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Abstract: The dramatic expansion of the earth’s population can be directly correlated with the
Haber–Bosch process for nitrogen fixation becoming widely available after World War II. The ready
availability of artificial fertilizer derived thereof dramatically improved food supplies world-wide.
Recently, artificial nitrogen fixation surpassed the natural process. The Haber–Bosch process is
extremely energy and green-house gas intensive due to its high-temperature and H2 demands.
Many low valent Ti(II) complexes of N2 are known. We report herein a preliminary investigation of
the low-valent chemistry of Ti with the CCC-NHC ligand architecture. These CCC-NHC pincer Ti(IV)
complexes are readily reduced with KC8 or Mg powder. Preliminary results indicate very different
reactivity patterns with alkynes and phosphines for this ligand architecture versus prior ligands.
Successful reduction to an intact low-valent (CCC-NHC)Ti complex was confirmed by re-oxidation
with PhICl2.

Keywords: Keywords: titanium; CCC-NHC pincer ligand; N-heterocyclic carbene; reduction; oxida-
tion; carbene; pincer compounds; nitrogen fixation

1. Introduction

Nitrogen is one of the most important elements present in essential molecules (amino
acids, proteins, enzymes and nucleic acids and medicines) for life [1]. The bond strength
of dinitrogen limits its chemical reactivity which is fortunate given its abundance in the
atmosphere (78%) [2]. The biological transformation of dinitrogen into ammonia for con-
version into more complicated biomolecules, is called natural nitrogen fixation (NNF).
On the other hand, conversion of dinitrogen into useful molecules unaided by nature is
called artificial nitrogen fixation (ANF). Recently, ANF surpassed NNF in terms of the total
amount [1]. The challenges of ANF are enshrined in the Haber–Bosch (H–B) process (1913),
which has been called the most important invention of the 20th century [1–3]. The H–B
process converts nitrogen purified from the atmosphere and externally supplied hydro-
gen into gaseous ammonia at a very high temperature (650–750 K) and extreme pressure
(50–200 bar) in the presence of a heterogeneous catalyst [4–8]. The growth of the hu-
man population has been mapped directly to the growth of ammonia production via
the H–B process to supply artificial fertilizers post World War II [8,9]. A whopping 40%
of the total human population depends on ANF for an adequate food supply [10,11].
The ever-expanding need for food grown with artificial fertilizers generates 450 million
metric tons of carbon dioxide (~1.9 metric tons of CO2 per metric ton of ammonia pro-
duced [12]), consumes 2% of the world’s total natural gas output, results in 1% of all human
emissions and 2% of the world’s total energy consumption on an annual basis [13–16].
Ammonia produced through ANF is utilized in multiple large-scale industries apart from
fertilizers; examples include: pharmaceuticals, explosives, plastic manufacturing, mining
and metallurgy, production of nitric acid, et cetera [8]. Recently there is an increasing
interest in using ammonia as the energy carrier of the future [17,18]. Further increase in
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conventional ANF will be ecologically undesirable in terms of carbon footprint, therefore
new environmentally-friendly methods for ANF are required [19].

Improving the efficiency of ANF will lead to huge benefits on a world-wide scale.
Multiple approaches (Figure 1) have been undertaken to achieve this including: improve-
ment of the H–B process conditions by exploring biological-mimics, homogeneous or
heterogeneous catalysts designed to operate at milder conditions, semiconductor-based
photocatalysis for nitrogen fixation, greener microwave plasma methods to synthesize
ammonia and NOx, and hybrid systems between NNF and ANF such as development of
synthetic rhizospheres (SRS), which helps intensify the NNF in plants via the development
of a synthetic media [1,17,18,20–23].
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Binding of dinitrogen to a metal center depends on the formation of a stable reduced 
metal center, which can in turn reduce a dinitrogen molecule. Organometallic chemists all 
over the world have attempted this feat with different levels of success [24]. Schrock and 
Yandulov synthesized the first successful nitrogenase model system that evolved ammo-
nia from a dinitrogen species using (LutH)BArF4 and CrCp*2 as protonating and reducing 
agents, respectively [25]. The Peters group followed with an organometallic complex with 
first row transition metal (Fe) with a maximum of 93 equivalents of ammonia evolution 
per iron center [3,26,27]. Additional interest in first row transition metal PNP pincer com-
plexes as ANF agents began in 2015 when the Lu group published results involving a 
cobalt dinitrogen complex [26]. In 2016, the Nishibayashi group also developed Fe com-
plexes based on a PNP pincer ligand with a pyrrolidine unit at the center and a terminal 
di-tert-butylphosphine to effectively catalyze ANF [27]. Reduction of (FeCl(PNP)) with 

Figure 1. Nitrogen fixation, its problems and possible future developments. (A) Natural nitrogen fixation (NNF).
(B) Current state of industrial nitrogen fixation. (C) Visions of sustainable ammonia production. Nitrogenase MoFe
protein from Azobacter vinelandii (figure courtesy: Einsle, O., Tezcan, F.A., Andrade, S.L.A., Schmid, B., Yoshida, M., Howard,
J.B., Rees, D.C. Database: RCSB. PDB).

