Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. PICO Question
2.2. Study Design:
3. Results
3.1. Polymethyl Methacrylate (PMMA)
3.2. Commercially Pure Titanium (CPT)
3.3. Other Materials
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elani, H.W.; Starr, J.R.; Da Silva, J.D.; Gallucci, G.O. Trends in Dental Implants Use in the U.S., 1999–2016, and Projections to 2026. J. Dent. Res. 2018, 97, 1424–1430. [Google Scholar] [CrossRef]
- Lee, C.T.; Huang, Y.W.; Zhu, L.; Weltman, R. Prevalensces of peri-implantitis and peri-implant mucositis: Systematic Review and meta-analysis. J. Dent. 2017, 62, 1–12. [Google Scholar] [CrossRef]
- Algraffee, H.; Borumandi, F.; Cascarini, L. Peri-implantitis. Br. J. Oral Maxillofac. Surg. 2012, 50, 689–694. [Google Scholar] [CrossRef]
- Sahrmann, P.; Gilli, F.; Wiedemeier, D.B.; Attin, T.; Schmidlin, P.R.; Karygianni, L. The Microbiome of Peri-Implantitis: A Systematic Review and Meta-Analysis. Microorganisms 2020, 8, 661. [Google Scholar] [CrossRef]
- Rakic, M.; Grusovin, M.G.; Canullo, L. The Microbiologic Profile Associated with Pe-ri-Implantitis in Humans: A Systematic Review. Int. J. Oral Maxillofac. Implant. 2016, 31, 359–368. [Google Scholar] [CrossRef]
- Persson, G.R.; Samuelsson, E.; Lindahl, C.; Renvert, S. Mechanical non-surgical treatment of peri-implantitis: A single-blinded randomized longitudinal clinical study. II. Microbiol. Results. J. Clin. Periodontol. 2010, 37, 563–573. [Google Scholar] [CrossRef]
- Pranno, N.; Cristalli, M.P.; Mengoni, F.; Sauzullo, I.; Annibali, S.; Polimeni, A.; La Monaca, G. Comparison of the effects of air-powder abrasion, chemical decontamination, or their combination in open-flap surface decontamination of implants failed for peri-implantitis: An ex vivo study. Clin. Oral Investig. 2021, 25, 2667–2676. [Google Scholar] [CrossRef]
- Javed, F.; Alghamdi, A.S.; Ahmed, A.; Mikami, T.; Ahmed, H.B.; Tenenbaum, H.C. Clinical efficacy of antibiotics in the treatment of peri-implantitis. Int. Dent. J. 2013, 63, 169–176. [Google Scholar] [CrossRef]
- Carcuac, O.; Derks, J.; Charalampakis, G.; Abrahamsson, I.; Wennström, J.; Berglundh, T. Adjunctive Systemic and Local Antimicrobial Therapy in the Surgical Treatment of Peri-implatitis: A Randomized Controlled Clinical Trial. J. Dent. Res. 2016, 95, 50–57. [Google Scholar] [CrossRef]
- Saffarpour, A.; Nozari, A.; Fekrazad, R.; Saffarpour, A.; Heibati, M.N.; Iranparvar, K. Microstructural Evaluation of Contaminated Implant Surface Treated by Laser, Photodynamic Therapy, and Chlorhexidine 2 percent. Int. J. Oral Maxillofac. Implant. 2018, 33, 1019–1026. [Google Scholar] [CrossRef]
- Albaker, A.M.; ArRejaie, A.S.; Alrabiah, M.; Abduljabbar, T. Effect of photodynamic and laser therapy in the treatment of peri-implant mucositis: A systematic review. Photodiagnosis Photodyn. Ther. 2018, 21, 147–152. [Google Scholar] [CrossRef]
- World Health Organization. Ultrav Radiation. Available online: https://www.who.int/health-topics/ultraviolet-radiation#tab=tab_1 (accessed on 11 May 2022).
