
configuration; (b) sketch of the exchange couplings in the Heisenberg model Equation (30).

The Hamiltonian describing the isotropic Heisenberg interactions and single-ion magnetic
anisotropy in the molecule is written as:

Ĥ = −Ja

3

∑
i = 1

Ŝi·Ŝi + 3 − Jb

(
5

∑
i = 4

Ŝi·Ŝi−2 + Ŝ6·Ŝ1

)
− J1

3

∑
i = 1

Ŝi·Ŝ7 − J2

6

∑
i = 4

Ŝi·Ŝ7 + D
3

∑
i = 1

S2
i,z. (30)

The single-ion magnetic anisotropy was found to be zero within experimental error (D = 0),
and the exchange couplings were determined to Ja = Jb = 5.8 K, J1 = −2.0 K and J2 = 2.45 K,
for one of the species [24]. Two cold INS excitations, associated to spin waves, were observed at 0.3 meV
and 1.17 meV [24]. Despite the antiferromagnetic coupling J1, the fully polarized state |M = Mmax〉
with Mmax = 16 is ground state, and FCSWT is applicable. The spin wave sector is spanned by
seven basis states obtained by applying the spin-lowering operators to the ground state, Equation (8).
The Hamiltonian matrix Hij in this basis can be calculated using Equation (9) to be a 7 × 7 matrix of
the following form:

Inorganics 2018, 6, 49  17 of 24 

 

 

Figure 9. (a) Ball-and-stick representation of the Mn7 molecule (MnII: green; MnIII: yellow; O: red; N: 

blue; C and H atoms are omitted for clarity). The arrows indicate the classical ground state 

configuration; (b) sketch of the exchange couplings in the Heisenberg model Equation (30). 

The Hamiltonian describing the isotropic Heisenberg interactions and single-ion magnetic 

anisotropy in the molecule is written as: 








 









3

1

2

,

6

4

72

3

1

7116

5

4

2

3

1

3
ˆˆˆˆˆˆˆˆˆˆˆ

i

zi

i

i

i

i

i

iib

i

iia SDJJJJH SSSSSSSSSS

. 
(30) 

The single-ion magnetic anisotropy was found to be zero within experimental error (𝐷 = 0), and 

the exchange couplings were determined to 𝐽𝑎 = 𝐽𝑏 = 5.8 K, 𝐽1 = −2.0 K and 𝐽2 = 2.45 K, for one 

of the species [24]. Two cold INS excitations, associated to spin waves, were observed at 0.3 meV and 

1.17 meV [24]. Despite the antiferromagnetic coupling 𝐽1, the fully polarized state |𝑀 = 𝑀𝑚𝑎𝑥⟩ with 

𝑀𝑚𝑎𝑥 = 16 is ground state, and FCSWT is applicable. The spin wave sector is spanned by seven basis 

states obtained by applying the spin-lowering operators to the ground state, Equation (8). The 

Hamiltonian matrix 𝐻𝑖𝑗 in this basis can be calculated using Equation (9) to be a 7 × 7 matrix of the 

following form: 

FE

c

b

b

b

a

a

a

H 













































  
(31) 

with the diagonal elements 𝑎 = −3𝐷 + 5

2
( 𝐽1 + 𝐽𝑎 + 𝐽𝑏), 𝑏 = 5

2
 𝐽2 + 2𝐽𝑎 + 2𝐽𝑏 , 𝑐 = 6𝐽1 + 15

3
 𝐽2 , the off-

diagonal elements 𝛼 = −√5 𝐽𝑎 , 𝛽 = −√5 𝐽𝑏 , 𝛾 = −√5 𝐽1 , 𝛿 = −5

2
 𝐽1 , and the ground state energy 

𝐸𝐹 = 11𝐷 − 15 (𝐽𝑎 + 𝐽𝑏 + 𝐽1 +
5

4
𝐽2). 
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 321
3

1
0, A

 

 654
3

1
1, A

 

(32) 

(a) (b)

(31)

with the diagonal elements a = −3D + 5
2 (J1 + Ja + Jb), b = 5

2 J2 + 2Ja + 2Jb, c = 6J1 + 15
3 J2,

the off-diagonal elements α = −
√

5Ja, β = −
√

5Jb, γ = −
√

5J1, δ = − 5
2 J1, and the ground state

energy EF = 11D− 15
(

Ja + Jb + J1 + 5
4 J2
)
.