Binding of dinitrogen to a metal center depends on the formation of a stable reduced
metal center, which can in turn reduce a dinitrogen molecule. Organometallic chemists all
over the world have attempted this feat with different levels of success [24]. Schrock and
Yandulov synthesized the first successful nitrogenase model system that evolved ammonia
from a dinitrogen species using (LutH)BArF4 and CrCp*2 as protonating and reducing
agents, respectively [25]. The Peters group followed with an organometallic complex with
first row transition metal (Fe) with a maximum of 93 equivalents of ammonia evolution per
iron center [3,26,27]. Additional interest in first row transition metal PNP pincer complexes
as ANF agents began in 2015 when the Lu group published results involving a cobalt
dinitrogen complex [26]. In 2016, the Nishibayashi group also developed Fe complexes
based on a PNP pincer ligand with a pyrrolidine unit at the center and a terminal di-
tert-butylphosphine to effectively catalyze ANF [27]. Reduction of (FeCl(PNP)) with KC8
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yielded the iron(I)-N2 complex [27]. The Nishibayashi group developed another first-row
pincer complex (Co-PNP type) with a central pyrrolide moiety, where the Co-dinitrogen
complexes were synthesized via reduction of paramagnetic precursors (CoCl(tBuPNP)) and
(CoCl(cyPNP)) with KC8 under dinitrogen and were examined in detail with regard to the
conversion to ammonia under ambient reaction conditions. Recently, the Nishibayashi
group also developed a low-cost and environment-friendly Mo-based PNP pincer ligand
to synthesize ammonia (up to 4350 equivalents, turnover frequency of around 117/min)
under ambient conditions at a rate double that previously reported [28,29].

Titanium is an earth-abundant first row metal [30]. “Ti(II)”-dinitrogen complexes are
well known (Figure 2) [28–32]. Many other valuable reaction pathways for low-valent Ti(II),
such as reductive coupling of alkynes and catalytic Pauson–Khand reactions are known
(Figure 2) [33].
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Pincer ligands containing N-heterocyclic carbenes (NHC) have emerged as an im-
portant contribution for homogeneous catalysis [34–37]. Strong electron donating ability
makes them an alternative to the tertiary phosphine containing ligands well known to bind
dinitrogen [38–42]. Recent reports of CCC-NHC pincer complexes of first row transition
metal complexes have been reported to bind dinitrogen effectively [43]. Evidence of such
reactivity in an electron rich environment suggested the opportunity to pursue strong
electron donating ligands first reported by Hollis et al. [44,45]. In light of the background,
previously reported, robust and easy to synthesize first row transition metal complexes
of the CCC-NHC pincer ligand were chosen as a stable starting material to access low
valent (CCC-NHC)Ti pincer complexes to study their ability to bind dinitrogen [46]. In this
contribution, initial investigations aimed at reducing (CCC-NHC)Ti(IV) pincer complexes
directed toward binding and reducing N2 and studies on redox behavior of similar com-
pounds are reported for the first time. Reductions were conducted with Mg or KC8 and the
reactivity of the reduced species were investigated. The reactivity of the reduced species
with alkynes, phosphines, CO and PhICl2 are reported.

2. Results and Discussion

To study dinitrogen binding to low valent (CCC-NHC)Ti pincer complexes, well
known, previously reported (CCC-NHC)dichloro mono-amido Ti pincer complex 1 was
chosen as a starting material for initial studies (Scheme 1a, Figure 3A–D). All reactions
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were monitored by no-D NMR techniques in THF with a few drops of C6D6 [47]. Illustrated
in Figure 3A (CD2Cl2) and 3B (no-D THF) are the characteristic signals for identifying
amido complex 1 by its diastereotopic N-CH2-Pr (Ha and Ha’) signals at δ~4.3 and a methyl
triplet (Hb) at δ~0.9. Very slight shifts due to solvent effects were observed. Complex 1
had limited solubility in THF. Complex 1 in THF was sonicated with excess Mg-powder
in THF under nitrogen atmosphere at room-temperature to attempt dinitrogen binding
via low valent (CCC-NHC)Ti in situ (Scheme 1a, Figure 3C). Upon sonication of the re-
action mixture, a thick light-yellow precipitate under a faint yellow supernatant was
observed (Scheme 1). Upon addition of the reductant, the diamagnetic NMR spectrum
(Figure 3B) became paramagnetically broadened and the spectrum was featureless
(Scheme 1a, Figure 3C). The broadened spectrum for the Mg reduction reaction is illustrated
in Figure 3C. No peaks are discernable.
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Scheme 1. (a) Reduction of complex 1 with Mg-powder or KC8 to reduced intermediate 3. (b) Reduction of complex 2 with
Mg-powder or KC8 to reduced intermediate 3′. (c) Oxidative halogenation of intermediates 3 and 3′ resulted in complex 2.
Reaction (a) was identified to contain a side product (MgCl(NMe2)) identified by 1H NMR spectroscopy [48].