- Sawase, T.; Jimbo, R.; Baba, K.; Shibata, Y.; Ikeda, T.; Atsuta, M. Photo-induced hydrophilicity enhances initial cell behavior and early bone apposition. Clin. Oral Implant. Res. 2008, 19, 491–496. [Google Scholar] [CrossRef]
- Hirota, M.; Ozawa, T.; Iwai, T.; Mitsudo, K.; Ogawa, T. UV-Mediated Photofunctionalization of Dental Implant: A Seven-Year Results of a Prospective Study. J. Clin. Med. 2020, 9, 2733. [Google Scholar] [CrossRef]
- Ishii, K.; Matsuo, M.; Hoshi, N.; Takahashi, S.S.; Kawamata, R.; Kimoto, K. Effects of Ultraviolet Irradiation of the Implant Surface on Progression of Periimplantitis—A Pilot Study in Dogs. Implant. Dent. 2016, 25, 47–53. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef]
- Ogawa, T. Ultraviolet photofunctionalization of titanium implants. Int. J. Oral Maxillofac. Implant. 2014, 29, E95–E102. [Google Scholar] [CrossRef] [Green Version]
- Naauman, Z.; Rajion, Z.A.B.; Maliha, S.; Hariy, P.; Muhammad, Q.S.; Noor, H.A.R. Ultraviolet A and Ultraviolet C Light-Induced Reduction of Surface Hydrocarbons on Titanium Implants. Eur. J. Dent. 2019, 13, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Lamas, N.; Arteagoitia, I.; Ugalde, U. Surface Activation of Titanium Dental Implants by Using UVC-LED Irradiation. Int. J. Mol. Sci. 2021, 22, 2597. [Google Scholar] [CrossRef]
- Naji, S.A.; Kashi, T.S.J.; Pourhajibagher, M.; Behroozibakhsh, M.; Masaeli, R.; Bahador, A. Evaluation of Antimicrobial Properties of Conventional Poly (Methyl Methacrylate) Denture Base Resin Materials Containing Hydrothermally Synthesised Anatase TiO2 Nanotubes against Cariogenic Bacteria and Candida albicans. Iran. J. Pharm. Res. 2018, 17, 161–172. [Google Scholar]
- Binns, R.; Li, W.; Wu, C.D.; Campbell, S.; Knoernschild, K.; Yang, B. Effect of Ultraviolet Radiationon Candida albicans Biofilmon Poly(methylmethacrylate) Resin. J. Prosthodont.-Implant. Esthet. Reconstr. Dent. 2020, 29, 686–692. [Google Scholar]
- Ishijima, M.; De Avila, E.D.; Nakhaei, K.; Shi, W.; Lux, R.; Ogawa, T. Ultraviolet Light Treatment of Titanium Suppresses Human Oral Bacterial Attachment and Biofilm Formation: A Short-Term In Vitro Study. Int. J. Oral Maxillofac. Implant. 2019, 34, 1105–1113. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, M.; Ueda, T.; Sakurai, K. Reduction of biofilm formation on titanium surface with ultraviolet-C-pre-irradiation. J. Biomater. Appl. 2014, 29, 161–171. [Google Scholar] [CrossRef]
- Shirai, R.; Miura, T.; Yoshida, A.; Yoshino, F.; Ito, T.; Yoshinari, M.; Yajima, Y. Anctimicrobial effect of titanium dioxide after ultraviolet irradiation against periodontal pathogen. Dent. Mater. J. 2016, 35, 511–516. [Google Scholar] [CrossRef] [Green Version]
- Johnson, H.A.; Williamson, R.S.; Marquart, M.; Bumgardner, J.D.; Janorkar, A.V.; Roach, M.D. Photocatalytic activity and antibacterial efficacy of UVA-treated titanium oxides. J. Biomater. Appl. 2020, 35, 500–514. [Google Scholar] [CrossRef]
- Dini, C.; Nagay, B.E.; Cordeiro, J.M.; da Cruz, N.C.; Rangel, E.C.; Ricomini-Filho, A.P.; de Avila, E.D.; Barao, V.A. UV-photofunctionalization of a biomimetic coating for dental implants application. Mater. Sci. Eng. C-Mater. Biol. Appl. 2020, 110, 110657. [Google Scholar] [CrossRef]
- Tenkumo, T.; Ishiyama, K.; Prymak, O.; Nakamura, K.; Shirato, M.; Ogawa, T.; Miyashita, M.; Takahashi, M.; Epple, M.; Kanno, T.; et al. Bactericidal activity and recovery effect of hydroxyl radicals generated by ultraviolet irradiation and silver ion application on an infected titanium surface. Sci. Rep. 2020, 10, 8553. [Google Scholar] [CrossRef]