The symmetry of the Hamiltonian can again be used to block-diagonalize this matrix. Instead of
the D3 symmetry of the model, it is simpler to use the C3 point group. The M = Mmax − 1 subspace
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decomposes into the irreducible representations 3 × A + 2 × E in C3 (and 1 × A1 + 2 × A2 + 2 × E
in D3). The following SALCs are constructed:

|A, 0〉 = 1√
3
(|1〉 + |2〉 + |3〉)

|A, 1〉 = 1√
3
(|4〉 + |5〉 + |6〉)

|A, 2〉 = |7〉

|E, 0,±〉 = 1√
3

(
|1〉 + e±iϕ|2〉 + e∓iϕ|3〉

)
|E, 1,±〉 = 1√

3

(
|4〉 + e±iϕ|5〉 + e∓iϕ|6〉

)
(32)

where ϕ = 2
3 π. In this basis, the 7 × 7 Hamilton matrix in Equation (31) reduces to 3 × 3 and

2 × 2 block matrices in the A and E subspaces, respectively. The A matrix can be further reduced
into 1 × 1 and 2 × 2 matrices by exploiting the D3 symmetry, since A = 1 × A1 + 2 × A2.
Alternatively, for the isotropic case D = 0, one can make use of principles found before, namely
that the M = Mmax − 1 component of the S = Smax ground state multiplet, or the state
Ŝ−|M = Mmax〉 = ∑i

√
2si|i〉, is a known eigenstate of the Hamiltonian matrix Equation (31),

which belongs to the trivial irrep A1 and has excitation energy ε0 = 0. Expressing this state in terms
of the SALCs in Equation (32) yields:

|A1〉 =
1

4
√

2

(
2
√

3|A, 0〉 +
√

15|A, 1〉 +
√

5|A, 2〉
)

(33)

which is easily confirmed to belong to A1 and has energy zero. The two basis functions in the A2

subspace are then straightforwardly constructed:

|A2, 0〉 =
1
2

(
−|A, 1〉 +

√
3|A, 2〉

)
(34a)

|A2, 1〉 =
1

4
√

2

(
2
√

5|A, 0〉 − 3|A, 1〉 −
√

3|A, 2〉
)

. (34b)

With the above basis functions the two 2 × 2 block matrices in the A2 and E subspaces,
respectively, are finally obtained as:

↔
HA2 =

(
4(κ + J1)

√
2(κ − 3J1)√

2(κ − 3J1)
1
2 (κ + 9J1 + 20J2)

)
+ EF (35)

↔
HE =

(
5
2 (κ + J1) −

√
5
(

Ja − e−iϕ Jb
)

−
√

5
(

Ja − e+iϕ Jb
)

2κ + 5
2 J2

)
+ EF (36)

where κ = Ja + Jb. They both are trivially diagonalized.
The spin waves resulting from Hamiltonian Equation (31) with the parameters of Mn7 are depicted

in Figure 10a. As always, for the A1 spin wave the spin precession is completely in phase. The lowest
A2 spin wave is characterized by a dominating spin precession of the central spin, while the spins
on the outer ring are essentially not involved. In the remaining five higher-lying spin wave states,
it is vice versa, i.e., here the central spin is essentially not involved (for the two E doublets its deflection
is strictly zero), and the excitation is concentrated on the ring.

In fact, these spin wave states nearly exactly correspond to the spin waves in a hexanuclear
ferromagnetic ring with alternating spins (s1 = 2 and s2 = 5/2) and homogenous couplings
(Ja = Jb = J), which are plotted for comparison in Figure 10b. The first excited A2 spin wave of the
Mn7 molecule is missing in the ring system, since its contribution is dominantly located on the central
spin which is not present in the ring system. For the other states, the similarity is however obvious,
i.e., all details are reproduced. In both systems, a cosine- or sine-type modulation of the spin deflections
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on the MnII and MnIII sublattices along the ring can be observed. That is, for the highest A2 spin wave
the wave function (for the spins along the ring) is of the form a|A, 0〉−b|A, 1〉 ∝ a(|1〉 + |2〉 + |3〉)−
b(|5〉 + |6〉 + |4〉), with positive real values a, b. For the ‘+’ components of the two E doublets
the wave functions are of the form α|E, 0, + 〉 + βe−iϕ

