The Application of the Cameriere’s Methodologies for Dental Age Estimation in a Select KwaZulu-Natal Population of South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Ethics and Procedures
2.3. Selection Criteria
2.4. Radiographic Evaluation
2.4.1. Cameriere Method: Italian Formula
- g = boys (1) and girls (0)
- x5 =
- N0 = teeth with root development complete (i.e., apical completely closed)
- S = sum of the open apices (s = x1 + x2 + x3 + x4 + x5 + x6 + x7)
- Ai = radiographic distance between inner sides of the open apex, i.e., Ai; i = 1…5
- For teeth with two roots, the sum of the distances between the inner sides of the two open apices, i.e., A6 = A61 + A62
- Li = radiographic tooth length. (Li; I = 1…7)
- To prevent the effect of magnification and angulation difference of the panoramic radiographs, the measurement Ai will be by divided by the tooth length (Li), i.e., Xi = ; i = 1…7)
2.4.2. South African Black Bayesian Formulae of the Cameriere Method
Age = (S − β0) × (β1)−1 | if β0 + β1 × γ < S |
= (S – β0 + β2 × γ) × (β1 + β2)−1 | if 0 < S ≤ β0 + β1 × γ |
Estimates | |
Black Female | Black Males |
β0 = 6.611 | β0 = 7.155 |
β1 = −0.589 | β1 = −0.616 |
β1 = −0.589 | β2 = 0.480 |
γ = 10.5 | γ = 10.8 |
2.5. KZN Formulae of the Cameriere Method
2.6. Intra-Observer and Inter-Observer Agreement
2.7. Statistical Analysis
3. Results
3.1. Cameriere Method: Italian Formula
3.2. South African Black Bayesian Formulae of the Cameriere Method
3.3. KZN Formulae of the Cameriere Method
3.4. Intra-Observer and Inter-Observer Agreement
4. Discussion
5. Future Direction and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamim, T.; Ipe Varughese, V.; Shameena, P.M.; Sudha, S. Forensic odontology: A new perspective. Med. Update 2006, 6, 1–4. [Google Scholar]
- Vadla, P.; Surekha, R.; Rao, G.V.; Deepthi, G.; Naveen, S.; Kumar, C.A. Assessing the accuracy of Cameriere’s Indian-specific formula for age estimation on right and left sides of orthopantomogram. Egypt. J. Forensic Sci. 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- De Luca, S.; De Giorgio, S.; Butti, A.C.; Cingolani, M.; Cameriere, R. Age estimation in children by measurement of open apices in tooth roots: Study of a Mexican sample. Forensic Sci. Int. 2012, 221, 155.e1–155.e7. [Google Scholar] [CrossRef] [PubMed]
- Javadinejad, S.; Sekhavati, H.; Ghafari, R. A comparison of the Accuracy of Four Age estimation methods based on panoramic radiography of developing teeth. Journal of Dental Research, Dental Clinics, Dental Prospects. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Uys, A.; Bernitz, H.; Pretorius, S.; Steyn, M. Estimating age and the probability of being at least 18 years of age using third molars: A comparison between Black and White individuals living in South Africa. Int. J. Leg. Med. 2018, 132, 1437–1446. [Google Scholar] [CrossRef] [Green Version]
- El-Bakary, A.A.; Hammad, S.M.; Ibrahim, F.M. Comparison between two methods of dental age estimation among Egyptian children. Mansoura J. Forensic Med. Clin. Toxicol. 2009, 17, 75–86. [Google Scholar] [CrossRef]
- Yang, Z.; Wen, D.; Xiao, J.; Liu, Q.; Sun, S.; Kureshi, A.; Chang, Y.; Zha, L. Application of Cameriere’s method for dental age estimation in children in South China. Forensic Sci. Res. 2021, 7, 106–114. [Google Scholar] [CrossRef]
- Cameriere, R.; Ferrante, L.; Cingolani, M. Age estimation in children by measurement of open apices in teeth. Int. J. Leg. Med. 2006, 120, 49–52. [Google Scholar] [CrossRef] [Green Version]
- Elgamri, A.; Mohamed, N.; Hudson, A. A Comparison of the Dental Age Estimation Methods of Phillips and Proffit in a Sample of South African Children at the Tygerberg Dental Faculty. Master’s Thesis, University of Western Cape, Cape Town, South Africa, 2015. [Google Scholar]