This observation was consistent with reduction of complex 1 to intermediate species 3
(Scheme 1a, Figure 3C, Figures S2–S4). This faint yellow supernatant was then subjected to
a multitude of crystallization conditions to identify the structure of the intermediate 3 or
the target nitrogen adduct via the determination of the crystal structure. Despite our best
efforts, intermediate 3 remained intractable spectroscopically and no crystalline material
has been isolated thus far. With no crystalline material in hand, reoxidation reaction on
reduced intermediate was sought to provide insight into the structure of the intermediate.
Iodobenzene dichloride is well known to oxidatively halogenate group 4 organometallic
compounds [49,50]. Freshly prepared iodobenzene dichloride was combined with the
mixture containing reduced intermediate 3 in THF [51] (Scheme 1c, Figure 3D). Oxidative
halogenation of intermediate 3 dissolved the resulting faint yellow precipitate and resulted
in a homogeneous yellow colored solution, which upon analysis with no-D 1H NMR
spectrum was surprisingly consistent with previously reported trichloride 2 (triplets Hc
and Hd at δ 4.33 and at δ 0.84) and not the amido complex 1 (diastereotopic protons Ha,
Ha’ δ~4.3 and triplet Hb δ~0.9) (Scheme 1c, Figure 3A,D,G, Figures S2–S4) [46]. Addi-
tionally, a singlet was observed at δ 2.64 (THF) as illustrated in Figure 3D, e, which
was consistent with the signal for Mg-dimethyl amido species as previously reported
in literature (C6D6) [48]. In a separate experiment, the faint yellow supernatant was
decanted to separate the light-yellow precipitate and understand its nature. The precip-
itate was then dried under reduced pressure and dissolved in CD2Cl2 for spectroscopic
data collection purposes (Figure 3E and Figure S1). The resulting solution was subjected
to a multitude of crystallization conditions to crystallize and therefore characterize the
intermediate 3 or a target nitrogen adduct. Despite our best efforts, the intermediate 3
remained intractable spectroscopically and no crystalline material has been isolated thus far.
The broad singlet at δ 2.64 was consistent with the signal for Mg-dimethyl amido species
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as previously reported in literature (δ 2.64, C6D6) (Figure 3E) [48]. The broadening of the
1H NMR peak of the Mg-dimethyl amido species was consistent with its interaction with
the metal core of the reduced intermediate. With no crystal of the desired nitrogen adduct
or an intermediate, reoxidation reaction on reduced intermediate was sought to provide
insight into the structure of the intermediate. A faint yellow homogeneous solution of the
resulting precipitate in dichloromethane was allowed to react with iodobenzene dichloride.
The resulting yellow solution was observed to contain a mixture of multiple compounds via
1H NMR spectroscopy. This solution was then allowed to react with TMSCl to convert any
(CCC-NHC)dimethylamido Ti species into a (CCC-NHC) TiCl3 as previously reported [46].
The resulting yellow solution was evaporated to dryness yielding a yellow solid. It was
then precipitated with hexane from a homogeneous solution of dichloromethane. The su-
pernatant was decanted, and the residual yellow precipitate was then dried under reduced
pressure. The 1H NMR analysis of the homogeneous, yellow solution of the resulting
precipitate in dichloromethane was also contrary to expectation, consistent with previously
reported trichloride 2 and not the amido complex 1 (Figure 3A,F,G and Figure S1) [46].
Additionally, a broad singlet was observed at δ 2.89 (THF) as illustrated in Figure 3F, f
which was attributed to the signal for (Me2N(SiMe3)2)+ as cited in literature in a simi-
lar chemical environment [52]. The broader than usual peaks in the resulting 1H NMR
spectra (Figure 3F) were attributed to the dynamic exchange with excess chloride anions
present in the solution (Figure 3F and Figure S1). The aromatic peaks around δ 9.5 in
the resulting 1H NMR spectra were attributed to partially decomposed (CCC-NHC)Ti
pincer complex present in the solution as previously reported in literature [44] (Figure S1).
The minimal shift in the position of 1H NMR peaks observed in the resulting 1H NMR spec-
tra was attributed to the difference in the chemical environment in the resulting solution
(Figure S1). The fact that the singlet from the resulting Mg-NMe2 species’ NMR was also
broadened in reducing conditions (Figure 3C) is consistent with an interaction with the
reduced Ti-species, which likely inhibits the coordination of weak ligands such as N2.
However, results clearly demonstrated that the CCC-NHC ligand and Ti are still bonded in
the low valent state.