∣∣E, 1, +
〉

and −β|E, 0, + 〉 + αe−iϕ
∣∣E, 1, +

〉
,

respectively, and similarly for the ‘−’ components, with positive real values α, β. The energetically
degenerate ‘+’ and ‘−’ components of an E doublet can be linearly combined to yield the real-valued,
cosine- and sine-type wave functions α(|1〉 + cos ϕ|2〉 + cos ϕ|3〉) + β(|5〉 + cos ϕ|6〉 + cos ϕ|4〉)
and α( sin ϕ|2〉− sin ϕ|3〉) + β( sin ϕ|6〉− sin ϕ|4〉), which give rise to the

(
1,− 1

2 ,− 1
2

)
and

(
0,− 1

2

√
3, 1

2

√
3
)

patterns of the spin deflections on the sublattices visible in the plots in Figure 10
for the cosine- and sine-type wave functions. The values for a, b and α, β are of course not exactly
identical for Mn7 and the ferromagnetic ring, because of the additional coupling to the central spin in
the Mn7 molecule, but they are very close.
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Figure 10. Pictorial representation of the spin wave states in (a) the Mn7 cluster and (b) a hexanuclear
s1 − s2 ferromagnetic ring with homogenous coupling constants. For the E doublets, the cosine- and
sine-type excitations are shown to the left and right, respectively.

Instead of choosing the cosine- and sine-type linear combinations of the two states of an E doublet,
one also could express them directly as α

(
|1〉 + e±iϕ

∣∣2〉 + e∓iϕ
∣∣3〉) + β

(
|5〉 + e±iϕ

∣∣6〉 + e∓iϕ
∣∣4〉)

and −β
(
|1〉 + e±iϕ

∣∣2〉 + e∓iϕ
∣∣3〉) + α

(
|5〉 + e±iϕ

∣∣6〉 + e∓iϕ
∣∣4〉), respectively. These wave functions

are nothing else than “real” spin waves, with amplitudes of the form u(x, t) ∝ u0ei(kx−ωt), where the
pseudo wavevector k assumes the values k = 0,± 2

3
π
a (and with u0, x, and the size of the unit cell

a, chosen properly). The association of the five highest spin waves in Mn7 to “real” spin waves on
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a ferromagnetic chain manifests itself also by comparing energies. A ring consisting of six spins allows
for six spin wave modes with only a few distinct k values. Increasing the number of spins would allow
for more modes, and more k values. When the number of spins goes to infinity, the ε(k) dependence
becomes continuous and the full dispersion relation ε(k) of the infinite spin chain is recovered. One can
then describe the spectrum in terms of usual running waves for translationally invariant models,
rather than the standing waves seen in the finite systems. Figure 11 plots both the spin wave spectrum
of Mn7 and the dispersion relation of a s1 = 2, s2 = 5/2 ferromagnetic chain, which is given as [38]:

ε±(k) = J
(

s1 + s2 ±
√

s2
1 + s2

2 + 2s1s2 cos ka
)

. (37)

As expected for the two-spin magnetic unit cell, there are two modes in the infinite chain,
the low-energy acoustic magnon branch, and a high-energy optical magnon branch. Comparison
between the spin waves in the Mn7 molecule and the theoretical dispersion of the infinite chain gives
a surprisingly good agreement. In Mn7 the highest A2 spin wave is somewhat raised in energy due to
the lower A2 spin wave present in Mn7. It is finally noted that, as shown before for the case of the Mn10

cluster in Section 3.1, the specific structure of the wave functions is also revealed by a characteristic
Q-dependence of the INS intensity, which is discussed in Reference [24].
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Figure 11. Spin wave energies of the Mn7 cluster (crosses) and the dispersion relation of a hexanuclear
s1 − s2 ferromagnetic chain with homogenous coupling constants (lines), plotted as function of the
(pseudo) wave vector k, discussed in the text.

3.3. The Mn6 Single Molecule Magnet

The single molecule magnet (SMM) Mn6O2(Et-sao)6(O2CPh)2(EtOH)4(H2O2)2, or Mn6 in short,
consists of six spin-2 MnIII ions forming two triangles bridged by oxygen atoms, as shown in Figure 12.
In contrast to most SMMs, Mn6 exhibits relatively weak exchange couplings in comparison to the
single-ion anisotropies, which leads to a breakdown of the giant-spin model usually employed for
describing SMMs, with corresponding interesting effects [25]. It also results in relatively low-lying spin
wave excitations, which is useful for experimental observation by INS. The ferromagnetic interactions
between the MnIII spins in Mn6 result in a S = 12 ferromagnetic ground state, with a large Ising-type
ZFS due to the MnIII single-ion anisotropies, as it is characteristic for SMMs [4,5].
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Figure 12. Ball-and-stick representation of the magnetic core of the Mn6 single molecule magnet.
(MnIII: green; O: red; N: blue; C and H atoms omitted).

