New Coordination Polymers of Zinc(II), Copper(II) and Cadmium(II) with 1,3-Bis(1,2,4-triazol-4-yl)adamantane
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Preliminary Characterization
2.2. Thermal Behaviour
2.3. Crystal and Molecular Structures
2.4. Comparative Structure Analysis
- Among the CPs retrieved in the literature (Table 1), 14 contain CuII or CdII, while the others feature CuI, AgI, MoII or FeII. Hence, to the best of our knowledge, [Zn(tr2ad)Cl2]n is the first example of ZnII-based coordination compound containing the tr2ad ligand.
- As regards the stereochemistry at the metal ion, apart from [Cd3(tr2ad)2I6], in which one of the two independent CdII ions shows a tetrahedral geometry, in all the known CdII CPs the metal centre adopts an octahedral geometry, as in [Cd(tr2ad)Cl4]n and {[Cd(tr2ad)(NO3)](NO3)∙H2O}n. On the other hand, while in {[Cu(tr2ad)Cl]Cl·4H2O}n and {[Cu(tr2ad)(NO3)](NO3)}n the metal ion is in octahedral stereochemistry, in the known CPs the CuII coordination number varies in the range 4–6, with different coordination geometries associated (Table 1).
- Upon comparing the values of the M–N distances (M = CuII or CdII, N = tr2ad nitrogen atom), it appears (Figure S4) that the novel materials share distances comparable with those of the literature CPs.
- Apart from [Zn(tr2ad)Cl2]n, all the other compounds studied in this work are 2-D coordination polymers characterized by the same structural motif (see Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8). At variance, Table 1 shows that in the known compounds the dimensionality ranges from 1-D to 3-D. Interestingly, the structural motif observed in the title CuII and CdII derivatives, with rhombic cavities within 2-D strands, is shown also by COVFIE, COVFOK, KEHDEI, KEMLEV and TUGSIY, containing CuII or CdII ions, and UZAKIQ, containing the MoII ion.
3. Materials and Methods
3.1. General
3.2. Synthesis of the Tr2ad-Based CPs
3.2.1. Synthesis of [Zn(tr2ad)Cl2]n
3.2.2. Synthesis of {[Cu(tr2ad)Cl]Cl∙4H2O}n
3.2.3. Synthesis of [Cd2(tr2ad)Cl4]n
3.2.4. Synthesis of {[Cu(tr2ad)(NO3)](NO3)}n
3.2.5. Synthesis of {[Cd(tr2ad)(NO3)](NO3)∙H2O}n
3.3. X-ray Diffraction Structural Analysis
3.3.1. Structural Analysis of tr2ad and tr2ad·3H2O
3.3.2. Structural Analysis of the Coordination Polymers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoskins, B.F.; Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 1989, 111, 5962–5964. [Google Scholar]
- Morsali, A.; Hashemi, L. Main Group Metal Coordination Polymers: Structures and Nanostructures; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2017. [Google Scholar]
- Patel, V. Synthesis, Characterization and Application of Coordination Polymers; Lambert Academic Publishing: Saarbrücken, Germany, 2015. [Google Scholar]
- Batten, S.R.; Neville, S.M.; Turner, D.R. Coordination Polymers: Design, Analysis and Application; Springer: New York, NY, USA, 2010. [Google Scholar]
- Hong, M.-C.; Chen, L. (Eds.) Design and Construction of Coordination Polymers; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Yaghi, O.M.; Kalmutzki, M.J.; Diercks, C.S. Introduction to Reticular Chemistry: Metal-Organic Frameworks and Covalent Organic Frameworks; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Kaskel, S. (Ed.) The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications; Wiley-VCH: Weinheim, Germany, 2016. [Google Scholar]
- MacGillivray, L.R.; Lukehart, C.M. (Eds.) Metal-Organic Framework Materials; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Farrusseng, D. (Ed.) Metal-Organic Frameworks: Applications from Catalysis to Gas Storage; Wiley-VCH: New York, NY, USA, 2011. [Google Scholar]
- Schröder, M. (Ed.) Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis; Springer: Berlin, Germany, 2010. [Google Scholar]
- Li, H.; Wang, K.; Sun, Y.; Lollar, C.T.; Li, J.; Zhou, H.-C. Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 2018, 21, 108–121. [Google Scholar]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [PubMed] [Green Version]
- Kuznetsova, A.; Matveevskaya, V.; Pavlov, D.; Yakunenkov, A.; Potapov, A. Coordination polymers based on highly emissive ligands: Synthesis and functional properties. Materials 2020, 13, 2699. [Google Scholar]