- Hatoko, M.; Komasa, S.; Zhang, H.; Sekino, T.; Okazaki, J. UV Treatment Improves the Biocompatibility and Antibacterial Properties of Crystallized Nanostructured Titanium Surface. Int. J. Mol. Sci. 2019, 20, 5991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Komasa, S.; Mashimo, C.; Sekino, T.; Okazaki, J. Effect of ultraviolet treatment on bacterial attachment and osteogenic activity to alkali-treated titanium with nanonetwork structures. Int. J. Nanomed. 2017, 12, 4633–4646. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Park, S.Y.; Chang, Y.I.; Lim, Y.J.; Ahn, S.J. Influence of saliva-coating on the ultraviolet-light-induced photocatalytic bactericidal effects on modified titanium surfaces. Appl. Surf. Sci. 2012, 258, 6841–6845. [Google Scholar] [CrossRef]
- Han, A.F.; Tsoi, J.K.H.; Matinlinna, J.P.; Zhang, Y.; Chen, Z.F. Effects of different sterilization methods on surface characteristics and biofilm formation on zirconia in vitro. Dent. Mater. 2018, 34, 272–281. [Google Scholar] [CrossRef]
- Cai, Y.L.; Stromme, M.; Melhus, A.; Engqvist, H.; Welch, K. Photocatalytic inactivation of biofilms on bioactive dental adhesives. J. Biomed. Mater. Res. Part B-Appl. Biomater. 2014, 102, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Cai, S.; Li, Q.; Li, Z.; Xu, G. UV-irradiation induced biological activity and antibacterial activity of ZnO coated magnesium alloy. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 110997. [Google Scholar] [CrossRef] [PubMed]
- Aung, N.; Aoki, A.; Takeuchi, Y.; Hiratsuka, K.; Katagiri, S.; Kong, S.; Shujaa Addin, A.; Meinzer, W.; Sumi, Y.; Izumi, Y. The Effects of Ultraviolet Light-Emitting Diodes with Different Wavelengths on Periodontopathic Bacteroa In Vitro. Laser Surg. 2019, 37, 288–297. [Google Scholar]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases condition: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S313–S318. [Google Scholar] [CrossRef]
- Cosgarea, R.; Sculean, A.; Shibli, J.A.; Salvi, G.E. Prevalence of peri-implant diseases-A critical review on the current evidence. Braz. Oral Res. 2019, 33 (Suppl. 1), E063. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, A.; Renvert, S.; Dahlén, G. Microbial findings at failing implants. Clin. Oral Implant. Res. 1999, 10, 339–345. [Google Scholar] [CrossRef]
- Sgolastra, F.; Petrucci, A.; Severino, M.; Gatto, R.; Monaco, A. Smoking and the risk of peri-implantitis: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2015, 26, E62–E67. [Google Scholar] [CrossRef]
- Monje, A.; Catena, A.; Borgnakke, W.S. Association between diabetes mellitus/hyperglycaemica and peri-implant diseases: Systematic review and meta-analysis. J. Clin. Periodontol. 2017, 44, 636–648. [Google Scholar] [CrossRef]
- Tecco, S.; Grusovin, M.G.; Sciara, S.; Bova, F.; Pantaleo, G.; Capparé, P. The association between three attitude-related indexes of oral hygiene and secondary implant failures: A retrospective longitudinal study. Int. J. Dent. Hyg. 2018, 16, 372–379. [Google Scholar] [CrossRef]
- Coohill, T.P.; Sagripanti, J.L. Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photobiology 2008, 84, 1084–1090. [Google Scholar]