The magnetic properties of the compound, as relevant for this work, can be described by
the Hamiltonian:

Ĥ = −J1Ŝ1·Ŝ1′ − J2
(
Ŝ1·Ŝ2 + Ŝ2·Ŝ3 + Ŝ1·Ŝ3 + Ŝ1′ ·Ŝ2′ + Ŝ2′ ·Ŝ3′ + Ŝ1′ ·Ŝ3′

)
−J3

(
Ŝ1·Ŝ3′ + Ŝ1′ ·Ŝ3

)
+ ∑

i = 1
DiS2

i,z
(38)

which includes the Heisenberg exchange terms and second-order single-ion anisotropies. Smaller
anisotropic contributions (∼ Sx

2 − Sy
2, ∼ O40) are ignored. The single-ion anisotropy terms for the

sites 1 and 3 are assumed to be equal (D1 = D3) because of similar ligand environment of the ions.
For further details see Reference [25]. In the INS spectrum, six cold transitions were observed in the
range of 1 meV to 5 meV, which could be reproduced with J1 = 7.08 K, J2 = 3.60 K, J3 = 0.81 K,
D1 = −2.67 K, and D2 = −11.3 K.

The application of FCSWT to SMMs needs some discussion. The slow magnetic relaxation in
SMMs such as Mn6 is associated with tunneling terms in the full spin Hamiltonian, which are not
included in Equation (38). These terms lead to a mixing of the |M = Mmax〉 and |M = −Mmax〉
states, with a corresponding non-zero tunneling splitting [5]. Therefore, the fully polarized state
|M = Mmax〉 and its counter part |M = −Mmax〉 are not ground states, and the condition for the
applicability of FCSWT is strictly violated. However, the tunneling splitting of the states in the
M = ±Mmax and M = ±(Mmax − 1) sectors is tiny in comparison to the energies of these states,
and therefore can be safely neglected in the calculation of these energies. This has justified using the
Hamiltonian Equation (38) in the analysis of the INS data, and within the same realm the application
of FCSWT to SMMs is justified.

Within these limits, and according to Equation (38), the ground state of Mn6 is ferromagnetic
|M = Mmax〉 with Mmax = 12. The spin wave sector is spanned by six basis states obtained again
from Equation (8). The Hamiltonian matrix Hij in this basis is calculated as usual from Equation (9),
yielding a 6 × 6 matrix of the form:
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with the diagonal terms 𝑎 = −3𝐷1 + 2𝐽1 + 4𝐽2 + 2𝐽3, 𝑏 = −3𝐷2 + 4𝐽2, 𝑐 = −3𝐷1 + 4𝐽2 + 2𝐽3, the off-

diagonal terms  = −2𝐽1, 𝛽 = −2𝐽2, 𝛾 = −2𝐽3, and the ground state energy 𝐸𝐹 = 44

3
𝐷1 + 22

3
𝐷2 − 4𝐽1 −

24𝐽2 − 8𝐽3. 
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results lengthy, and not given here. 

The final result, for the experimental values of the parameters, is depicted in Figure 13a. All six 

spin wave modes in Mn6 are nondegenerate and reflect the inversion symmetry of the spin model. 

The energy of the lowest excited 𝐴𝑔 state corresponds to the ZFS due to the non-zero single-ion 

anisotropy of the MnIII ions. The precession in the higher-energy modes shifts from being dominant 

at the exterior 2 and 3 spins towards the strongly coupled spin 1 in the higher-energy modes. 

The INS data recorded on Mn6 at low temperatures are shown in Figure 13b. In the INS 

spectrum, six cold magnetic transitions can be identified (I at 1.14 meV, II at 1.38 meV, III at 2.28 meV, 

IV at 4.19 meV, V at 4.44 meV, and VI at 4.97 meV). The peaks can be well reproduced with the 

Hamiltonian Equation (38) using the parameters given before [25]. The six experimentally observed 

INS transitions are immediately associated to the six spin wave modes in Mn6, as shown in Figure 

13c. Therefore, in the case of the SMM Mn6, all spin waves modes expected from and predicted by 

FCSWT have been detected in the experiment. 

