Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size Estimation
2.2. Sample Selection
2.3. Experimental Procedure
- BC—Endosequence BC RRM-Fast Set Condensable Putty (BC RRM-FS; Brasseler USA, Savannah, GA, USA);
- MTA—ProRoot MTA (PRM; Dentsply Tulsa Dental, Tulsa, OK, USA), and
- BIO—Biodentine (Biodentine Active Biosilicate Technology Scientific File, Septodont, Paris, France).
2.4. Calibration of Evaluator and of the Evaluations
2.5. Micro-CT Evaluation
2.6. Volume Calculation
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bargholz, C. Perforation repair with mineral trioxide aggregate: A modified matrix concept. Int. Endod. J. 2005, 38, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Sinai, I.H. Endodontic perforations: Their prognosis and treatment. J. Am. Dent. Assoc. 1977, 95, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Askerbeyli Örs, S.; Aksel, H.; Küçükkaya Eren, S.; Serper, A. Effect of perforation size and furcal lesion on stress distribution in mandibular molars: A finite element analysis. Int. Endod. J. 2019, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Fuss, Z.; Trope, M. Root perforations: Classification and treatment choices based on prognostic factors. Endod. Dent. Traumatol. 1996, 12, 255–264. [Google Scholar] [CrossRef]
- Samuel, A.; Asokan, S.; Geetha Priya, P.R.; Thomas, S. Evaluation of sealing ability of BiodentineTM and mineral trioxide aggregate in primary molars using scanning electron microscope: A randomized controlled in vitro trial. Contemp. Clin. Dent. 2016, 7, 322–325. [Google Scholar]
- Siew, K.; Lee, A.H.C.; Cheung, G.S.P. Treatment Outcome of Repaired Root Perforation: A Systematic Review and Meta-analysis. J. Endod. 2015, 41, 1795–1804. [Google Scholar] [CrossRef]
- Kakani, A.K.; Veeramachaneni, C.; Majeti, C.; Tummala, M.; Khiyani, L. A review on perforation repair materials. J. Clin. Diagn. Res. 2015, 9, ZE09–ZE13. [Google Scholar] [CrossRef]
- Kenneth Weldo, J.; Pashley, D.H.; Loushine, R.J.; Norman Welle, R.; Frank Kimbroug, W. Sealing ability of mineral trioxide aggregate and super-eba when used as furcation repair materials: A longitudinal study. J. Endod. 2002, 28, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Daoudi, M.F.; Saunders, W.P. In vitro evaluation of furcal perforation repair using mineral trioxide aggregate or resin modified glass lonomer cement with and without the use of the operating microscope. J. Endod. 2002, 28, 512–515. [Google Scholar] [CrossRef]
- Primus, C.M.; Tay, F.R.; Niu, L. na Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues. Acta Biomater. 2019, 96, 35–54. [Google Scholar] [CrossRef]
- Torabinejad, M.; Parirokh, M. Mineral trioxide aggregate: A comprehensive literature review—Part II: Leakage and biocompatibility investigations. J. Endod. 2010, 36, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part III: Clinical applications, drawbacks, and mechanism of action. J. Endod. 2010, 36, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Torabinejad, M.; Watson, T.F.; Pitt Ford, T.R. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J. Endod. 1993, 19, 591–595. [Google Scholar] [CrossRef]
- Orosco, F.A.; Bramante, C.M.; Garcia, R.B.; Bernardineli, N.; de Moraes, I.G. Sealing ability, marginal adaptation and their correlation using three root-end filling materials as apical plugs. J. Appl. Oral Sci. 2010, 18, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Elnaghy, A.M. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: A comparative study. J. Endod. 2014, 40, 953–957. [Google Scholar] [CrossRef]
- Agrafioti, A.; Tzimpoulas, N.; Chatzitheodoridis, E.; Kontakiotis, E.G. Comparative evaluation of sealing ability and microstructure of MTA and Biodentine after exposure to different environments. Clin. Oral Investig. 2016, 20, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Ćetenović, B.; Čolović, B.; Vasilijić, S.; Prokić, B.; Pašalić, S.; Jokanović, V.; Tepavčević, Z.; Marković, D. Nanostructured endodontic materials mixed with different radiocontrast agents—Biocompatibility study. J. Mater. Sci. Mater. Med. 2018, 29, 190. [Google Scholar] [CrossRef] [PubMed]
- Debelian, G.; Trope, M. The use of premixed bioceramic materials in endodontics. G. Ital. Endod. 2016, 2, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Moinzadeh, A.T.; Aznar Portoles, C.; Schembri Wismayer, P.; Camilleri, J. Bioactivity Potential of EndoSequence BC RRM Putty. J. Endod. 2016, 42, 615–621. [Google Scholar] [CrossRef]