- Gentile, M.; Latonen, L.; Laiho, M. Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses. Nucleic Acids Res. 2003, 31, 4779–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, J.W.; Chang, H.H. Bactericidal effects and mechanism of visible light-responsive titanium dioxide photocatalysts on pathogenic bacteria. Arch. Immunol. Ther. Exp. 2012, 60, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Pantaroto, H.N.; Ricomini-Filho, A.P.; Bertolini, M.M.; da Silva, J.H.; Neto, N.F.; Sukotjo, C.; Rangel, E.C.; Barão, V.A. Antibacterial photocatalytic activity of different crystalline TiO(2) phases in oral multispecies biofilm. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2018, 34, E182–E195. [Google Scholar]
- Nakamura, K.; Shirato, M.; Kanno, T.; Lingström, P.; Örtengren, U.; Niwano, Y. Photo-irradiated caffeic acid exhibits antimicrobial activity against Streptococcus mutans biofilms via hydroxyl radical formation. Sci. Rep. 2017, 7, 6353. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, M.; Hara, K.; Kudo, J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 2005, 71, 7589–7593. [Google Scholar] [CrossRef] [Green Version]
- Polizzi, E.; TetÃ, G.; Bova, F.; Pantaleo, G.; Gastaldi, G.; CapparÃ, P.; Gherlone, E. Antibacterial properties and side effects of chlorhexidine-based mouthwashes: A prospective, randomized clinical study. J. Osseointegration 2019, 12, 2–7. [Google Scholar] [CrossRef]
- Gherlone, E.F.; Capparé, P.; Pasciuta, R.; Grusovin, M.G.; Mancini, N.; Burioni, R. Evaluation of resistance against bacterial microleakage of a new conical implant-abutment connection versus conventional connections: An in vitro study. New Microbiol. 2016, 39, 49–56. [Google Scholar]
- Vinci, R.; Teté, G.; Lucchetti, F.R.; Capparé, P.; Gherlone, E.F. Implant survival rate in calvarial bone grafts: A retrospective clinical study with 10 year follow-up. Clin. Implant. Dent. Relat. Res. 2019, 21, 662–668. [Google Scholar] [CrossRef]
- D’Orto, B.; Tetè, G.; Polizzi, E. Osseointegrated dental implants supporting fixed prostheses in patients affected by Sjögren’s Sindrome: A narrative review. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. 3), 91–93. [Google Scholar]
Author/Year | Country | Effect | Material | Comparison | Assessment | UV Dose | Outcome |
---|---|---|---|---|---|---|---|
Naji S A/2018 | Iran | Antimicrobial (L. acidophilus, S. mutans and Candida albicans) | Poly methyl methacrylate modified with hydrothermally synthesised titanium dioxide nanotubes. | UV-irradiated and non-irradiated marterial within the three groups of TiO2. | MICs, MBC, and MFC against planktonic microbial cells. | N/A | 1/Significantly more antibacterial effects in the UV-irradiated disks than non-UV-irradiated disks (p value < 0.001). |
Pantaroto H N/2018 | Brazil | Antimicrobial (S. sanguinis, A. naeslundii and F.nucleatum) | Commercially pure titanium (cpTi) discs treated by radiofrequency mag-netron sputtering to obtain anatase (A-TiO2), rutile (R-TiO2) or mixture (anatase + rutile) (M-TiO2). | Different UV-A light exposure times (0, 1, 2, 3 and 4 h). | Biofilm assay and Biofilm Organization by scanning electronmicroscopy (SEM). | Treated UV-A light exposure (1 h) to generate reactive oxygen species production. | 1/Significant antibacterial effect in A-TiO2 and M-TiO2 films on multispecies biofilm after 1 h of irradiation (p value < 0.001) with 99% and 99.9% reduction of bacterial counts, respectively. |
