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Table 1. Summary of BET analysis for MCM-41, NaBH«@MCM-41 and LiBHi@MCM-41.

Total pore volume

Sample BET surface area (m? g!
P (cm® g) (m*g™)
MCM-41 1.02 111091
LiBH4@MCM-41 0.03 14.38
NaBH4s@MCM-41 0.02 3.5
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Figure S1. BET analysis for MCM-41 and NaBHs«@MCM-41: (a) N2 physisorption and (b) pore size distribution.

MCM-41 shows a type IV isotherm, which confirms that MCM-41 is a mesoporous
material [1]. After melt infiltration, the isotherm became of type II. This implies that the
material is non-porous and of macroporous type [2].

50 nm

Figure S2. Typical TEM image of (a) the empty scaffold MCM-41, and (b) NaBHi@MCM-41.
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Si

Figure S3. STEM elemental mapping of NaBHi@MCM-41.
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Figure S4. TGA-DSC-MS profiles of (a) pristine NaBHs and (b) NaBH:@MCM-41.

The excessive mass loss of pristine NaBHs is due to Na evaporation. The BET results
indicated that the pores of the MCM-41 were filled at 78 %. The corresponding mass loss
observed by TGA should be of 5.1 instead of 5.4%. The excess (0.3%) may be due to the
evaporation of Na upon the melting of NaBHa.
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(a)

Figure S5. BET analysis for MCM-41 and LiBH«@MCM-41: (a) N2-physisorption, and (b) pore size distribution.
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Figure S6. TGA-DSC-MS profiles of (a) pristine LiBHs and (b) LiBHix@MCM-41.

The endothermic peak observed by DSC at 116 °C for pristine LiBHs was assigned to
the phase transition from orthorhombic (Pnma) to hexagonal (P63mc) LiBH4. At 286 °C,
the melting of LiBHs was also observed, in agreement with the literature [3]. Upon nano-
confinement of LiBHs, some a weak DSC signal related to the phase transition and melting
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of LiBH4 were still visible although at the lower temperatures of 109 and 275 °C, respec-
tively. Fully nanoconfined LiBH4 has been reported to show no DSC signal for the phase
transition [4]. In the current work, this may be explained by the existence of some LiBHa
outside the MCM-41 porosity, although yet to be confirmed because the hydrogen release
profile only showed a single peak at 320 °C, which indicates a very well confined material,
as per previous reports [5].

The 3.2 % mass loss observed upon nanoconfinement of LiBHs by TGA indicates that
73 % of LiBHu is confined in MCM-41 instead of the 83% indicated by BET analysis. The
discrepancy may be due to the formation of by-products (i.e. oxides and Bi2Hi phase)
during melt infiltration.
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Figure S7. FTIR analysis of LiBHi@MCM-41 and pristine LiBHa.

Vibrations corresponding to four- and three-coordinated B-O were observed by FTIR
analysis of nanoconfined LiBHs in MCM-41 and this indicated the presence of oxides
phases [6]. In addition, the Bi2H12 vibration at 2514 cm™ and 713 cm™ were detected, cor-
responding to the Li2Bi2H12 phase.[7,8] This can be attributed to the partial decomposition
of LiBHa4.[9]
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Figure S8. FTIR analysis of NaBH:«@MCM-41 and pristine NaBHa.
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Figure S9. Arrhenius plot of LiBHi@MCM-41 and pristine LiBHa.
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Figure S10. "B NMR of the NaBHa + Naz2B12H12 composite synthesised by exposing NaBHa to B2He.
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Figure S11. TGA-DSC MS of the NaBHs+Na2B12H12 composite synthesised by exposing NaBHa to

B2He.
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