Since the Mg-amido species (vide supra) were likely impeding the formation of
N2-adducts, KC8 was chosen as an alternative reducing agent. A light red colored homo-
geneous solution of CCC-NHC)Ti(IV)Cl2NMe2 1 was sonicated with two equivalents of
freshly prepared KC8 in THF at room-temperature to attempt nitrogen binding in situ in
an NMR tube (Scheme 1). Paramagnetic broadening of all (overlapping diastereotopic
peaks (Ha, Ha’) δ~4.3 and triplet peaks (Hb) δ~0.9) major peaks in a no-D 1H NMR ex-
periment of the homogeneous reaction mixture over the residual graphite was consistent
with reduction to species 3 (Figures S5 and S6). The resulting homogeneous solution was
deep yellow-green in color after the removal of heterogeneous reducing agent via filtration
through a celite plug. The resulting solution was subjected to a multitude of crystallization
conditions to crystallize and therefore characterize the intermediate or a target nitrogen
adduct. Despite our best efforts, the intermediate remained intractable spectroscopically
and no crystalline material has been isolated thus far. With no crystal available; reoxidation
was pursued to provide insight into the structure of the intermediate. Freshly prepared
iodobenzene dichloride was combined with the homogeneous deep yellow-green colored
reaction mixture containing reduced intermediate 3 at room-temperature in THF [51]
(Scheme 1). Oxidative halogenation on 3 also resulted in a homogeneous yellow colored
solution which upon analysis with 1H NMR was consistent with previously reported
CCC-NHC)Ti(IV)Cl3 2 (triplets Hc and Hd at δ 4.33 and at δ 0.84) and not the amido
complex 1 (overlapping diastereotopic peaks (Ha, Ha’) δ~4.3 and triplet peaks (Hb) δ~0.9)
(Scheme 1, SI, Figure 3A,G) [46]. Reoxidation of intractable intermediate 3 to complex 2
repeatedly, led to the decision to choose trichloride 2 for further evaluation (Scheme 1b,
Figure 4A–C). Illustrated in Figure 4A (no-D THF) are the characteristic signals for identify-
ing trichloro complex 2 by its triplets Hc and Hd at δ 4.33 and at δ 0.84. To attempt nitrogen
fixation by low oxidation states of Ti exclusively, stoichiometric reduction reactions of
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complex 2 were executed with one- and two-fold molar excesses of freshly prepared KC8
as follows [53]. A homogeneous solution of compound 2 in an NMR tube, was soni-
cated with equimolar ratio of KC8 in THF at ambient temperature under inert conditions
(Figure 4B). The resulting homogeneous solution looked orange-yellow upon removal
of the heterogeneous reducing agent via filtration through a celite plug. Paramagnetic
broadening of all (triplets Hc and Hd at δ 4.33 and at δ 0.84) major peaks in a no-D 1H
NMR analysis of the solution was consistent with reduction in both the cases (Figure 4B,
Figures S7 and S9).
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The homogeneous solution of intermediate 3′ was subjected to a multitude of crys-
tallization conditions to isolate and crystallize the intermediate. Despite our best efforts,
no crystalline material has been isolated so far. Unable to isolate the target dinitrogen
adduct or the intermediate, freshly prepared iodobenzene dichloride was allowed to re-
act with a homogeneous solution containing reduced intermediate 3′ in situ in THF, at
room-temperature under inert conditions. Upon sonication in an NMR tube, the reaction
mixture restored its initial yellow color (Scheme 1c, Figure 4C). The re-appearance of the
characteristic triplets (Hc and Hd) at δ 4.33 and at δ 0.84 in the no-D 1H NMR experiment in
THF was consistent with formation of compound 2 via oxidative halogenation (Scheme 1c,
Figure 4C, Figures S7 and S8). A homogeneous solution of compound 2 in an NMR tube
was also sonicated with two equivalents of freshly prepared KC8 in THF in order to attempt
nitrogen fixation at ambient temperature under inert conditions. The resulting solution
was light yellow in color after the removal of resulting heterogeneous reducing agent
via filtration through a celite plug. Upon addition of the reducing agent, diamagnetic
NMR spectrum becomes paramagnetically broadened and the resulting spectrum becomes
featureless. The resulting NMR spectrum was consistent with the formation of reduced
species 3′. The homogeneous solution of intermediate 3′ was subjected to a multitude
of crystallization conditions to isolate and crystallize the intermediate, despite our best
efforts, no crystalline material has been isolated so far. Unable to isolate the target dinitro-
gen adduct or the intermediate, freshly prepared iodobenzene dichloride was allowed to
react with a homogeneous solution containing reduced intermediate 3′ in situ in THF, at
room-temperature under inert conditions. Upon sonication in an NMR tube, the reaction
mixture restored its initial yellow color (Scheme 1c, Figure 4C). The re-appearance of the
characteristic triplets (Hc and Hd) at δ 4.33 and at δ 0.84 in the no-D 1H NMR experiment in
THF was consistent with formation of compound 2 via oxidative halogenation (Scheme 1c,
Figure 4C and SI). Since quantitative reoxidation reactions on the reduced species with one
and two equivalents of reducing agent resulted in the same final compound, compound 2
was sonicated with excess of KC8 to ensure quantitative reduction. The resulting homo-
geneous solution looked wine-red upon removal of the resulting heterogeneous reducing
agent via filtration through a celite plug. Paramagnetic broadening of all major peaks
(triplets Hc and Hd at δ 4.33 and at δ 0.84) in the no-D 1H NMR experiment was consistent
with reduction. The resulting homogeneous solution containing intermediate 3′ in THF
was also subjected to a multitude of crystallization conditions to isolate and crystallize
the intermediate, despite our best efforts, no crystalline material has been isolated thus
far. Unable to isolate the target dinitrogen adduct or the intermediate, freshly prepared
iodobenzene dichloride was allowed to react with a homogeneous solution of reduced
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intermediate 3′ at room-temperature in THF in situ under inert conditions. The resulting
homogeneous reaction mixture restored its initial yellow color. The re-appearance of the
characteristic peaks (triplets Hc and Hd at δ 4.33 and at δ 0.84) in the no-D 1H NMR exper-
iment in THF was consistent with formation of compound 2 via oxidative halogenation
(Scheme 1, Figure 4). A homogeneous solution of compound 2 was subsequently soni-
cated with excess Mg-powder at ambient temperature and under inert reaction conditions.
A fluffy yellow precipitate was observed (Scheme 1b, Figure S8). Paramagnetic broadening
of all peaks (triplets Hc and Hd at δ 4.33 and at δ 0.84 of 2) in the no-D 1H NMR spectrum
of the supernatant was consistent with reduction to species 3′(Figure S8). A homoge-
neous solution of the resulting precipitate was collected and subjected to a multitude of
crystallization conditions to crystallize and therefore characterize the intermediate or a
target nitrogen adduct. Despite our best efforts, the intermediate remained intractable
spectroscopically and no crystalline material has been isolated so far. With no crystal of
desired nitrogen adduct or an intermediate available, in situ reoxidation reaction on inter-
mediate was pursued to provide insight into the structure of the intermediate (Scheme 1c).
Freshly prepared iodobenzene dichloride was allowed to react with a homogeneous solu-
tion of reduced intermediate 3′ in THF at room-temperature under inert atmosphere. Upon
sonication, the resulting homogeneous reaction mixture restored its initial yellow color.
The re-appearance of the characteristic triplets (Hc and Hd) at δ 4.33 and at δ 0.84 in the
no-D 1H NMR experiment in THF was consistent with formation of compound 2 (Scheme
1) via oxidative halogenation (Figure S8).

