Deep Margin Elevation: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
- Study design: clinical (in vivo), in vitro studies, case studies, and reviews referring to the DME technique.
- Type of teeth: no restriction. Studies referring to human permanent teeth were included.
- Target condition: any study investigating DME.
- Inclusion criteria: only studies reporting on sensitivity and specificity values were included.
- Language: Peer reviewed papers written in English
3. Results
3.1. DME Protocol
3.2. Marginal Adaptation/Microleakage
3.3. Mechanical Performance
3.4. Clinical Performance/Interaction with Periodontal Tissues
4. Discussion
5. Conclusions
- DME is a promising technique that relocates the cervical margin coronally in a conservative way, thereby facilitating field isolation, impression taking, and cementation.
- It can be applied in both indirect and direct restorations.
- The available literature is limited mainly to in vitro studies. Therefore, randomized clinical trials with extended follow-up periods are necessary to clarify all aspects of the technique and ascertain its validity in clinical practice.
- For the time being, DME should be applied with caution respecting three criteria: capability of field isolation, the perfect seal of the cervical margin provided by the matrix, and no invasion of the connective compartment of BW.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DME | Deep margin elevation |
CEJ | Cementoenamel junction |
IDS | Immediate dentin sealing |
SCL | Surgical crown lengthening |
MOD | Mesial-occlusal-distal |
TML | Thermomechanical loading |
BW | Biological Width |
MO | Mesial-occlusal |
BoP | Bleeding on probing |
CDO | Cavity design optimization |
RCT | Root canal treated |
DBA | Dentin bonding agent |
OIL | Oxygen inhibition layer |
STA | Supracrestal tissue attachment |
References
- Veneziani, M. Adhesive restorations in the posterior area with subgingival cervical margins: New classification and differen-tiated treatment approach. Eur. J. Esthet. Dent. 2010, 5, 50–76. [Google Scholar] [PubMed]
- Vertolli, T.J.; Martinsen, B.D.; Hanson, C.M.; Howard, R.S.; Kooistra, S.; Ye, L. Effect of Deep Margin Elevation on CAD/CAM-Fabricated Ceramic Inlays. Oper. Dent. 2020, 45, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Wassell, R.W.; Walls, A.W.; McCabe, J.F. Direct composite inlays versus conventional composite restorations: Three-year clinical results. Br. Dent. J. 1995, 179, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Hickel, R.; Manhart, J. Longevity of restorations in posterior teeth and reasons for failure. J. Adhes Dent. 2001, 3, 45–64. [Google Scholar] [PubMed]
- Barone, A.; Derchi, G.; Rossi, A.; Marconcini, S.; Covani, U. Longitudinal clinical evaluation of bonded composite inlays: A 3-year study. Quintessence Int. 2008, 39, 65–71. [Google Scholar] [PubMed]
- Duquia, R.D.C.S.; Osinaga, P.W.R.; Demarco, F.; Habekost, L.D.V.; Conceição, E.N. Cervical Microleakage in MOD Restorations: In Vitro Comparison of Indirect and Direct Composite. Oper. Dent. 2006, 31, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S., Jr.; de Freitas, C.R.B.; Saad, J.R.C., Jr.; Sadan, A. The effect of immediate dentin sealing on the marginal adaptation and bond strengths of total-etch and self-etch adhesives. J. Prosthet. Dent. 2009, 102, 1–9. [Google Scholar] [CrossRef]
- Magne, P.; Spreafico, R. Deep margin elevation: A paradigm shift. Amer. J. Esthet. Dent. 2012, 2, 86–96. [Google Scholar]
- Nugala, B.; Kumar, B.S.; Sahitya, S.; Krishna, P.M. Biologic width and its importance in periodontal and restorative dentistry. J. Conserv. Dent. 2012, 15, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Padbury, A., Jr.; Eber, R.; Wang, H.-L. Interactions between the gingiva and the margin of restorations. J. Clin. Periodontol. 2003, 30, 379–385. [Google Scholar] [CrossRef]
- Planciunas, L.; Puriene, A.; Mackeviciene, G. Surgical lengthening of the clinical tooth crown. Stomatologija 2006, 8, 88–95. [Google Scholar] [PubMed]
- Dietschi, D.; Spreafico, R. Current clinical concepts for adhesive cementation of tooth-colored posterior restorations. Pract. Periodontics Aesthetic Dent. 1998, 10, 47–54. [Google Scholar]
- Gonçalves, D.D.S.; Cura, M.; Ceballos, L.; Fuentes, M.V. Influence of proximal box elevation on bond strength of composite inlays. Clin. Oral Investig. 2016, 21, 247–254. [Google Scholar] [CrossRef]
- McLean, J.W.; Powis, D.R.; Prosser, H.J.; Wilson, A.D. The use of glass-ionomer cements in bonding composite resins to dentine. Br. Dent. J. 1985, 158, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Loguercio, A.D.; Alessandra, R.; Mazzocco, K.C.; Dias, A.L.; Busato, A.L.S.; Singer, J.; Rosa, P. Microleakage in class II composite resin restorations: Total bonding and open sandwich technique. J. Adhes. Dent. 2002, 4, 137–144. [Google Scholar] [PubMed]
- Frese, C.; Wolff, D.; Staehle, H. Proximal Box Elevation with Resin Composite and the Dogma of Biological Width: Clinical R2-Technique and Critical Review. Oper. Dent. 2014, 39, 22–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietschi, D.; Spreafico, R. Evidence-based concepts and procedures for bonded inlays and onlays. Part I. Historical perspec-tives and clinical rationale for a biosubstitutive approach. Int. J. Esthet. Dent. 2015, 10, 210–227. [Google Scholar] [PubMed]
- Kielbassa, A.M.; Philipp, F. Restoring proximal cavities of molars using the proximal box elevation technique: Systematic review and report of a case. Quintessence Int. 2015, 46, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Rocca, G.T.; Rizcalla, N.; Krejci, I.; Dietschi, D. Evidence-based concepts and procedures for bonded inlays and onlays. Part II. Guidelines for cavity preparation and restoration fabrication. Int. J. Esthet. Dent. 2015, 10, 392–413. [Google Scholar] [PubMed]