- Heine, J.; Müller-Buschbaum, K. Engineering metal-based luminescence in coordination polymers and metal–organic frameworks. Chem. Soc. Rev. 2013, 42, 9232–9242. [Google Scholar] [PubMed]
- Sun, L.; Campbell, M.G.; Dincă, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 2016, 55, 3566–3579. [Google Scholar]
- Mínguez Espallargas, G.; Coronado, E. Magnetic functionalities in MOFs: From the framework to the pore. Chem. Soc. Rev. 2018, 47, 533–557. [Google Scholar]
- Liu, J.-Q.; Luo, Z.-D.; Pan, Y.; Singh, A.K.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev. 2020, 406, 213145. [Google Scholar]
- Zhang, Y.; Yuan, S.; Day, G.; Wang, X.; Yang, X.; Zhou, H.-C. Luminescent sensors based on metal-organic frameworks. Coord. Chem. Rev. 2018, 354, 28–45. [Google Scholar]
- Zhang, X.; Wang, W.; Hu, Z.; Wang, G.; Uvdal, K. Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives. Coord. Chem. Rev. 2015, 284, 206–235. [Google Scholar]
- Wu, M.-X.; Yang, Y.-W. Metal–organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134. [Google Scholar]
- Janiak, C.; Vieth, J.K. MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 2010, 34, 2366–2388. [Google Scholar]
- Robin, A.Y.; Fromm, K.M. Coordination polymer networks with O-and N-donors: What they are, why and how they are made. Coord. Chem. Rev. 2006, 250, 2127–2157. [Google Scholar]
- Kitagawa, S.; Kitaura, R.; Noro, S.-I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334–2375. [Google Scholar]
- Biradha, K.; Sarkar, M.; Rajput, L. Crystal engineering of coordination polymers using 4,4‘-bipyridine as a bond between transition metal atoms. Chem. Commun. 2006, 4169–4179. [Google Scholar] [CrossRef]
- Gagnon, K.J.; Perry, H.P.; Clearfield, A. Conventional and unconventional metal–organic frameworks based on phosphonate ligands: MOFs and UMOFs. Chem. Rev. 2012, 112, 1034–1054. [Google Scholar]
- Tabacaru, A.; Pettinari, C.; Galli, S. Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coord. Chem. Rev. 2018, 372, 1–30. [Google Scholar]
- Pettinari, C.; Tabacaru, A.; Galli, S. Coordination polymers and metal-organic frameworks based on poly(pyrazole)-containing ligands. Coord. Chem. Rev. 2016, 307, 1–31. [Google Scholar]
- Liao, P.-Q.; He, C.-T.; Zhou, D.-D.; Zhang, J.-P.; Chen, X.-M. Porous Metal Azolate Frameworks. In The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications; Kaskel, S., Ed.; Wiley: Weinheim, Germany, 2016; Volume 1, pp. 309–343. [Google Scholar]
- Liu, K.; Shi, W.; Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans. 2011, 40, 8475–8490. [Google Scholar]
- Zhang, J.-P.; Zhang, Y.-B.; Lin, J.-B.; Chen, X.-M. Metal azolate frameworks: From crystal engineering to functional materials. Chem. Rev. 2012, 112, 1001–1033. [Google Scholar]
- Pavlov, D.; Sukhikh, T.; Filatov, E.; Potapov, A. Facile synthesis of 3-(azol-1-yl)-1-adamantanecarboxylic acids—New bifunctional angle-shaped building blocks for coordination polymers. Molecules 2019, 24, 2717. [Google Scholar]
- Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev. 2011, 255, 485–546. [Google Scholar]
- Beckmann, U.; Brooker, S. Cobalt(II) complexes of pyridazine or triazole containing ligands: Spin-state control. Coord. Chem. Rev. 2003, 245, 17–29. [Google Scholar]
- Klingele, M.H.; Brooker, S. The coordination chemistry of 4-substituted 3,5-di(2-pyridyl)-4H-1,2, 4-triazoles and related ligands. Coord. Chem. Rev. 2003, 241, 119–132. [Google Scholar]
- Haasnoot, J.G. Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coord. Chem. Rev. 2000, 200, 131–185. [Google Scholar]
