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Table 1. Summary of BET analysis for MCM-41, NaBH4@MCM-41 and LiBH4@MCM-41. 

Sample Total pore volume  
(cm3 g-1) BET surface area (m² g-1) 

MCM-41 1.02 1110.91 
LiBH4@MCM-41 0.03 14.38 
NaBH4@MCM-41 0.02 3.5 

 

 
Figure S1. BET analysis for MCM-41 and NaBH4@MCM-41: (a) N2 physisorption and (b) pore size distribution. 

MCM-41 shows a type IV isotherm, which confirms that MCM-41 is a mesoporous 
material [1]. After melt infiltration, the isotherm became of type II. This implies that the 
material is non-porous and of macroporous type [2]. 

 
Figure S2. Typical TEM image of (a) the empty scaffold MCM-41, and (b) NaBH4@MCM-41. 
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Figure S3. STEM elemental mapping of NaBH4@MCM-41. 
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Figure S4. TGA-DSC-MS profiles of (a) pristine NaBH4 and (b) NaBH4@MCM-41. 

The excessive mass loss of pristine NaBH4 is due to Na evaporation. The BET results 
indicated that the pores of the MCM-41 were filled at 78 %. The corresponding mass loss 
observed by TGA should be of 5.1 instead of 5.4%. The excess (0.3%) may be due to the 
evaporation of Na upon the melting of NaBH4. 
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Figure S5. BET analysis for MCM-41 and LiBH4@MCM-41: (a) N2-physisorption, and (b) pore size distribution. 

 
Figure S6. TGA-DSC-MS profiles of (a) pristine LiBH4 and (b) LiBH4@MCM-41. 

The endothermic peak observed by DSC at 116 °C for pristine LiBH4 was assigned to 
the phase transition from orthorhombic (Pnma) to hexagonal (P63mc) LiBH4. At 286 °C, 
the melting of LiBH4 was also observed, in agreement with the literature [3]. Upon nano-
confinement of LiBH4, some a weak DSC signal related to the phase transition and melting 
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of LiBH4 were still visible although at the lower temperatures of 109 and 275 °C, respec-
tively. Fully nanoconfined LiBH4 has been reported to show no DSC signal for the phase 
transition [4]. In the current work, this may be explained by the existence of some LiBH4 
outside the MCM-41 porosity, although yet to be confirmed because the hydrogen release 
profile only showed a single peak at 320 °C, which indicates a very well confined material, 
as per previous reports [5]. 

The 3.2 % mass loss observed upon nanoconfinement of LiBH4 by TGA indicates that 
73 % of LiBH4 is confined in MCM-41 instead of the 83% indicated by BET analysis. The 
discrepancy may be due to the formation of by-products (i.e. oxides and B12H12 phase) 
during melt infiltration. 

 
Figure S7. FTIR analysis of LiBH4@MCM-41 and pristine LiBH4. 

Vibrations corresponding to four- and three-coordinated B-O were observed by FTIR 
analysis of nanoconfined LiBH4 in MCM-41 and this indicated the presence of oxides 
phases [6]. In addition, the B12H12 vibration at 2514 cm-1 and 713 cm-1 were detected, cor-
responding to the Li2B12H12 phase.[7,8] This can be attributed to the partial decomposition 
of LiBH4.[9] 
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Figure S8. FTIR analysis of NaBH4@MCM-41 and pristine NaBH4. 

 
Figure S9. Arrhenius plot of LiBH4@MCM-41 and pristine LiBH4. 
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Figure S10. 11B NMR of the NaBH4 + Na2B12H12 composite synthesised by exposing NaBH4 to B2H6. 
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Figure S11. TGA-DSC MS of the NaBH4+Na2B12H12 composite synthesised by exposing NaBH4 to 
B2H6. 
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