- Juloski, J.; Köken, S.; Ferrari, M. Cervical margin relocation in indirect adhesive restorations: A literature review. J. Prosthodont. Res. 2018, 62, 273–280. [Google Scholar] [CrossRef]
- Sarfati, A.; Tirlet, G. Deep margin elevation versus crown lengthening: Biologic width revisited. Int. J. Esthet. Dent. 2018, 13, 334–356. [Google Scholar] [PubMed]
- Amesti-Garaizabal, A.; Agustín-Panadero, R.; Verdejo-Solá, B.; Fons-Font, A.; Fernández-Estevan, L.; Montiel-Company, J.; Solá-Ruíz, M.F.; Solá, V.; Garaizabal, A.; Panadero, A.; et al. Fracture Resistance of Partial Indirect Restorations Made With CAD/CAM Technology. A Systematic Review and Meta-analysis. J. Clin. Med. 2019, 8, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugri, M.H.; Sayed, M.E.; Nedumgottil, B.M.; Bhandi, S.; Raj, A.T.; Testarelli, L.; Khurshid, Z.; Jain, S.; Patil, S. Treatment Prognosis of Restored Teeth with Crown Lengthening vs. Deep Margin Elevation: A Systematic Review. Materials 2021, 14, 6733. [Google Scholar] [CrossRef] [PubMed]
- Dablanca-Blanco, A.B.; Blanco-Carrión, J.; Martín-Biedma, B.; Varela-Patiño, P.; Bello-Castro, A.; Castelo-Baz, P. Management of large class II lesions in molars: How to restore and when to perform surgical crown lengthening? Restor. Dent. Endod. 2017, 42, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, M.A.; Bajunaid, S.O. Effect of cervical margin relocation technique with composite resin on the marginal integrity of a ceramic onlay: A case report. Gen. Dent. 2020, 68, e1–e3. [Google Scholar]
- Butt, A. Cervical margin relocation and indirect restorations: Case report and literature review. Dent. Updat. 2021, 48, 93–97. [Google Scholar] [CrossRef]
- Elsayed, A. Defect-orientated onlay with cavity design optimization and cervical margin relocation: A case report. Int. J. Comput. Dent. 2021, 24, 77–88. [Google Scholar] [PubMed]
- Roggendorf, M.J.; Krämer, N.; Dippold, C.; Vosen, V.E.; Naumann, M.; Jablonski-Momeni, A.; Frankenberger, R. Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro. J. Dent. 2012, 40, 1068–1073. [Google Scholar] [CrossRef]
- Lefever, D.; Gregor, L.; Bortolotto, T.; Krejci, I. Supragingival Relocation of Subgingivally Located Margins for Adhesive Inlays/Onlays with Different Materials. J. Adhes. Dent. 2012, 14, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Frankenberger, R.; Hehn, J.; Hajtó, J.; Krämer, N.; Naumann, M.; Koch, A.; Roggendorf, M.J. Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro. Clin. Oral Investig. 2012, 17, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Zaruba, M.; Göhring, T.N.; Wegehaupt, F.; Attin, T. Influence of a proximal margin elevation technique on marginal adaptation of ceramic inlays. Acta Odontol. Scand. 2012, 71, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Marchesi, G.; Spreafico, R.; Frassetto, A.; Turco, G.; Di Lenarda, R.; Cadenaro, M. Cervical margin-relocation of CAD/CAM lithi-um disilicate ceramic crown using resin-composite. Dent. Mater. 2014, 30, e14. [Google Scholar] [CrossRef]
- Ilgenstein, I.; Zitzmann, N.U.; Bühler, J.; Wegehaupt, F.J.; Attin, T.; Weiger, R.; Krastl, G. Influence of proximal box elevation on the marginal quality and fracture behavior of root-filled molars restored with CAD/CAM ceramic or composite onlays. Clin. Oral Investig. 2014, 19, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Spreafico, R.; Marchesi, G.; Turco, G.; Frassetto, A.; Di Lenarda, R.; Mazzoni, A.; Cadenaro, M.; Breschi, L. Evaluation of the In Vitro Effects of Cervical Marginal Relocation Using Composite Resins on the Marginal Quality of CAD/CAM Crowns. J. Adhes. Dent. 2016, 18, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Müller, V.; Friedl, K.-H.; Friedl, K.; Hahnel, S.; Handel, G.; Lang, R. Influence of proximal box elevation technique on marginal integrity of adhesively luted Cerec inlays. Clin. Oral Investig. 2017, 21, 607–612. [Google Scholar] [CrossRef]
- Köken, S.; Juloski, J.; Sorrentino, R.; Grandini, S.; Ferrari, M. Marginal sealing of relocated cervical margins of mesio-occluso-distal overlays. J. Oral Sci. 2018, 60, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavattini, A.; Mancini, M.; Higginson, J.; Foschi, F.; Pasquantonio, G.; Mangani, F. Micro-computed tomography evaluation of microleakage of Class II composite restorations: An in vitro study. Eur. J. Dent. 2018, 12, 369–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubbs, T.D.; Vargas, M.; Kolker, J.; Teixeira, E.C. Efficacy of Direct Restorative Materials in Proximal Box Elevation on the Margin Quality and Fracture Resistance of Molars Restored With CAD/CAM Onlays. Oper. Dent. 2020, 45, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Köken, S.; Juloski, J.; Ferrari, M. Influence of cervical margin relocation and adhesive system on microleakage of indirect com-posite restorations. J. Osseointegr. 2019, 11, 21–28. [Google Scholar]
- Zhang, H. Fracture Resistance of Endodontically Treated Premolar with Deep Class II: In Vitro Evaluation of Different Re-storative Procedures. Investig. Clin. 2019, 60, 154–161. [Google Scholar]
- Juloski, J.; Köken, S.; Ferrari, M. No correlation between two methodological approaches applied to evaluate cervical margin relocation. Dent. Mater. J. 2020, 39, 624–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scotti, N.; Baldi, A.; A Vergano, E.; Tempesta, R.M.; Alovisi, M.; Pasqualini, D.; Carpegna, G.C.; Comba, A. Tridimensional Evaluation of the Interfacial Gap in Deep Cervical Margin Restorations: A Micro-CT Study. Oper. Dent. 2020, 45, E227–E236. [Google Scholar] [CrossRef] [PubMed]