- Billes, F.; Endrédi, H.; Keresztury, G. Vibrational spectroscopy of triazoles and tetrazole. J. Mol. Struct. THEOCHEM 2000, 530, 183–200. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Part B; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lever, A.B.P.; Mantovani, E.; Ramaswamy, B.S. Infrared combination frequencies in coordination complexes containing nitrate groups in various coordination environments. A probe for the metal–nitrate interaction. Can. J. Chem. 1971, 49, 1957–1964. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Part A; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Babaryk, A.A.; Rusanov, E.B.; Krautscheid, H.; Neves, P.; Valente, A.A.; Gonçalves, I.S.; Krämer, K.W.; Liu, S.-X.; et al. Triazolyl–based copper–molybdate hybrids: From composition space diagram to magnetism and catalytic performance. Inorg. Chem. 2014, 53, 10112–10121. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Rusanov, E.B.; Chernega, A.N.; Jezierska, J.; Domasevitch, K.V.; Ozarowski, A. Structure and magnetic behavior of CuII MOFs supported by 1,2,4-triazolyl-bifunctionalized adamantane scaffold. Eur. J. Inorg. Chem. 2012, 2012, 5802–5813. [Google Scholar]
- Boldog, I.; Lysenko, A.B.; Rusanov, E.B.; Chernega, A.N.; Domasevitch, K.V. 1,3,5-Triphenyladamantane and 1,3,5,7-tetraphenyladamantane. Acta Crystallogr. C 2009, 65, o248–o252. [Google Scholar]
- Spek, A.L.J. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Krautscheid, H.; Sieler, J.; Domasevitch, K.V. A dihydroxidotetracopper(II) framework supported by 4,4′-(adamantane-1,3-diyl)bis(1,2,4-triazole) and benzene-1,3,5-tricarboxylate bridges. Acta Crystallogr. C 2008, 64, m246–m249. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Krautscheid, H.; Rusanov, E.B.; Chernega, A.N.; Krämer, K.W.; Liu, S.-X.; Decurtins, S.; Domasevitch, K.V. Functionalized adamantane tectons used in the design of mixed-ligand copper(II) 1,2,4-triazolyl/carboxylate metal–organic frameworks. Inorg. Chem. 2013, 52, 863–872. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Rusanov, E.B.; Chernega, A.N.; Krautscheid, H.; Domasevitch, K.V. Polynuclear and polymeric metal complexes based upon 1,2,4-triazolyl functionalized adamantanes. Inorg. Chim. Acta 2009, 362, 4439–4448. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Naumov, D.Y.; Fedin, V.P.; Krautscheid, H.; Domasevitch, K.V. Multiple anion···π interactions with a soft selenium atom: Accommodation of NCSe− anions inside hydrophobic pockets of adamantane/1,2,4-triazole coordination framework. Inorg. Chem. Commun. 2010, 13, 1576–1579. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Boldog, I.; Rusanov, E.B.; Chernega, A.N.; Krautscheid, H.; Domasevitch, K.V. 1,2,4-Triazole functionalized adamantanes: A new library of polydentate tectons for designing structures of coordination polymers. Dalton Trans. 2012, 41, 8675–8689. [Google Scholar]
- Lysenko, A.B.; Senchyk, G.A.; Lincke, J.; Lässig, D.; Fokin, A.A.; Butova, E.D.; Schreiner, P.R.; Krautscheid, H.; Domasevitch, K.V. Metal oxide-organic frameworks (MOOFs), a new series of coordination hybrids constructed from molybdenum(VI) oxide and bitopic 1,2,4-triazole linkers. Dalton Trans. 2010, 39, 4223–4231. [Google Scholar]
- Lysenko, A.B.; Senchyk, G.A.; Domasevitch, K.V.; Hauser, J.; Fuhrmann, D.; Kobalz, M.; Krautscheid, H.; Neves, P.; Valente, A.A.; Goncalves, I.S. Synthesis and structural elucidation of triazolylmolybdenum(VI) oxide hybrids and their behavior as oxidation catalysts. Inorg. Chem. 2015, 54, 8327–8338. [Google Scholar]
- Senchyk, G.A.; Lysenko, A.B.; Krautscheid, H.; Domasevitch, K.V. Fluoride molecular scissors: A rational construction of new Mo(VI) oxofluorido/1,2,4-triazole MOFs. Inorg. Chem. Commun. 2011, 14, 1365–1368. [Google Scholar]
- Muñoz-Lara, F.J.; Gaspar, A.B.; Muñoz, M.C.; Lysenko, A.B.; Domasevitch, K.V.; Real, J.A. Fast detection of water and organic molecules by a change of color in an iron(II) microporous spin-crossover coordination polymer. Inorg. Chem. 2012, 51, 13078–13080. [Google Scholar]
- Senchyk, G.A.; Bukhan’ko, V.O.; Lysenko, A.B.; Krautscheid, H.; Rusanov, E.B.; Chernega, A.N.; Karbowiak, M.; Domasevitch, K.V. AgI/VV heterobimetallic frameworks generated from novel-type {Ag2(VO2F2)2(triazole)4} secondary building blocks: A new aspect in the design of SVOF hybrids. Inorg. Chem. 2012, 51, 8025–8033. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3–8. [Google Scholar]
- Coelho, A.A. Indexing of powder diffraction patterns by iterative use of singular value decomposition. J. Appl. Crystallogr. 2003, 36, 86–95. [Google Scholar]
- Topas-R, V3; Bruker AXS: Karlsruhe, Germany, 2005.