- Jones, A.; Arns, C.; Sheppard, A.; Hutmacher, D.; Milthorpe, B.; Knackstedt, M. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 2007, 28, 2491–2504. [Google Scholar] [CrossRef]
- Swain, M.V.; Xue, J. State of the art of Micro-CT applications in dental research. Int. J. Oral Sci. 2009, 1, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A.; Paqué, F. Root canal preparation of maxillary molars with the self-adjusting file: A micro-computed tomography study. J. Endod. 2011, 37, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Orhan, K.; Celikten, B.; Orhan, A.I.; Tufenkci, P.; Sevimay, S. Evaluation of the sealing ability of different root canal sealers: A combined SEM and micro-CT study. J. Appl. Oral Sci. 2018, 26, e20160584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, M.; Lommel, D.; Klimek, J. The imaging of root canal obturation using Micro-CT. Int. Endod. J. 2005, 38, 617–626. [Google Scholar] [CrossRef]
- de Sousa-Neto, M.D.; Silva-Sousa, Y.C.; Mazzi-Chaves, J.F.; Carvalho, K.K.T.; Barbosa, A.F.S.; Versiani, M.A.; Jacobs, R.; Leoni, G.B. Root canal preparation using micro-computed tomography analysis: A literature review. Braz. Oral Res. 2018, 32, 20–43. [Google Scholar] [CrossRef] [Green Version]
- De-Deus, G.; Belladonna, F.G.; Silva, E.J.N.L.; Souza, E.M.; Carvalhal, J.C.A.; Perez, R.; Lopes, R.T.; Versiani, M.A. Micro-CT assessment of dentinal micro-cracks after root canal filling procedures. Int. Endod. J. 2017, 50, 895–901. [Google Scholar] [CrossRef]
- Kamalak, A.; Uzun, I.; Arslan, H.; Keleş, A.; Doğanay, E.; Keskin, C.; Akçay, M. Fracture Resistance of Endodontically Retreated Roots After Retreatment Using Self-Adjusting File, Passive Ultrasonic Irrigation, Photon-Induced Photoacoustic Streaming, or Laser. Photomed. Laser Surg. 2016, 34, 467–472. [Google Scholar] [CrossRef]
- Pontius, V.; Pontius, O.; Braun, A.; Frankenberger, R.; Roggendorf, M.J. Retrospective evaluation of perforation repairs in 6 private practices. J. Endod. 2013, 39, 1346–1358. [Google Scholar] [CrossRef]
- Scelza, M.Z.; Nascimento, J.C.; da Silva, L.E.; Gameiro, V.S.; DE Deus, G.; Alves, G. BiodentineTM is cytocompatible with human primary osteoblasts. Braz. Oral Res. 2017, 31, e81. [Google Scholar] [CrossRef] [Green Version]
- Mutal, L.; Gani, O. Presence of pores and vacuoles in set endodontic sealers. Int. Endod. J. 2005, 38, 690–696. [Google Scholar] [CrossRef]
- Trope, M.; Bunes, A.; Debelian, G. Root filling materials and techniques: Bioceramics a new hope? Endod. Top. 2015, 32, 86–96. [Google Scholar] [CrossRef]
- Biočanin, V.; Antonijević, Đ.; Poštić, S.; Ilić, D.; Vuković, Z.; Milić, M.; Fan, Y.; Li, Z.; Brković, B.; Đurić, M. Marginal Gaps between 2 Calcium Silicate and Glass Ionomer Cements and Apical Root Dentin. J. Endod. 2018, 44, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Peters, L.B.; Wesselink, P.R. Periapical healing of endodontically treated teeth in one and two visits obturated in the presence or absence of detectable microorganisms. Int. Endod. J. 2002, 35, 660–667. [Google Scholar] [CrossRef] [PubMed]
Groups | Gaps (%) | Voids (%) |
---|---|---|
BC | 0.513 ± 0.320 * | 0.018 ± 0.030 |
MTA | 1.128 ± 0.904 | 0.037 ± 0.086 |
BIO | 1.460 ± 0.933 | 0.065 ± 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toia, C.C.; Teixeira, F.B.; Cucco, C.; Valera, M.C.; Cavalcanti, B.N. Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study. Dent. J. 2022, 10, 41. https://doi.org/10.3390/dj10030041
Toia CC, Teixeira FB, Cucco C, Valera MC, Cavalcanti BN. Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study. Dentistry Journal. 2022; 10(3):41. https://doi.org/10.3390/dj10030041
Chicago/Turabian StyleToia, Cassia Cestari, Fabricio Batista Teixeira, Carolina Cucco, Marcia Carneiro Valera, and Bruno Neves Cavalcanti. 2022. "Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study" Dentistry Journal 10, no. 3: 41. https://doi.org/10.3390/dj10030041
APA StyleToia, C. C., Teixeira, F. B., Cucco, C., Valera, M. C., & Cavalcanti, B. N. (2022). Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study. Dentistry Journal, 10(3), 41. https://doi.org/10.3390/dj10030041