- Bresser, R.; van de Geer, L.; Gerdolle, D.; Schepke, U.; Cune, M.; Gresnigt, M. Influence of Deep Margin Elevation and preparation design on the fracture strength of indirectly restored molars. J. Mech. Behav. Biomed. Mater. 2020, 110, 103950. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Lin, C.-L.; Hou, C.-H. Investigating inlay designs of class II cavity with deep margin elevation using finite element method. BMC Oral Health 2021, 21, 264. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Cong, Q.; Zhang, Z.; Du, A.; Wang, Y. Effect of proximal box elevation on fracture resistance and microleakage of premolars restored with ceramic endocrowns. PLoS ONE 2021, 16, e0252269. [Google Scholar] [CrossRef]
- Al Moaleem, M.M.; A Adawi, H.; Alahmari, N.M.; Alqahtani, F.M.; Alshahrani, F.T.; A Aldhelai, T. Effects of the Cervical Marginal Relocation Technique on the Marginal Adaptation of Lithium Disilicate CAD/CAM Ceramic Crowns on Premolars. J. Contemp. Dent. Pract. 2021, 22, 900–906. [Google Scholar] [CrossRef]
- Da Silva, D.; Ceballos, L.; Fuentes, M. Influence of the adhesive strategy in the sealing ability of resin composite inlays after deep margin elevation. J. Clin. Exp. Dent. 2021, e886–e893. [Google Scholar] [CrossRef]
- Grassi, E.D.A.; de Andrade, G.S.; Tribst, J.P.M.; Machry, R.V.; Valandro, L.F.; Ramos, N.D.C.; Bresciani, E.; Saavedra, G.D.S.F.A. Fatigue behavior and stress distribution of molars restored with MOD inlays with and without deep margin elevation. Clin. Oral Investig. 2021, 26, 2513–2526. [Google Scholar] [CrossRef] [PubMed]
- Moon, W.; Chung, S.; Chang, J. Effect of Deep Margin Elevation on Interfacial Gap Development of CAD/CAM Inlays after Thermomechanical Cycling. Oper. Dent. 2021. [Google Scholar] [CrossRef]
- Ferrari, M.; Koken, S.; Grandini, S.; Cagidiaco, E.F.; Joda, T.; Discepoli, N. Influence of cervical margin relocation (CMR) on periodontal health: 12-month results of a controlled trial. J. Dent. 2017, 69, 70–76. [Google Scholar] [CrossRef]
- Bertoldi, C.; Zaffe, D.; Generali, L.; Lucchi, A.; Cortellini, P.; Monari, E. Gingival tissue reaction to direct adhesive restoration: A preliminary study. Oral Dis. 2018, 24, 1326–1335. [Google Scholar] [CrossRef] [PubMed]
- Bresser, R.A.; Gerdolle, D.; van den Heijkant, I.A.; Sluiter-Pouwels, L.M.A.; Cune, M.S.; Gresnigt, M.M.M. Up to 12 years clinical evaluation of 197 partial indirect restorations with deep margin elevation in the posterior region. J. Dent. 2019, 91, 103227. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, C.; Monari, E.; Cortellini, P.; Generali, L.; Lucchi, A.; Spinato, S.; Zaffe, D. Clinical and histological reaction of periodontal tissues to subgingival resin composite restorations. Clin. Oral Investig. 2019, 24, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D.; Spreafico, R. Evidence-based concepts and procedures for bonded inlays and onlays. Part III. A case series with long-term clinical results and follow-up. Int. J. Esthet. Dent. 2019, 14, 118–133. [Google Scholar] [PubMed]
- Ghezzi, C.; Brambilla, G.; Conti, A.; Dosoli, R.; Ceroni, F.; Ferrantino, L. Cervical margin relocation: Case series and new classifica-tion system. Int. J. Esthet. Dent. 2019, 14, 272–284. [Google Scholar] [PubMed]
- Ntovas, P.; Doukoudakis, S.; Tzoutzas, J.; Lagouvardos, P. Evidence provided for the use of oscillating instruments in restorative dentistry: A systematic review. Eur. J. Dent. 2017, 11, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Magne, P. Immediate dentin sealing: A fundamental procedure for indirect bonded restorations. J. Esthet. Restor. Dent. 2006, 17, 144–154. [Google Scholar] [CrossRef]
- Spohr, A.M.; Borges, G.A.; Platt, J.A. Thickness of immediate dentin sealing materials and its effect on the fracture load of a reinforced all-ceramic crown. Eur. J. Dent. 2013, 07, 474–483. [Google Scholar] [CrossRef]
- Samartzi, T.-K.; Papalexopoulos, D.; Sarafianou, A.; Kourtis, S. Immediate Dentin Sealing: A Literature Review. Clin. Cosmet. Investig. Dent. 2021, 13, 233–256. [Google Scholar] [CrossRef]
- Cardoso, M.V.; de Almeida Neves, A.; Mine, A.; Coutinho, E.; Van Landuyt, K.; De Munck, J.; Van Meerbeek, B. Current aspects on bonding effectiveness and stability in adhesive dentistry. Aust. Dent. J. 2011, 56 (Suppl. 1), 31–44. [Google Scholar] [CrossRef]
- Della Bona, A.; Kelly, J.R. The Clinical Success of All-Ceramic Restorations. J. Am. Dent. Assoc. 2008, 139, S8–S13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, R.E.; Lamba, S.; Lawson, N.C.; Beck, P.; Oster, R.; Burgess, J.O. Microleakage around Class V Composite Restorations after Ultrasonic Scaling and Sonic Toothbrushing around their Margin. J. Esthet. Restor. Dent. 2016, 29, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent. Mater. 2017, 34, 78–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mincik, J.; Urban, D.; Timkova, S.; Urban, R. Fracture Resistance of Endodontically Treated Maxillary Premolars Restored by Various Direct Filling Materials: An In Vitro Study. Int. J. Biomater. 2016, 2016, 9138945. [Google Scholar] [CrossRef] [Green Version]
- Stockton, L.W.; Tsang, S.T. Microleakage of Class II posterior composite restorations with gingival margins placed entirely within dentin. J. Can. Dent. Assoc. 2007, 73, 255. [Google Scholar] [PubMed]
- Betancourt, D.E.; Baldion, P.A.; Castellanos, J.E. Resin-Dentin Bonding Interface: Mechanisms of Degradation and Strategies for Stabilization of the Hybrid Layer. Int. J. Biomater. 2019, 2019, 5268342. [Google Scholar] [CrossRef]
- Papalexopoulos, D.; Samartzi, T.-K.; Sarafianou, A. A Thorough Analysis of the Endocrown Restoration: A Literature Review. J. Contemp. Dent. Pract. 2021, 22, 422–426. [Google Scholar] [CrossRef]