Hence, it was interesting to observe that both intermediates 3 and 3′ gave rise to the
same symmetric characteristic signals of compound 2 after the redox cycling was complete
(Scheme 1, Figure 3, Figure 4 and supplementary). This phenomenon was consistent with a
robust, redox stable metal binding to the CCC-NHC core and a common reduced interme-
diate. Since the reactions with stoichiometric as well as excess reducing agents resulted in
complex 2 upon reoxidation, only excess reductants were used from here onwards to ensure
complete reduction. Evidence of (MgClNMe2) and (Me2N(SiMe3)2)+ complexes after reoxi-
dation of reduced complex 1 with Mg was consistent with the facile elimination of electron
donating dimethylamine leading to a stable reduced intermediate (Figure 3 and SI). Resur-
gence of complex 2 after the oxidation of both reduced intermediates 3 and 3′ hints at their
similarity in structure and robustness of the metal-backbone binding (Scheme 1, Figure 3,
Figure 4 and SI). Reduction followed by re-oxidation with iodobenzene dichloride followed
similar trends in KC8 and Mg powder (Scheme 1, Figure 3, Figure 4 and SI). Unable to iso-
late any dinitrogen bound coordination compound or the reduced intermediates, recourse
to reactivity of the intermediates were sought.

Attempted reactions to trap reduced intermediate 3 or 3′: Low-valent Ti intermediates
have well-known reactivity patterns as illustrated before. Any resulting low-valent Ti
adducts could be utilized to determine the nature of the reactive intermediate.

A homogeneous solution of reduced species 3 or 3′ in THF were subjected to various
phosphines (PPh3, P(o-tol)3) and alkyne (diphenyl acetylene) at temperatures ambient to
100 ◦C and under inert atmosphere, to synthesize any (CCC-NHC)Ti-phosphine adduct
as previously cited (Scheme 2) [54]. Highly reactive PEt3 was reacted with quantitatively
reduced (CCC-NHC)Ti complex 2 with 1, 2 and 4 equivalents of freshly prepared KC8 to
accommodate any difference in reactivity between quantitative reductants used (Scheme 2).
For all the reaction conditions illustrated below, the color of the solution remained un-
changed after the addition of the phosphines. The 31P NMR spectra showed no complex
bound phosphines. The observations listed above were consistent with no reaction between
the reduced intermediates 3 or 3′ and phosphine. Therefore, the results were suggestive of
an alternative reactivity pattern in the present (CCC-NHC)Ti complex system compared to
the well-established Ti-chemistry reported in literature [54].
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Scheme 2. Reduction of complex 2 followed by attempted trapping of the reduced intermediate with
alkynes and phosphines.