It is finally mentioned that in Reference [25] the INS on an analogous compound Mn6O2(Et-

sao)6(O2CPh(Me)2)2(EtOH)6 was also reported. In this compound, five peaks were observed at low 

(39)

with the diagonal terms a = −3D1 + 2J1 + 4J2 + 2J3, b = −3D2 + 4J2, c = −3D1 + 4J2 + 2J3,
the off-diagonal terms = −2J1, β = −2J2, γ = −2J3, and the ground state energy
EF = 44

3 D1 + 22
3 D2 − 4J1 − 24J2 − 8J3.
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As before, one can use the symmetry of the Hamiltonian to reduce the matrix. Within the Ci
symmetry group of the molecule, the reducible representation of the spin wave subspace decomposes
into 3 × Ag + 3 × Au. Assuming the D2 symmetry group of the magnetic model, the decomposition
yields 3 × A + 3 × B3, which gives no possibility of further reducing the matrix using point group
symmetries. The 3 × 3 matrices can be solved analytically, but the procedure is tedious and the results
lengthy, and not given here.

The final result, for the experimental values of the parameters, is depicted in Figure 13a.
All six spin wave modes in Mn6 are nondegenerate and reflect the inversion symmetry of the spin
model. The energy of the lowest excited Ag state corresponds to the ZFS due to the non-zero single-ion
anisotropy of the MnIII ions. The precession in the higher-energy modes shifts from being dominant at
the exterior 2 and 3 spins towards the strongly coupled spin 1 in the higher-energy modes.

The INS data recorded on Mn6 at low temperatures are shown in Figure 13b. In the INS
spectrum, six cold magnetic transitions can be identified (I at 1.14 meV, II at 1.38 meV, III at 2.28 meV,
IV at 4.19 meV, V at 4.44 meV, and VI at 4.97 meV). The peaks can be well reproduced with the
Hamiltonian Equation (38) using the parameters given before [25]. The six experimentally observed
INS transitions are immediately associated to the six spin wave modes in Mn6, as shown in Figure 13c.
Therefore, in the case of the SMM Mn6, all spin waves modes expected from and predicted by FCSWT
have been detected in the experiment.

It is finally mentioned that in Reference [25] the INS on an analogous compound
Mn6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6 was also reported. In this compound, five peaks were observed
at low temperatures, which could be understood using the same spin wave approach discussed here,
and be associated to the five lowest spin wave modes.
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Figure 13. (a) Pictorial representation of the spin wave states in the Mn6 molecule; (b) low-temperature
INS data for Mn6 (recreated from Reference [25]). Six magnetic features are indexed, which correspond
to transitions from the ferromagnetic ground state to the spin wave modes; (c) calculated spin wave
energy spectrum, with arrows indicating the observed INS transitions.
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4. Conclusions

In conclusion, we have discussed the concepts and applications of the ferromagnetic cluster spin
wave theory (FCSWT) to excitations in finite, bounded, magnetic systems from the ferromagnetic
ground state. The focus of the discussion was on high-spin molecular nanomagnets and single molecule
magnets, as these two classes of materials have received huge interest from the scientific community
over the last two decades. Additionally, we introduced a novel approach for visualizing the calculated
spin wave excitations.

In the second part of the paper, a detailed discussion of FCSWT and the spin wave visualization
has been presented for three real-world examples: (i) FCSWT applied to a large-spin ground state
supertetrahedron Mn10 molecule yields exact results for the energies and wavefunctions, and the
visualized spin wave modes of this high-symmetry molecule provide insight into symmetries, energies
and interference terms of the spin wave peaks observed in the neutron scattering data; (ii) FCSWT
applied to the disk molecule Mn7 results in wave-like spin wave states for the spins along the disk and
provides an understanding of how the spin wave character progresses towards the extended systems;
and (iii) FCSWT can be applied to single molecule magnets because of small tunneling splittings
between the ground-state and the magnon sectors, as shown exemplarily for the Mn6 molecule.

As an outlook, it is emphasized that the FCSWT is not restricted to this type of systems, but should
be highly useful also, e.g., in connection with magnetocaloric nanomagnetic materials and the advent
of new Lanthanide-based molecular nanomagnets. While in the discussion of the specific examples we
have focused on analytical and physical insights into the studied molecules, it shall be stressed again
that the FCSWT approach in its simple “recipe” form is very well suited for the practical experimentalist
looking to describe their data.
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