- El-Mowafy, O.M.; Rubo, M.H. Influence of composite inlay/onlay thickness on hardening of dual-cured resin cements. J. Can. Dent. Assoc. 2000, 66, 147. [Google Scholar] [PubMed]
- Rodrigues, F. Ceramic Onlay: Influence of the Deep Margin Elevation Technique on Stress Distribution—A Finite Element Analysis; University of Coimbra: Coimbra, Portugal, 2016. [Google Scholar]
- Da Silva-Goncalves, D.; Cura, M.; Fuentes, M.; Gomes, G.; Ceballos, L. Influence of coronal gingival margin relocation and the luting cement in composite inlays microtensile bond strength. Medicine 2012, 17, S33. [Google Scholar] [CrossRef]
- Castelo-Baz, P.; Argibay-Lorenzo, O.; Muñoz, F.; Martin-Biedma, B.; Darriba, I.L.; Miguéns-Vila, R.; Ramos-Barbosa, I.; López-Peña, M.; Blanco-Carrión, J. Periodontal response to a tricalcium silicate material or resin composite placed in close contact to the supracrestal tissue attachment: A histomorphometric comparative study. Clin. Oral Investig. 2021, 25, 5743–5753. [Google Scholar] [CrossRef]
- Oppermann, R.V.; Gomes, S.C.; Cavagni, J.; Cayana, E.G.; Conceição, E.N. Response to Proximal Restorations Placed Either Subgingivally or Following Crown Lengthening in Patients with No History of Periodontal Disease. Int. J. Periodontics Restor. Dent. 2016, 36, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, M.A.; Lazari, P.C.; Gresnigt, M.; Del Bel Cury, A.A.; Magne, P. Current options concerning the endodontically-treated teeth restoration with the adhesive approach. Braz. Oral Res. 2018, 32, e74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perdigão, J. Dentin bonding as a function of dentin structure. Dent. Clin. N. Am. 2002, 46, 277–301. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Van Landuyt, K.; De Munck, J.; Hashimoto, M.; Peumans, M.; Lambrechts, P.; Yoshida, Y.; Inoue, S.; Suzuki, K. Technique-Sensitivity of Contemporary Adhesives. Dent. Mater. J. 2005, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kugel, G.; Ferrari, M. The science of bonding: From first to sixth generation. J. Am. Dent. Assoc. 2000, 22, 20S–25S. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M.; Cagidiaco, M.C.; Davidson, C.L. Resistance of cementum in class II and V cavities to penetration by an adhesive system. Dent. Mater. 1997, 13, 157–162. [Google Scholar] [CrossRef]
- Maske, T.; Hollanders, A.; Kuper, N.; Bronkhorst, E.; Cenci, M.; Huysmans, M. A threshold gap size for in situ secondary caries lesion development. J. Dent. 2018, 80, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is secondary caries with composites a material-based problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Inokoshi, S.; Tagami, J. In vitro secondary caries inhibition around fluoride releasing materials. J. Dent. 1998, 26, 505–510. [Google Scholar] [CrossRef]
- Qvist, V.; Qvist, J.; Mjör, I.A. Placement and longevity of tooth-colored restorations in Denmark. Acta Odontol. Scand. 1990, 48, 305–311. [Google Scholar] [CrossRef]
- Mjör, I.A.; Toffenetti, F. Secondary caries: A literature review with case reports. Quintessence Int. 2000, 31, 165–179. [Google Scholar] [PubMed]
- Mjör, I.A. The location of clinically diagnosed secondary caries. Quintessence Int. 1998, 29, 313–317. [Google Scholar]
- Attar, N.; Onen, A. Fluoride release and uptake characteristics of aesthetic restorative materials. J. Oral Rehabil. 2002, 29, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.G.A.; Magno, M.B.; Delbem, A.C.B.; Cunha, R.F.; Maia, L.C.; Pessan, J.P. Clinical performance of glass ionomer cement and composite resin in Class II restorations in primary teeth: A systematic review and meta-analysis. J. Dent. 2018, 73, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heintze, S.D.; Rousson, V. Clinical Effectiveness of Direct Class II Restorations—A Meta-Analysis. J. Adhes. Dent. 2012, 14, 407–431. [Google Scholar] [CrossRef] [PubMed]
- Habekost, L.D.V.; Camacho, G.B.; Pinto, M.B.; Demarco, F.F. Fracture Resistance of Premolars Restored with Partial Ceramic Restorations and Submitted to Two Different Loading Stresses. Oper. Dent. 2006, 31, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Dietschi, D.; Moor, L. Evaluation of the marginal and internal adaptation of different ceramic and composite inlay systems after an in vitro fatigue test. J. Adhes. Dent. 1999, 1, 41–56. [Google Scholar]
- Peumans, M.; Kanumilli, P.; De Munck, J.; Van Landuyt, K.; Lambrechts, P.; Van Meerbeek, B. Clinical effectiveness of contemporary adhesives: A systematic review of current clinical trials. Dent. Mater. 2005, 21, 864–881. [Google Scholar] [CrossRef]
- Urabe, I.; Nakajima, S.; Sano, H.; Tagami, J. Physical properties of the dentin-enamel junction region. Am. J. Dent. 2000, 13, 13. [Google Scholar]
- Frassetto, A.; Breschi, L.; Turco, G.; Marchesi, G.; Di Lenarda, R.; Tay, F.; Pashley, D.H.; Cadenaro, M. Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent. Mater. 2015, 32, e41–e53. [Google Scholar] [CrossRef]
- Magne, P.; Kim, T.H.; Cascione, D.; Donovan, T.E. Immediate dentin sealing improves bond strength of indirect restorations. J. Prosthet. Dent. 2005, 94, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Magne, P.; So, W.-S.; Cascione, D. Immediate dentin sealing supports delayed restoration placement. J. Prosthet. Dent. 2007, 98, 166–174. [Google Scholar] [CrossRef]
- Abu Nawareg, M.M.; Zidan, A.Z.; Zhou, J.; Chiba, A.; Tagami, J.; Pashley, D.H. Adhesive sealing of dentin surfaces in vitro: A review. Am. J. Dent. 2015, 28, 321–332. [Google Scholar]
- De Munck, J.; Mine, A.; Poitevin, A.; Van Ende, A.; Cardoso, M.; Van Landuyt, K.; Peumans, M.; Van Meerbeek, B. Meta-analytical Review of Parameters Involved in Dentin Bonding. J. Dent. Res. 2011, 91, 351–357. [Google Scholar] [CrossRef]