Carbon monoxide is isoelectronic to dinitrogen molecule. Stable metal carbonyl com-
plexes are abundant in literature [55]. Identification of any discreet CO-bound
(CCC-NHC) could be utilized to determine the nature of the reactive intermediate. Reduced
homogeneous wine-red colored solution of 3′ in THF was bubbled with carbon monoxide
(Scheme 3). Upon reaction, the wine-red color of the solution changed to pale yellow.
The resulting no-D 1H NMR spectrum in THF changed to a diamagnetic spectrum with
a new multiplet at δ 0.77 instead of the characteristic triplet peaks (triplets Hc and Hd at
δ 4.33 and at δ 0.84 of 2) of complex 2 at δ 4.33 and δ 0.84 (Figure S13). The diamagnetic
nature of the resulting spectrum along with the observed color change of the solution
were consistent with the formation of a new species 4 (Scheme 3 and Figure S13). Further
attempts at characterizing the newly formed pincer-CO adduct was intractable, seemingly
due to loss of CO when CO-atmosphere was removed.
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Since the original target was the nitrogen adducts of the low valent Ti-pincer complex,
extensive effort was expended to obtain the crystalline material. No crystals with or
without N2-binding were obtained. It was reasoned that the (CCC-NHC)Ti system has
an interestingly alternative reactivity pattern compared to literature precedence and the
observed Mg-amido complex may have been complicating the equilibria preventing the
N2-adduct and crystal formation.

3. Materials and Methods
3.1. General

Standard inert-atmosphere techniques were used unless stated otherwise. Solvents
were dried using a standalone solvent purification system. (1,3-bis(3-butylimidazol-1-
yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium 1, (1,3-bis(3-butylimidazol-1-
yl-2-idene)-2-phenylene)trichlorotitanium 2 were synthesized according to the literature
procedure [46]. Benzene-d6 was purchased and passed through a column of activated basic
alumina. KC8 was freshly prepared following the procedure reported in literature [53].
Iodobenzene dichloride was freshly prepared using literature procedure [51]. 1H NMR
spectra were collected on a 300 MHz, or a 500 MHz NMR spectrometer at ambient temper-
ature. No-D 1H NMR experiments in THF were conducted with two drops of C6D6 [47].

3.2. Reaction of Complex 1 with Mg Powder

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium
(IV)) 1 (11 mg, 0.02 mmol) was dissolved in 2.5 mL of dry protic-THF (2 drops of C6D6
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was added to lock) in an NMR tube. To this solution, Mg-powder (10 mg, 0.42 mmol) was
added. The resulting heterogeneous mixture was sonicated for 3 h. The mixture was left in
the glovebox for 48 h for the completion of the reaction; a thick light-yellow precipitate of 3
was observed. Spectroscopic data for the supernatant was collected.

1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic broadening
caused relevant peaks to disappear.

3.3. Oxidation of Intermediate 3 with PhICl2 Followed by Addition of TMSCl

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium
(IV)) 1 (13.7 mg, 0.03 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube.
To this solution, Mg-metal powder (11 mg, 0.45 mmol) was added. The resulting het-
erogeneous mixture was sonicated for 3 h with occasional manual shaking. The mixture
was left in the glovebox for 48 h for the completion of the reaction; a thick faint yellow
precipitate of intermediate 3 was observed. The supernatant was decanted followed by
collecting the resulting solid. The solid was dried under reduced pressure. The residue was
dissolved in CH2Cl2 and freshly prepared PhICl2 (18.0 mg, 0.07 mmol) followed by TMSCl
(25.0 mg, 0.23 mmol) were added to the mixture and the reaction mixture was left in the
inert atmosphere overnight. The reaction mixture was evaporated to dryness. The residue
was dissolved in CH2Cl2. To the solution dry hexane was added to precipitate the resulting
complex. Supernatant was decanted and the resulting precipitate was dried under reduced
pressure. Spectroscopic data was collected.

1H NMR (500 MHz, CD2Cl2): δ 7.99 (br, 4H), 7.77 (br, 1H), 7.52 (br, 2H), 4.38 (br, 4H),
2.88 (s, 1H), 2.02 (br, 4H), 1.49 (br, 4H), 1.03 (br, 6H).

3.4. Reduction with Mg Followed by Reoxidation of 1 with PhICl2
((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium

(IV)) 1 (11 mg, 0.02 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube.
To this solution, Mg-metal powder (10 mg, 0.42 mmol) was added. The resulting heteroge-
neous mixture was sonicated for 3 h with occasional manual shaking. The mixture was left
in the glovebox for 48 h for the completion of the reaction; a thick yellow precipitate was
observed. Iodobenzene dichloride (18 mg, 0.07 mmol) was added in situ. Upon mixing,
the yellow precipitate dissolved; forming a clear yellow solution. 1H NMR (300 MHz, THF
no-D, locking solvent: C6D6): δ 4.33 (t), 0.84 (t).

3.5. Reaction of Complex 1 with KC8

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium
(IV)) 1 (5 mg, 0.01 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube.
To this solution KC8 (4.5 mg, 0.03 mmol) was added. The resulting heterogeneous mixture
was sonicated for 3 min with occasional manual shaking. The reaction mixture turned deep
yellow-green. The resulting solution was passed through a celite plug to remove the hetero-
geneous reducing agent. The solvent was removed from the solid under reduced pressure.
1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic broadening caused
relevant peaks to disappear.