Aung N/2019 | Japan | Antimicrobial (P. gingivalis, Prevotella intermedia, Fusobacterium nucleatum, A. actinomycetemcomitans, and S. oralis) | Commercially pure titanium (cpTi) discs. | Different UV wavelengths | CFUs | UV light-emitting diodes with various wavelengths. | 1/Powerful bactericidal effects (no bacterial colonies) with UV wavelengths of 265 and 285 nm. |
Binns R/2020 | USA | Antimicrobial (Candida albicans) | Poly (methylmethacrylate) resin. | UV and sodium perborate. | CFUs | UV light wavelength of 254 nm | 1/Significant decrease in C. albicans survival with increasing ultraviolet light energy exposure (p = 0.00001). 2/Significant inhibition of C. albicans with UV of 254 nm treatment. |
Cai Y/2013 | Sweden | Antibacterial (S. mutans) | Noval nanopeptide (NP) adhesive. | UV-irradiated and non-irradiated and adhesive NP vs non-adhesive NP | Biofilms examination by SEM and metabolic activity assay. | UV light dose of 3 to 43 J/cm2. | 1/Irradiation with 8.4 J/cm2 had a great reduction in the number of biofilm bacteria and a 5 times greater effect with 43 J/cm2. 2/UV-A dose of 16 J/cm2 is insufficient to affect the viability of biofilm. |
Dini C/2020 | Brazil | Antimicrobial (S. sanguinis) | Commercially pure titanium (cpTi) discs. | (1) Machined samples without UV, (2) PEO-treated samples without UV light application, (3) machined samples with UV light application, and (4) PEO-treated samples with UV light application. | CFUs | UV light wavelenght of 253.7 nm. | 1/Significant decrease in the CFU counts for irradiated PEO than non-irradiated PEO (p = 0.012). 2/No significant difference in reducing the CFU counts between irradiated and non-irradiated cpTi (p = 0.269). |
Han A/2018 | China | Antimicrobial (S. aures and P. gingivalis) | Zirconia | Steam autoclave sterilization, dry heat sterilization, UV-C irradiation, and gamma (γ) ray irradiation. | CFUs | UV light with wavelength of 254 nm and 490 μW/cm2. | 1/UVC and gamma ray irradiation increased the hydrophilicity of zirconia surface. 2/Dry-heat-sterilized samples showed the significantly lowest amount of bacteria growth than UVC and gamma ray irradiation. |
Hatoko M/2019 | Japan | Antimicrobial (S. aures) | Crystallized nanostructured titanium. | Formed by dark alkaline treatment heated at 600 C followed by UV-irradiated and non-irradiated Ti. | CFUs | UV light with wavelength of 254 nm, intensity of 100 mW/cm2. | 1/UV irradiation decreased the viability of S. aureus up to 96% after 6 h. 2/No biofilm formation was obsereved on TNS-heat-UV after 18 and 24 h. 3/TNS-heat-UV inhibits bacterial attachment iferation, and biofilm formation. |
Ishijima M/2019 | USA | The oral microbial community culture. | Commercially pure titanium (cpTi) discs | UV-irradiated and non-irradiated | Biofilm formation examined by confocal lase scaning microscopy | UV light for 12 min | 1/Significant low number of bacterial cells attached to irradiated surfaces than non-irradiated. 2/More biofilm thickness was noted with non-irradiation surfaces (16 μm) vs. irradiated less than 8 μm day 7). 3/Untreated titanium surfaces covered with significant more biofilm were 5-fold vs 2-fold rougher for irradiated surface. |
Johnson H A/2020 | USA | The attachment of S. aureus. | Different anodized commercially pure titanium grade 4 (CPTi4) surfaces. | Differing intensities UV irradiation | CFUs | UV irradiation (1 mW/cm2, 8 mW/cm2, and 23 mW/cm2) | 1/Significant differences in bacterial attachment with reduction greater than 99% with irradiated by the 23 mW/cm2 UVA light. |