- Magne, P.; Ubaldini, A.L.M. Thermal and bioactive optimization of a unidose 3-step etch-and-rinse dentin adhesive. J. Prosthet. Dent. 2020, 124, 487.e1–487.e7. [Google Scholar] [CrossRef]
- Sarr, M.; Kane, A.W.; Vreven, J.; Mine, A.; Van Landuyt, K.L.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B.; De Munck, J. Microtensile Bond Strength and Interfacial Characterization of 11 Contemporary Adhesives Bonded to Bur-cut Dentin. Oper. Dent. 2010, 35, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, M.A.; Lazari-Carvalho, P.C.; Polonial, I.F.; de Souza, J.B.; Magne, P. Significance of immediate dentin sealing and flowable resin coating reinforcement for unfilled/lightly filled adhesive systems. J. Esthet. Restor. Dent. 2021, 33, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Anžlovar, A.; Kiteska, B.; Cevc, P.; Kopač, I. The role of an interfacial interpenetrating polymer network formation on the adhe-sion of resin composite layers in immediate dentin sealing. Int. J. Adhes. Adhes. 2019, 90, 9–14. [Google Scholar] [CrossRef]
- Papacchini, F.; Dall’Oca, S.; Chieffi, N.; Goracci, C.; Sadek, F.T.; I Suh, B.; Tay, F.R.; Ferrari, M. Composite-to-composite microtensile bond strength in the repair of a microfilled hybrid resin: Effect of surface treatment and oxygen inhibition. J. Adhes. Dent. 2007, 9, 25–31. [Google Scholar] [PubMed]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J.T. Self-adhesive resin cements—chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Gresnigt, M.M.M.; Ozcan, M.; Kalk, W.; Galhano, G. Effect of Static and Cyclic Loading on Ceramic Laminate Veneers Adhered to Teeth with and Without Aged Composite Restorations. J. Adhes. Dent. 2011, 13, 569–577. [Google Scholar] [CrossRef]
- Gresnigt, M.; Cune, M.S.; Schuitemaker, J.; van der Made, S.A.; Meisberger, E.W.; Magne, P.; Özcan, M. Performance of ceramic laminate veneers with immediate dentine sealing: An 11 year prospective clinical trial. Dent. Mater. 2019, 35, 1042–1052. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.P.; da Silva Feitosa, D.; Casati, M.Z.; Nociti, F.H., Jr.; Sallum, A.W.; Sallum, E.A. Randomized Controlled Clinical Trial Evaluating Connective Tissue Graft Plus Resin-Modified Glass Ionomer Restoration for the Treatment of Gingival Recession Associated with Non-Carious Cervical Lesion: 2-Year Follow-Up. J. Periodontol. 2013, 84, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.P.; Queiroz, L.A.; Mathias, I.F.; Neves, F.L.D.S.; Silveira, C.A.; Bresciani, E.; Jardini, M.A.N.; Sallum, E.A. Resin composite plus connective tissue graft to treat single maxillary gingival recession associated with non-carious cervical lesion: Randomized clinical trial. J. Clin. Periodontol. 2016, 43, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.R.; Lucchesi, J.A.; Cortelli, S.C.; Amaral, C.M.; Feres, M.; Duarte, P.M. Effects of Glass Ionomer and Microfilled Composite Subgingival Restorations on Periodontal Tissue and Subgingival Biofilm: A 6-Month Evaluation. J. Periodontol. 2007, 78, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, M.; Suaid, F.F.; Casati, M.Z.; Nociti, F.H., Jr.; Sallum, A.W.; Sallum, E.A. Coronally Positioned Flap Plus Resin-Modified Glass Ionomer Restoration for the Treatment of Gingival Recession Associated with Non-Carious Cervical Lesions: A Randomized Controlled Clinical Trial. J. Periodontol. 2008, 79, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Konradsson, K.; Van Dijken, J.W.V. Interleukin-1 levels in gingival crevicular fluid adjacent to restorations of calcium aluminate cement and resin composite. J. Clin. Periodontol. 2005, 32, 462–466. [Google Scholar] [CrossRef]
- Eichelsbacher, F.; Denner, W.; Klaiber, B.; Schlagenhauf, U. Periodontal status of teeth with crown-root fractures: Results two years after adhesive fragment reattachment. J. Clin. Periodontol. 2009, 36, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Quirynen, M.; Bollen, C.M.L. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. J. Clin. Periodontol. 1995, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J.; et al. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S237–S248. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Sahrmann, P.; Weiger, R.; Schmidlin, P.R.; Walter, C. Biologic width dimensions—A systematic review. J. Clin. Periodontol. 2013, 40, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.M.; Bosco, A.F.; Nóbrega, F.; Nagata, M.J.; Garcia, V.G.; Fucini, S.E. Periodontal Tissue Response to Coverage of Root Cavities Restored with Resin Materials: A Histomorphometric Study in Dogs. J. Periodontol. 2007, 78, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Novak, M.J.; Albather, H.M.; Close, J.M. Redefining the Biologic Width in Severe, Generalized, Chronic Periodontitis: Implications for Therapy. J. Periodontol. 2008, 79, 1864–1869. [Google Scholar] [CrossRef] [PubMed]
Authors and Year of Publication | Type of Study | Tested Parameters | Study Design | Main Findings |
---|---|---|---|---|
Dietschi et al., 1998 [12] | Review | - | Presented new clinical concepts for adhesive cementation of composite and ceramic posterior restorations | A small portion of a composite resin can be placed over the existing subgingival margin, under rubber dam isolation and placement of a matrix. |
Magne et al., 2012 [8] | Review | - | Presented technical details and clinical advantages of DME | DME is a noninvasive alternative for SCL and can be applied in both indirect and direct restorations. |
Frese et al., 2014 [16] | Review/Case report | - | Presented technical details for DME in direct restorations. | BW violation determines periodontal tissues tolerance. Strict oral hygiene is required in subgingival restorations. |