- Cameriere, R.; Ferrante, L.; Liversidge, H.; Prieto, J.; Brkic, H. Accuracy of age estimation in children using radiograph of developing teeth. Forensic Sci. Int. 2008, 176, 173–177. [Google Scholar] [CrossRef]
- Demirjian, A.; Goldstein, H.; Tanner, J.M. A new system of dental age assessment. Hum. Biol. 1973, 45, 211–227. [Google Scholar]
- Willems, G.; Van Olmen, A.; Spiessens, B.; Carels, C. Dental Age Estimation in Belgian Children: Demirjian’s Technique Revisited. J. Forensic Sci. 2001, 46, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.M.; Tinoco, R.L.; de Braganca, D.P.; de Lima, S.H.; Francesquini, L., Jr. Age estimation by measurements of developing teeth: Accuracy of Cameriere’s method on a Brazilian sample. J. Forensic Sci. 2011, 56, 1616–1619. [Google Scholar] [CrossRef] [PubMed]
- Gulsahi, A.; Tirali, R.E.; Cehreli, S.B.; De Luca, S.; Ferrante, L.; Cameriere, R. The reliability of Cameriere’s method in Turkish children: A preliminary report. Forensic Sci. Int. 2015, 249, 319.e1–319.e5. [Google Scholar] [CrossRef]
- Cameriere, R.; Pacifici, A.; Polimeni, A.; Federici, F.; Cingolani, M.; Ferrante, L. Age estimation in children by measurement of open apices in teeth with Bayesian calibration approach. Forensic Sci. Int. 2016, 258, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Rivera, M.; De Luca, S.; Aguilar, L.; Palacio, L.A.V.; Galić, I.; Cameriere, R. Measurement of open apices in tooth roots in Colombian children as a tool for human identification in asylum and criminal proceedings. J. Forensic Leg. Med. 2017, 48, 9–14. [Google Scholar] [CrossRef]
- Marinkovic, N.; Milovanovic, P.; Djuric, M.; Nedeljkovic, N.; Zelic, K. Dental maturity assessment in Serbian population: A comparison of Cameriere’s European formula and Willems’ method. Forensic Sci. Int. 2018, 288, 331.e1–331.e5. [Google Scholar] [CrossRef] [PubMed]
- Kumaresan, R.; Cugati, N.; Chandrasekaran, B.; Karthikeyan, P. Reliability and validity of five radiographic dental-age estimation methods in a population of Malaysian children. J. Investig. Clin. Dent. 2014, 7, 102–109. [Google Scholar] [CrossRef]
- Shrestha, A.; Yadav, R.P.; Shrtestha, S.; Majarjan, I.K.; Camelio, S. Measurement of Open Apices in Teeth for Estimation of Age in Children. Health Renaiss. 2015, 12, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Apaydin, B.K.; Yasar, F. Accuracy of the demirjian, willems and cameriere methods of estimating dental age on turkish children. Niger. J. Clin. Pract. 2018, 21, 257–263. [Google Scholar]
- Ozveren, N.; Serindere, G.; Meric, P.; Cameriere, R. A comparison of the accuracy of Willems’ and Cameriere’s methods based on panoramic radiography. Forensic Sci. Int. 2019, 302, 109912. [Google Scholar] [CrossRef]
- Wolf, T.G.; Briseño-Marroquín, B.; Callaway, A.; Patyna, M.; Müller, V.T.; Willershausen, I.; Ehlers, V.; Willershausen, B. Dental age assessment in 6- to 14-year old German children: Comparison of Cameriere and Demirjian methods. BMC Oral Health 2016, 16, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, B.; Kaur, J.; Cingolani, M.; Ferrante, L.; Cameriere, R. Age estimation in children by measurement of open apices in teeth: An Indian formula. Int. J. Leg. Med. 2010, 124, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagh, T.; Chatra, L.; Shenai, P.; Venna, K.M.; Rao, P.K.; Prabhu, R.V.; Kushraj, T.; Shetthy, P. Age Estimation using Cameriere’s Seven Teeth Method with Indian Specific Formula in South Indian Children. Int. J. Adv. Health Sci. 2014, 1, 2–10. [Google Scholar]
- South African Census 2011. p. 23. Available online: https://www.statssa.gov.za/publications/P03014/P030142011.pdf (accessed on 28 April 2022).