Lee J E/2012 | Korea | Antimicrobial (S. sanguinis) in the presence of saliva-coating. | Titunium machined (MA), heat-treated (HT), and anodized surfaces (AO). | MA vs. HT vs. AO, saliva-treated vs non-saliva-treated and UV-irradiated and non-irradiated materials. | CFUs | UV light of 2.0 mW/cm2 at a peak wavelength of 352 nm for 90 or 180 min. | 1/UV-induced photocatalytic effects were significantly influenced by the presence of saliva-coating as well as by the crystal phase of the titanium. 2/Saliva-coating significantly increased the bacterial survival rates in the experimental and control groups. |
SHIRAI R/2016 | Japan | Antimicrobial (P. gingivalis) | Titanium dioxide (TiO2). | UV-irradiated and non-irradiated Ti. | CFUs | UV lights with wavelengths of 5 μm and 21 nm for 1, 3 and 6 h. | 1/Significant reduction in number of P. gingivalis in both the 5 μm and 21 nm for 3 h vs. 0 h (p < 0.05). 2/Anatase TiO2 has an antimicrobial activity against periodontal pathogen. |
Sun J/2020 | China | Antimicrobial (E. coli or S. aureus) | Magnesium alloy with the single zinc oxide (ZnO) coating. | Different UV irradiation time for 0, 12 and 24 h. | CFUs | UV light of a 365 nm mercury lamp for 0, 12 and 24 h. | 1/UV24h-ZnO had the highest inhibition of bacterial growth of cells (94.50 ± 1.25% against S. aureus and 98.95 ± 0.71% against E. coli) vs. UV0h-ZnO (82.47 ± 1.41% against S. aureus and 67.70 ± 1.32% against E. coli) |
Tenkumo T/2020 | Japan | Antimicrobial (The S. mutans or A. actinomycetemcomitans) | Commercially pure titanium (cpTi) discs. | Ag(+)L(+): Mixture of silver nitrate solution and bacterial suspension followed by UV-A light irradiation. | CFUs | UV-A light with wavelength of 365 nm and intensity of 1000 mW/cm2. | Significant higher bactericidal effect with combination treatment than silver ion application or UV-A light irradiation alone. |
Yamada Y/2013 | Japan | Antimicrobial (S. aureus or S. pyogenes) | Commercially pure grade 2 titanium discs. | UV-A or UV-C | Bacterial attachment or biofilm formation. | UV-A or UV-C intesity of 500 J/cm2. | 1/Bacterial attachment, bacterial accumulation and biofilm formation were lower on irradiated surfaces than on the non-irradiated surfaces. 2/Irradiation with UV-C was superior to UV-A |
Zhang H/2017 | Japan | The attachment of Actinomyces ori. | Alkali-treated titanium with nanonetwork structures. | UV-irradiated and non-irradiated Ti. | CFUs | UV wavelength of 254 nm, intesity of 100 mW/cm2) for 15 min. | 1/Reduced bacterial growth and inhibition of biofilm formation up to 6 h in irradiated TNS vs non-irradiated surfaces. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullatif, F.A.; Al-Askar, M. Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review. Dent. J. 2022, 10, 93. https://doi.org/10.3390/dj10060093
Abdullatif FA, Al-Askar M. Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review. Dentistry Journal. 2022; 10(6):93. https://doi.org/10.3390/dj10060093
Chicago/Turabian StyleAbdullatif, Fahad A., and Mansour Al-Askar. 2022. "Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review" Dentistry Journal 10, no. 6: 93. https://doi.org/10.3390/dj10060093
APA StyleAbdullatif, F. A., & Al-Askar, M. (2022). Does Ultraviolet Radiation Exhibit Antimicrobial Effect against Oral Pathogens Attached on Various Dental Implant Surfaces? A Systematic Review. Dentistry Journal, 10(6), 93. https://doi.org/10.3390/dj10060093