Dietschi et al., 2015 [17] | Review | - | Presented new clinical concepts for preparation and adhesive cementation of tooth-colored posterior restorations | DME facilitates field isolation, impression taking and adhesive cementation of indirect restorations with subgingival margins. |
Kielbassa et al., 2015 [18] | Review/Case report | - | Reviewed the available literature concerning DME | DME facilitates operative procedures but is not clinically established yet. |
Rocca et al., 2015 [19] | Review | - | Presented new clinical concepts for preparation and adhesive cementation of tooth-colored posterior restorations. | Modern preparation and luting concepts are influenced by tissue conservation principles. |
Juloski et al., 2018 [20] | Review | - | Reviewed the available literature concerning DME. | DME is not clinically established yet. |
Sarfati et al., 2018 [21] | Review/Case report | - | Reviewed the available literature concerning the effect of different materials used for subgingival restorations, on periodontium and presented three cases in which DME was performed instead of SCL. | DME seems well-tolerated by periodontal tissues. |
Garaizabal et al., 2019 [22] | Systematic review | Fracture resistance | Evaluated fracture resistance and survival rate of inlays, onlays, and overlays fabricated by CAD/CAM ceramic, composite resin, resin nanoceramic and hybrid ceramic and investigated the effect of DME on fracture resistance. | DME did not affect fracture resistance of indirect restorations. |
Mugri et al., 2021 [23] | Systematic review | Survival rate | Examined the survival rate of severely decayed teeth when restored using either SCL or DME. | Although there is a lack of high-quality trials examining surgical comparisons between the two techniques with long-term follow-up, DME has a better survival ratio than SCL. |
Dablanca-Blanco et al., 2017 [24] | Case report | - | Examined seven clinical scenarios concerning deep proximal caries in molars. | If the carious lesion is limited to the epithelium level, DME can be performed. However, if it reaches the connective tissue or the bone crest, SCL is required. |
Alhassan et al., 2019 [25] | Case report | - | Presented a case in which a combination of SCL and DME was performed. | When field isolation is possible, DME can be performed. |
Butt, 2021 [26] | Case report | - | Presented technical details and clinical advantages of DME. | DME facilitates operative procedures but is not clinically established yet. |
Elsayed, 2021 [27] | Case report | - | Presented technical details and clinical advantages of IDS, CDO and DME. | The combination of these techniques results in a minimally invasive restoration of extensive caries. |
Roggendorf et al., 2012 [28] | In vitro | Marginal quality | Investigated the effect of DME on marginal quality of MOD composite inlays after TML, using one or three layers of different composites (forty MOD cavities/five groups: (1) DME with G-Cem, (2) DME with Maxcem, (3) DME in one layer of Clearfil Majesty Posterior, (4) DME in three layers of Clearfil Majesty Posterior, (5) without DME). | Three 1 mm layers of composite yielded superior marginal quality among the other groups. Self-adhesive resin cements as elevation materials are not indicated for DME. |
Lefever et al., 2012 [29] | In vitro | Marginal adaptation | Evaluated the influence of DME on marginal adaptation of supragingival relocated margins of eighty-eight extracted molars using different elevation materials (Filtek Silorane, Clearfil AP-X, Clearfil Majesty Posterior, Clearfil Majesty Flow, RelyX Unicem, SDR, Vertise Flow) combined with different adhesive systems (Filtek Silorane Primer and Bond, Clearfil Protect Bond, Filtek Silorane Bond). | Marginal adaptation was material-dependent. |
Frankenberger et al., 2012 [30] | In vitro | Marginal quality | Tested the DME effect on marginal quality of molar MOD glass ceramic inlays before and after TML, using one or three layers of different composites (Forty-eight MOD cavities/six groups: (1) DME with RelyX Unicem, (2) DME with G Cem, (3) DME with Maxcem Elite, (4) DME in one layer of Clearfil Majesty Posterior, (5) DME in three layers of Clearfil Majesty Posterior, (6) without DME). | Bonding directly to dentin yielded the fewest gaps. Marginal quality with three-layer DME was superior compared to one-layer. Self-adhesive resin cements as elevation materials are not indicated for DME. |
Zaruba et al., 2012 [31] | In vitro | Marginal adaptation | Evaluated the impact of DME on marginal adaptation of molar MOD ceramic inlays after TML, using one or three layers of composite. (Forty MOD cavities/four groups: (1) margin in enamel, (2) DME in one layer of Tetric Composite, (3) DME in two layers of Tetric Composite, (4) without DME). | The composite–enamel interface showed the most gap-free margins. Marginal quality in DME was not significantly different from bonding directly to dentin. |
Da Silva Goncalves et al., 2016 [15] | In vitro | Bond strength | Investigated the effect of DME (Adper Scotchbond 1XT, Filtek Z250) on μTBS of MO composite inlays to the dentin floor of the proximal box, luted with a conventional or a self-adhesive resin cement (twenty-five MO cavities/four groups: (1) without DME/luting with RelyX ARC, (2) DME in two layers of Filtek Z250/luting with RelyX ARC, (3) without DME/luting with G-Cem, (4) DME in two layers of Filtek Z250/luting with G-Cem). | DME increased bond strength in the proximal box with the self-adhesive resin cement. |