- Coelho, A.A. Whole-profile structure solution from powder diffraction data using simulated annealing. J. Appl. Crystallogr. 2000, 33, 899–908. [Google Scholar]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar]
- Cheary, R.W.; Coelho, A.A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Crystallogr. 1992, 25, 109–121. [Google Scholar]
- Dollase, W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 1986, 19, 267–272. [Google Scholar]
CSD Code | Molecular Formula | M Stereochemistry | M Geometry | M–N (Å) | M–X (Å) | Tr2ad Apticity | Dim. | Ref. |
---|---|---|---|---|---|---|---|---|
COVFIE | [Cu2(tr2ad)4](Mo8O26) | CuN5 | SP | 1.968–2.247 | - | Exo-bidentate Exo-tridentate | 2-D | [40] |
COVFOK | [Cu4(tr2ad)2(µ4-O)(MoO4)3]·7.5H2O | CuN2O3 | TB | 2.078, 2.093 | 1.923–2.028 | Exo-tetradentate (2×) | 2-D | [40] |
CuN2O3 | TB | 2.005 | 1.937–2.090 | |||||
CuN2O3 | TB | 2.009 | 1.937–2.067 | |||||
COVFUQ | [Cu2(tr2ad)2](Mo2O7)∙H2O | CuN3 | TP | 1.928–2.002 | - | Exo-tridentate (2×) | 1-D | [40] |
CuN3 | TP | 1.934–2.000 | - | |||||
KEMLEV | [Cu(tr2ad)(SO4)]∙3H2O | trans-CuN4O2 | OC | 2.009–2.012 | 2.406 | Exo-tetradentate | 2-D | [41] |
KEMLIZ | [Cu3(tr2ad)4(H2O)2(SO4)2](SO4)·28H2O | CuN6 | OC | 2.024–2.365 | - | Exo-tetradentate | 2-D | [41] |
CuN4O | SQP | 1.995–2.223 | 1.958 | Exo-tridentate | ||||
KEMLOF | [Cu3(tr2ad)4(H2O)2](SiF6)3·16H2O | CuN6 | OC | 2.001-2.413 | - | Exo-tetradentate | 2-D | [41] |
cis-CuN4O2 | OC | 1.988–2.269 | 1.987, 2.554 | Exo-tridentate | ||||
PODMAX | [Cu4(tr2ad)2(btc)2(µ3-OH)2] | CuNO4 | SQP | 2.411 | 1.915–1.999 | Exo-tridentate | 3-D | [44] |
CuN2O3 | TB | 1.989–2.010 | 1.953–2.165 | |||||
SERCUP | [Cu4(tr2ad)2(H-adtc)2(OH)2(H2O)2]·4H2O | CuNO5 | OC | 1.981 | 1.905–2.685 | Exo-tridentate | 2-D | [45] |
cis-CuN2O4 | OC | 1.989–2.334 | 1.957–2.691 | |||||
CuN2O3 | SQP | 2.005–2.271 | 1.950–1.996 | |||||
CuNO4 | SQP | 1.987 | 1.923–2.279 | |||||
TUGSUK | [Cu3(tr2ad)4(SO4)(H2O)3](SO4)2·34H2O | CuN6 | OC | 1.989–2.295 | - | Exo-tetradentate (2×) Exo-tridentate (2×) | 3-D | [46] |
cis-CuN4O2 | OC | 1.990–2.250 | 1.989, 2.408 | |||||
CuN4O | SQP | 1.957–2.291 | 1.989 | |||||
TUGTAR | [Cu2(µ-OH)(tr2ad)2](NO3)3·4H2O | CuN6 | OC | 2.026–2.527 | - | Exo-tetradentate (2×) | 3-D | [46] |
cis-CuN4O2 | OC | 1.982–2.212 | 1.921–2.788 | |||||
trans-CuN2O4 | OC | 2.000 | 1.909–2.686 | |||||
ILUFEB | [Cd3(tr2ad)3](SeCN)6 | CdN6 | OC | 2.289–2.370 | - | Exo-tridentate (4×) | 3-D | [47] |
CdN6 | OC | 2.332–2.353 | - | |||||
KEHDEI | [Cd2(tr2ad)2(H2O)4](CdBr4)2 | cis-CdN4O2 | OC | 2.266–2.343 | 2.377–2.382 | Exo-bidentate (4×) | 3-D | [48] |