3.6. Reduction with KC8 Followed by Reoxidation of 1 with PhICl2
((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)(dimethylamido)dichlorotitanium

(IV)) 1 (5 mg, 0.01 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube.
To this solution, KC8 (4.5 mg, 0.03 mmol) was added. The resulting heterogeneous mixture
was sonicated for 3 min with occasional manual shaking. Iodobenzene dichloride (10 mg,
0.04 mmol) was added in situ. Upon mixing, the yellow precipitate dissolved forming a
clear yellow solution. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): δ 4.33 (t),
0.84 (t).
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3.7. Reduction of Complex 2 with KC8

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (5.1 mg,
0.01 mmol) was dissolved in 2.42 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, KC8 (5.2 mg, 0.04 mmol) was added. The resulting
heterogeneous mixture was sonicated for 0.11 h with occasional manual shaking. A yellow-
green solution was observed. The resulting solution was passed through a celite plug to
remove the heterogeneous reducing agent. The solvent was removed from the solid under
reduced pressure. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic
broadening caused relevant peaks to disappear.

3.8. Reduction of Complex 2 with KC8 Followed by Reoxidation with PhICl2
((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (5.1 mg,

0.01 mmol) was dissolved in 2.42 mL of 30% C6D6 in dry protic-THF in an NMR tube.
To this solution, KC8 (5.2 mg, 0.04 mmol) was added. The resulting heterogeneous mixture
was sonicated for 0.11 h with occasional manual shaking. A yellow-green solution was
observed. To the decanted supernatant, iodobenzene dichloride (16 mg, 0.06 mmol) was
added in situ. Upon mixing, a clear yellow solution was observed. 1H NMR (300 MHz,
THF no-D, locking solvent: C6D6): δ 4.33 (t), 0.84 (t).

3.9. Reduction of Complex 2 with Mg

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,
0.02 mmol) was dissolved in 2.5 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, Mg-powder (12 mg, 0.49 mmol) was added.
The resulting heterogeneous mixture was sonicated for 2h with occasional manual shaking.
A yellow precipitate was observed. Spectroscopic data was collected for the supernatant.
The supernatant was then decanted and the resulting solid was dried under reduced
pressure. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic broadening
caused relevant peaks to disappear.

3.10. Reduction of Complex 2 with Mg Followed by Reoxidation with PhICl2
((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,

0.02 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube. To this solution,
Mg-metal powder (12 mg, 0.49 mmol) was added. The resulting heterogeneous mixture
was sonicated for 2 h with occasional manual shaking. A yellow precipitate was observed.
Iodobenzene dichloride (17 mg, 0.06 mmol) was added in situ. Upon mixing, the yellow
precipitate dissolved; forming a clear yellow solution. 1H NMR (300 MHz, THF no-D,
locking solvent: C6D6): δ 4.33 (t), 0.84 (t).

3.11. Reduction of Complex 2 with KC8 Followed by Reaction with PPh3

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (25 mg,
0.05 mmol) was dissolved in 2.5 mL of dry protic-THF in an NMR tube. To this solution,
excess KC8 (28.3 mg, 0.21 mmol) was added. The resulting heterogeneous mixture was
sonicated for 0.08 h with occasional manual shaking. Due to para-magnetic broadening; all
the characteristic 1H NMR peaks disappeared; broad solvent peaks persisted. The wine-red
colored heterogeneous solution was filtered through celite plug to get rid of the resulting
graphite. To this clear, wine-red colored solution, PPh3 (22.86 mg, 0.09 mmol) was added.
The mixture was sonicated for 2 h with occasional manual shaking. No change in color
was observed. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic
broadening caused relevant peaks to disappear. The characteristic region in 31P NMR
remained unchanged.

3.12. Reduction of Complex 2 with KC8 Followed by Reaction with P(o-tol)3

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (25 mg,
0.05 mmol) was dissolved in 2.4 mL of dry protic-THF (2 drops of C6D6 was added to
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lock) in an NMR tube. To this solution, excess KC8 (28.3 mg, 0.21 mmol) was added.
The resulting heterogeneous mixture was sonicated for 0.08 h with occasional manual shak-
ing. Due to para-magnetic broadening; all the characteristic 1H NMR peaks disappeared;
broad solvent peaks persisted. The wine-red colored heterogeneous solution was filtered
through a celite plug to get rid of the resulting graphite. To this clear, wine-red colored
solution, P(o-tol)3 (26.51 mg, 0.09 mmol) was added. The mixture was sonicated for 2 h
with occasional manual shaking. No change in color was observed. 1H NMR (300 MHz,
THF no-D, locking solvent: C6D6): para-magnetic broadening caused relevant peaks to
disappear. The characteristic region in 1H NMR and 31P NMR remained unchanged.