Marchesi et al., 2014 [32] | In vitro | Marginal quality | Evaluated the influence of DME (Optibond FL, Filtek Supreme XTE flow) on marginal integrity of tenCAD/CAM lithium disilicate ceramic crowns before and after TML. | Marginal quality was not affected by DME. |
Ilgenstein et al., 2015 [33] | In vitro | Marginal integrity/fracture behavior | Evaluated the impact of DME (2 layers of 1 mmTetric evo Ceram) on marginal integrity and fracture behavior of onlays after TML. (forty-eight MOD cavities/four groups: (1) without DME/feldspathic ceramic, (2) DME/feldspathic, (3) without DME/resin nanoceramic, (4) DME/resin nanoceramic). | DME did not affect fracture resistance. DME did not influence the marginal integrity of feldspathic onlays. Resin nano-ceramics were superior to feldspathic for both variables tested, especially in specimens without DME. |
Spreafico et al., 2016 [34] | In vitro | Marginal quality | Evaluated the effect of DME on marginal quality of CAD/CAM crowns (pre-cured resin/lithium disilicate) before and after TML, using two layers of conventional or flowable composite (Forty preparations in molars/four groups: (1) DME with Filtek Supreme XTE/Lava Ultimate, (2) DME with Filtek Flow Supreme/IPS e.max, (3) DME with Filtek Supreme XTE/IPS e.max, (4) DME with Filtek Flow Supreme/Lava Ultimate). | DME did not influence marginal quality. |
Müller et al., 2017 [35] | In vitro | Marginal quality | Evaluated the effect of DME on marginal quality of molar Cerec inlays luted with different materials (twenty-four MOD cavities, mesial boxes were elevated with Filtek Supreme/three groups: (1) luting with Scotchbond Universal + RelyX Ultimate, (2) luting with Monobond Plus, Syntac + Variolink II, (3) luting with Clearfil Ceramic Primer + Panavia SA Cement). | DME did not affect marginal integrity. |
Köken et al., 2018 [36] | In vitro | Marginal sealing | Evaluated the effect of DME on marginal sealing of molar composite CAD/CAM overlays, using micro-hybrid composite or flowable composite. (thirty-nine MOD cavities/three groups: (1) DME with GC Essentia MD, (2) DME with GC Gaenial Universal Flo, (3) without DME). | Micro-hybrid and flowable composites are comparable in terms of marginal sealing ability. However, leakage scores were significantly lower when bonding directly to dentin. |
Zavattini et al., 2018 [37] | In vitro | Microleakage | Investigated the influence of DME on microleakage of direct MOD composite restorations in thirty molars, using micro-hybrid (Premise dentin A3 Kerr), preheated micro-hybrid (Premise dentin A3 Kerr) or flowable composite (Premise flowable Kerr). | Flowable composite yielded the highest leakage scores. |
Grubbs et al., 2019 [38] | In vitro | Marginal quality/fracture resistance | Examined the influence of DME on marginal quality and fracture resistance of CAD/CAM resin, nanoceramic onlays, using different materials (Seventy-five MOD cavities/five groups: (1) DME with Glass Ionomer Fuji IX, (2) DME with resin modified glass ionomer Fuji II LC, (3) DME with composite Filtek Supreme Ultra, (4) DME with Filtek bulk fill posterior restorative, (5) without DME). | All materials tested did not decline marginal quality nor fracture resistance of the restorations. |
KöKen et al., 2019 [39] | In vitro | Microleakage | Evaluated the impact of DME and the adhesive system used on microleakage of MOD composite overlays (Twenty MOD cavities/two groups: (1) DME with G-aenial Universal Flo/luting with G-Cem Link Force + universal bonding agent GC G-Premio Bond, (2) DME with G-aenial Universal Flo/luting with G-Cem Link Force + three-step total-etch Kerr Optibond FL). | DME and adhesive system used for luting seems to affect microleakage. |
Zhang et al., 2019 [40] | In vitro | Fracture resistance | Examined the influence of different restorative procedures on fracture resistance of RCT premolars. (Fifty MO cavities/five groups: (1) Unprepared teeth, (2) Endocrowns, (3) DME+ Endocrowns, (4) Crowns, (5) fiber posts+ crowns). | Endocrowns combined with DME yielded superior fracture resistance compared to other groups. |
Juloski et al., 2020 [41] | In vitro | Marginal quality | Investigated the effect of DME on marginal quality of CAD/CAM overlays, using different materials. (Fourteen MOD cavities/two groups: (1) DME with total-etch adhesive Optibond FL + Premise Flowable in mesial margins, (2) DME universal adhesive Adhese universal + Tetric EvoFlow Bulk Fill in mesial margins). | Bonding directly to dentin provided better marginal quality. In DME, marginal quality is influenced by the materials used. |
Scotti et al., 2020 [42] | In vitro | Interfacial gaps | Examined the impact of DME on marginal adaptation of direct composite restorations, using one or two layers of flowable resin or ormocer resin flow (forty-eight MOD cavities/six groups: (1) DME in one layer of Grandioso heavy flow + nanofilled composite Grandioso, (2) DME in one layer of Admira fusion Flow+ nanofilled ormocer Admira Fusion, (3) Like (1) in two layes, (4) Like (2) in two layers, (5) restoration with nanohybrid composite Filtek Supreme XTE without DME, (6) restoration with bulk nanofilled composite Filtek bulk-fill without DME). | Flowable resins are prone to interfacial degradation after loading. |
Bresser et al., 2020 [43] | In vitro | Fracture strength | Evaluated the effect of DME (Optibond FL, Essentia Universal Composite) on fracture strength of lithium disilicate inlays and onlays. (Sixty cavities/four groups: (1) inlay without DME, (2) inlay with DME, (3) onlay without DME, (4) onlay with DME). | DME did not influence the fracture strength of the restorations tested. |