cis-CdN4O2 | OC | 2.273–2.323 | 2.370–2.406 | |||||
CdBr4 | TD | - | 2.567–2.629 | |||||
KEHDIM | [Cd3(tr2ad)2I6] | CdN6 | OC | 2.305–2.403 | - | Exo-bidentate (2×) | 2-D | [48] |
CdNI3 | TD | 2.283 | 2.744–2.756 | |||||
TUGSIY | [Cd3(tr2ad)3(µ-NCS)3](NCS)3 | CdN1−xSx (0 < x < 1) | OC | 2.296–2.473 | 2.662 | Exo-tetradentate (3×) | 2-D | [46] |
CdN6 | OC | 2.312–2.405 | ||||||
TUGSOE | [Cd3(tr2ad)6](NO3)6·22H2O | CdN6 | OC | 2.324–2.356 | - | Exo-tridentate (3×) | 3-D | [46] |
CdN6 | OC | 2.297–2.381 | ||||||
HUSQES | [Mo2(tr2ad)O6)]·6H2O | cis-MoN2O4 | OC | 2.366, 2.375 | 1.702–1.932 | Exo-tetradentate | 3-D | [49] |
LUYRII | [Mo2(tr2ad)O6)]·H2O | cis-MoN2O4 | OC | 2.405 | 1.714–1.910 | Exo-tetradentate | 2-D | [50] |
UZAKIQ | [Mo2(tr2ad)F2O5] | MoN2O3F | OC | 2.399 | 1.710–1.918 | Exo-tetradentate | 1-D/2-D | [51] |
1.917 a | ||||||||
MoN2O3F | OC | 2.380 | 1.706–1.914 | |||||
1.934 a | ||||||||
VEPDEB | {Fe3(tr2ad)4[Au(CN)2]2}[Au(CN)2]4·8H2O | FeN6 | OC | 1.910–1.970 | - | Exo-tetradentate (2×) Exo-tridentate | 3-D | [52] |
FeN6 | OC | 1.975–1.987 | - | |||||
KEHDOS | [Ag(tr2ad)](NO3)·H2O | AgN4 | TD | 2.185–2.502 | - | Exo-tetradentate (2×) | 3-D | [48] |
AgN4 | TD | 2.185–2.528 | - | |||||
WEJWAL | [Ag(tr2ad)](ClO4) | AgN3 | TP | 2.191–2.347 | - | Exo-tridentate | 2-D | [53] |
WEJWEP | [Ag2(tr2ad)2(VO2F2)2]·H2O | AgN3O | TD | 2.209–2.464 | 2.558 | Exo-tetradentate | 1-D | [53] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xhaferaj, N.; Tăbăcaru, A.; Moroni, M.; Senchyk, G.A.; Domasevitch, K.V.; Pettinari, C.; Galli, S. New Coordination Polymers of Zinc(II), Copper(II) and Cadmium(II) with 1,3-Bis(1,2,4-triazol-4-yl)adamantane. Inorganics 2020, 8, 60. https://doi.org/10.3390/inorganics8110060
Xhaferaj N, Tăbăcaru A, Moroni M, Senchyk GA, Domasevitch KV, Pettinari C, Galli S. New Coordination Polymers of Zinc(II), Copper(II) and Cadmium(II) with 1,3-Bis(1,2,4-triazol-4-yl)adamantane. Inorganics. 2020; 8(11):60. https://doi.org/10.3390/inorganics8110060
Chicago/Turabian StyleXhaferaj, Nertil, Aurel Tăbăcaru, Marco Moroni, Ganna A. Senchyk, Kostiantyn V. Domasevitch, Claudio Pettinari, and Simona Galli. 2020. "New Coordination Polymers of Zinc(II), Copper(II) and Cadmium(II) with 1,3-Bis(1,2,4-triazol-4-yl)adamantane" Inorganics 8, no. 11: 60. https://doi.org/10.3390/inorganics8110060
APA StyleXhaferaj, N., Tăbăcaru, A., Moroni, M., Senchyk, G. A., Domasevitch, K. V., Pettinari, C., & Galli, S. (2020). New Coordination Polymers of Zinc(II), Copper(II) and Cadmium(II) with 1,3-Bis(1,2,4-triazol-4-yl)adamantane. Inorganics, 8(11), 60. https://doi.org/10.3390/inorganics8110060