3.13. Reduction of Complex 2 with One Equivalent of KC8 Followed by Reaction with PEt3

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,
0.02 mmol) was dissolved in 2.5 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, KC8 (2.8 mg, 0.21 mmol) was added. The resulting
heterogeneous mixture was sonicated for 2 h with occasional manual shaking. Due to
para-magnetic broadening; all the characteristic 1H NMR peaks disappeared; broad solvent
peaks persist. The orange-red colored heterogeneous solution was filtered through a celite
plug to get rid of the resulting graphite. To this clear, orange-red colored solution, PEt3
(8.85 µL, 0.06 mmol) was added. The mixture was sonicated for 2 h with occasional manual
shaking. No change in color was observed. 1H NMR (300 MHz, THF no-D, locking solvent:
C6D6): para-magnetic broadening caused relevant peaks to disappear. The characteristic
region in 1H NMR and 31P NMR remained unchanged.

3.14. Reduction of Complex 2 with Two Equivalents of KC8 Followed by Reaction with PEt3

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,
0.02 mmol) was dissolved in 2.5 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, KC8 (5.4 mg, 0.04 mmol) was added. The resulting
heterogeneous mixture was sonicated for 2 h with occasional manual shaking. Due to
para-magnetic broadening; all the characteristic 1H NMR peaks disappeared; broad solvent
peaks persisted. The wine-red colored heterogeneous solution was filtered through a celite
plug to get rid of the resulting graphite. To this clear, wine-red colored solution, PEt3
(8.85 µL, 0.06 mmol) was added. The mixture was sonicated for 2 h with occasional manual
shaking. No change in color was observed. The characteristic region in 1H NMR and
31P NMR remained unchanged. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6):
para-magnetic broadening caused relevant peaks to disappear. The characteristic region in
1H NMR and 31P NMR remained unchanged.

3.15. Reduction of Complex 2 with KC8 Followed by Reaction with Diphenyl Acetylene

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,
0.02 mmol) was dissolved in 1.5 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, excess KC8 (14.1 mg, 0.01 mmol) was added.
The resulting heterogeneous mixture was sonicated for 0.08 h with occasional manual shak-
ing. Due to para-magnetic broadening; all the characteristic 1H NMR peaks disappeared;
broad solvent peaks persisted. The wine-red colored heterogeneous solution was filtered to
get rid of the resulting graphite. To this clear, wine-red colored solution, diphenyl acetylene
(7.81 mg, 0.04 mmol) was added. The mixture was sonicated for 2 h with occasional manual
shaking. The color of the resulting solution and the characteristic region in 31P NMR re-
mained unchanged. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): para-magnetic
broadening caused relevant peaks to disappear.

3.16. Reduction of Complex 2 with KC8 Followed by Reaction with CO

((1,3-Bis(3-butylimidazol-1-yl-2-idene)-2-phenylene)trichlorotitanium(IV)) 2 (10 mg,
0.02 mmol) was dissolved in 2.5 mL of dry protic-THF (2 drops of C6D6 was added to
lock) in an NMR tube. To this solution, KC8 (5.4 mg, 0.04 mmol) was added. The resulting
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heterogeneous mixture was sonicated for 2 h with occasional manual shaking. Due to
para-magnetic broadening; all the characteristic 1H NMR peaks disappeared; broad solvent
peaks persisted. The wine-red colored heterogeneous solution was filtered through a celite
plug to get rid of the resulting graphite. To this clear, wine-red colored solution, CO was
bubbled for 0.03 h with occasional manual shaking. The resulting mixture was sonicated
for 2 h with occasional manual shaking. The color of the resulting solution changed from
wine-red to dirty-yellow. 1H NMR (300 MHz, THF no-D, locking solvent: C6D6): δ 0.77 (t).

4. Conclusions

To access low valent (CCC-NHC)Ti pincer complexes for dinitrogen binding, first
row transition metal pincer complexes of CCC-NHC pincer ligand were chosen as a stable
starting material. Reduction of the metal center was performed with potassium graphite
or Mg powder yielding a reduced species based on the paramagnetic broadening of all
peaks into the baseline of the 1H NMR spectra. Lacking a single X-ray crystal solution
of the reduced species and without 1H NMR data to provide sufficient structural insight;
recourse to reactivity was sought. The reduced species 3 or 3′ obtained from amido
complex 1 or trichloride 2 produced the same product upon reoxidation with PhICl2,
namely, (CCC-NHC)Ti trichloride 2 (Figures 3 and 4). This observation confirmed that
the ligand and metal remained intact upon reduction. Therefore, the reduced species
3/3′ were investigated for a typical Ti(II) reactivity pattern. Attempts to trap the low
valent species with alkynes and phosphines resulted in no reaction and no isolable species.
Direct observation of the structures of low valent intermediates 3 and 3′ proved unattain-
able, but based on the reactivity pattern, we infer that they are very closely related, if not
identical structures. Finally trapping with an isoelectronic analog of N2, CO produced a
new diamagnetic species based on the diamagnetic 1H NMR observed. Again, numerous
attempts to crystallize the adduct did not yield single crystals adequate for X-ray analysis
and the material proved intractable.

Supplementary Materials: The following are available online at https://www.mdpi.com/2304-674
0/9/2/15/s1, Illustrations of the complete NMR spectrum corresponding to the experiments in the ar-
ticle and description of the example reaction mixtures are included in the supplementary information.
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