Vertolli et al., 2020 [2] | In vitro | Structural/marginal integrity | Examined the influence of DME on structural and marginal integrity of CAD/CAM ceramic inlays, using glass ionomer (Fuji IX) or resin-modified glass ionomer (Fuji II LC). (Forty MOD cavities/four groups: (1) margin in enamel, (2) margin in cementum, (3) DME with Fuji IX, (4) DME with Fuji II LC). | DME led to decreased ceramic fracture rates. No difference was identified among glass ionomer and resin modified glass ionomer groups. |
Chen et al., 2021 [44] | Finite element analysis (FEA) | Mechanical performance | Investigated the effect of design parameters of inlays on DME. | DME did not influence fracture resistance of inlays. |
Zhang et al., 2021 [45] | In vitro | Fracture resistance/microleakage | Tested the impact of DME on fracture resistance and microleakage of RCT premolars restored with ceramic endocrowns, using a bulk-fill (bulk-fill Smart Dentin Replacement) or a conventional composite (Z350 XT). (Eighty MO cavities/four groups: (1) margin in enamel, (2) DME with bulk-fill composite, (3) DME with conventional composite, (4) without DME). | DME increased fracture resistance of premolar endocrowns but not microleakage. |
Alahmari et al., 2021 [46] | In vitro | Marginal adaptation | Evaluated the effect of DME on marginal adaptation of CAD/CAM lithium disilicate crowns. (Forty preparations/four groups: (1) margins in enamel, (2) DME with flowable composite, (3) DME with composite resin fillings, (4) DME with composite resin fillings). | The implementation of DME had a good effect on marginal integrity of the cervical margins. |
Da Silva et al., 2021 [47] | In vitro | Marginal sealing | Studied the influence of gingival margin position (1 mm above or below CEJ or DME) and the adhesive strategy used (Enamel + etch-and-rinse adhesive (ERA) Adper Scotchbond 1XT (SB1XT)/Dentin + SB1XT/DME + SB1XT/Enamel + self-etching adhesive (SEA) with enamel selective etching Clearfil SE Bond (CSE)/Dentin + CSE/DME + CSE) on marginal sealing of twelve MOD composite inalys (Gradia Indirect). | A perfect sealing ability was evidenced for groups with enamel margins. When CSE adhesive was applied similar nanoleakage values were achieved regardless the gingival margin position. |
Grassi et al., 2021 [48] | In vitro | Fatigue behavior, stress distribution | Evaluated the effect of DME and restorative materials (leucite-reinforced glass-ceramics/indirect resin composite) on the fatigue behavior and stress distribution of fifty-two maxillary molars restored with MOD inlays. | DME was not negative for fatigue and biomechanical behaviors. Resin composite inlays were more resistant to the fatigue test, although the failure mode was more aggressive. |
Moon et al., 2021 [49] | In vitro | Interfacial gaps | Evaluated the effect of DME (resin modified glass ionomer) on interfacial gap formation of twelve CAD/CAM lithium disilicate inlay margins before and after TML. | DME with resin modified glass ionomer reduced the extent of interfacial gap formation before and after the aging simulation. |
Ferrari et al., 2017 [50] | Clinical | Periodontal health | Tested the effect of DME (GPremio Bond, Flow resin GC Co) on periodontal health of thirty-five lithium disilicate crowns at baseline and after 12 months. | A higher incidence of BoP is anticipated in case of BW violation. |
Bertoldi et al., 2018 [51] | Clinical | Inflammatory response | Investigated the effect of DME on inflammation response of periodontal tissues surrounding eight endodontically treated teeth restored with post-and-core restorations. | There was no statistically significant difference in inflammation degree after DME. |
Bresser et al., 2019 [52] | Clinical | Clinical performance | Investigated the impact of DME on clinical performance (secondary caries, root caries, fracture, debonding, severe periodontal breakdown, pulpal necrosis) of 197 indirect restorations after 12 years of function. | DME did not influence the survival rate of the indirect restorations tested (95.9%). |
Bertoldi et al., 2019 [53] | Clinical/histological | Inflammatory response | Evaluated the effect of DME on the clinical and histological reaction of periodontal tissues surrounding twenty-nine posterior teeth. | DME is well-tolerated by periodontal tissues given that BW is not violated and a strict supportive therapy is followed. |
Dietschi et al., 2019 [54] | Clinical | Clinical performance | Examined clinical performance of twenty-five indirect adhesive restorations in which IDS, CDO, and DME were performed. | IDS, CDO, and DME favor the survival of indirect restorations. |
Ghezzi et al., 2019 [55] | Clinical | Inflammatory response | Investigated the effect of three different approaches for rehabilitation of deep lesions (non-surgical DME, Surgical DME- gingival approach, surgical DME- osseous approach) on inflammatory response of periodontal tissues in fifteen cases. | If the connective compartment of BW is not infringed, DME is compatible with periodontal health. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samartzi, T.K.; Papalexopoulos, D.; Ntovas, P.; Rahiotis, C.; Blatz, M.B. Deep Margin Elevation: A Literature Review. Dent. J. 2022, 10, 48. https://doi.org/10.3390/dj10030048
Samartzi TK, Papalexopoulos D, Ntovas P, Rahiotis C, Blatz MB. Deep Margin Elevation: A Literature Review. Dentistry Journal. 2022; 10(3):48. https://doi.org/10.3390/dj10030048
Chicago/Turabian StyleSamartzi, Theodora Kalliopi, Dimokritos Papalexopoulos, Panagiotis Ntovas, Christos Rahiotis, and Markus B. Blatz. 2022. "Deep Margin Elevation: A Literature Review" Dentistry Journal 10, no. 3: 48. https://doi.org/10.3390/dj10030048
APA StyleSamartzi, T. K., Papalexopoulos, D., Ntovas, P., Rahiotis, C., & Blatz, M. B. (2022). Deep Margin Elevation: A Literature Review. Dentistry Journal, 10(3), 48. https://doi.org/10.3390/dj10030048