- Angelakopoulos, N.; De Luca, S.; Palacio, L.A.V.; Coccia, E.; Ferrante, L.; Pinchi, V.; Cameriere, R. Age estimation by measuring open apices in teeth: A new formula for two samples of South African black and white children. Int. J. Leg. Med. 2019, 133, 1529–1536. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, N.; Thevissen, P.; Fleuws, S.; Willems, G. Dental age estimation in Japanese individuals combining permanent teeth and third molars. J. Forensic Odonto-Stomatol. 2012, 30, 34–39. [Google Scholar]
- Franco, A.; Thevissen, P.; Fieuws, S.; Souza, P.H.C.; Willems, G. Applicability of Willems model for dental age estimations in Brazilian children. Forensic Sci. Int. 2013, 231, 401.e1–401.e4. [Google Scholar] [CrossRef] [PubMed]
- Yusof, M.Y.P.M.; Thevissen, P.; Fieuws, S.; Willems, G. Dental age estimation in Malay children based on all permanent teeth types. Int. J. Leg. Med. 2014, 128, 329–333. [Google Scholar] [CrossRef]
- Metsäniitty, M.; Waltimo-Sirén, J.; Ranta, H.; Fieuws, S.; Thevissen, P. Dental age estimation in Somali children and sub-adults combining permanent teeth and third molar development. Int. J. Leg. Med. 2019, 133, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Galić, I.; Vodanović, M.; Cameriere, R.; Nakaš, E.; Galić, E.; Selimović, E.; Brkić, H. Accuracy of Cameriere, Haavikko, and Willems radiographic methods on age estimation on Bosnian–Herzegovian children age groups 6–13. Int. J. Leg. Med. 2011, 125, 315–321. [Google Scholar] [CrossRef]
- Balla, S.B.; Venkat Baghirath, P.; Hari Vinay, B.; Vijay Kumar, J.; Babu, D.B.G. Accuracy of methods of age estimation in predicting dental age of preadolescents in South Indian children. J. Forensic. Leg. Med. 2016, 43, 21–25. [Google Scholar] [CrossRef]
- Santana, S.A.; Bethard, J.D.; Moore, T.L. Accuracy of Dental Age in Nonadults: A Comparison of Two Methods for Age Estimation Using Radiographs of Developing Teeth. J. Forensic. Sci. 2017, 62, 1320–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, V.V.; Thomas, S.; Thomas, J.; Salim, S.F.; Thomas, D.; Thomas, T. Comparison of Cameriere’s and Demirjian’s methods of age estimation among children in Kerala: A pilot study. Clin. Pract. 2018, 8, 991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Różyło, K.; Gruszka, K.; Różyło-Kalinowska, I. Comparison of radiological dental age estimation by means of the method by Cameriere and the modified European formula. Nowa Stomatol. 2018, 23, 66–71. [Google Scholar] [CrossRef]
- Gannepalli, A.; Balla, S.B.; Pacha, V.B.; Babu, D.G. Applicability of Cameriere European formula for age estimation of 10–15 years legal threshold in South Indian population. J. Forensic Dent. Sci. 2019, 11, 78–83. [Google Scholar] [CrossRef]
- Khalfani, A.K.; Zuberi, T. Racial classification and the modern census in South Africa, 1911–1996. Race Soc. 2001, 4, 161–176. [Google Scholar] [CrossRef]
- Omotoso, B.R.; Harrichandparsad, R.; Moodley, I.G.; Satyapal, K.S.; Lazarus, L. An anatomical investigation of the proximal vertebral arteries (V1, V2) in a select South African population. Surg. Radiol. Anat. 2021, 43, 929–941. [Google Scholar] [CrossRef]
- Hegde, S.; Patodia, A.; Dixit, U. A comparison of the validity of the Demirjian, Willems, Nolla and Häävikko methods in determination of chronological age of 5–15 year-old Indian children. J. Forensic Leg. Med. 2017, 50, 49–57. [Google Scholar] [CrossRef]
- Marroquin, T.; Karkhanis, S.; Kvaal, S.; Vasudavan, S.; Kruger, E.; Tennant, M. Age estimation in adults by dental imaging assessment systematic review. Forensic Sci. Int. 2017, 275, 203–211. [Google Scholar] [CrossRef]
- Ranjan, V.; Priya, P.; Shankar, V.N.; Maiti, S.B. Comparative study of demirjian and cameriere methods for dental age estimation of children aged 5–13 year in Delhi-NCR region. Int. J. Adv. Res. 2020, 8, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, J.; Roberts, G.J.; King, N.M.; Wong, H.M. Dental age assessment of southern Chinese using the United Kingdom Caucasian reference dataset. Forensic Sci. Int. 2012, 216, 68–72. [Google Scholar] [CrossRef]
- Cameriere, R.; De Angelis, D.; Ferrante, L.; Scarpino, F.; Cingolani, M. Age estimation in children by measurement of open apices in teeth: A European formula. Int. J. Leg. Med. 2007, 121, 449–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinchi, V.; Norelli, G.-A.; Pradella, F.; Vitale, G.; Rugo, D.; Nieri, M. Comparison of the applicability of four odontological methods for age estimation of the 14 years legal threshold in a sample of Italian adolescents. J. Forensic Odonto-Stomatol. 2012, 30, 17–25. [Google Scholar]
- Altunsoy, M.; Nur, B.G.; Akkemik, O.; Ok, E.; Evcil, M.S. Applicability of the Demirjian method for dental age estimation in western Turkish children. Acta Odontol. Scand. 2015, 73, 121–125. [Google Scholar] [CrossRef]
- Baylis, S.; Bassed, R. Precision and accuracy of commonly used dental age estimation charts for the New Zealand population. Forensic Sci. Int. 2017, 277, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Rai, B.; Cameriere, R.; Ferrante, L. Accuracy of Cameriere et al regression equation in Haryana population. Rom. J. Leg. Med. 2009, 17, 147–150. [Google Scholar] [CrossRef]
- Alghali, R.; Kamaruddin, A.F.; Mokhtar, N. Dental age estimation: Comparison of reliability between Malay formula of Demirjian method and Malay formula of Cameriere method. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016. [Google Scholar] [CrossRef]
Author | Year | Population | Sample Size | Age Range | Key Findings |
---|---|---|---|---|---|
El-Bakery et al. [6] | 2009 | Egyptian | 286 | 5–16 | Approximately 98% accurate for the estimation of age, however, age was underestimated by 0.43 years. |
Galic et al. [31] | 2011 | Bosnian-Herzegovian | 1089 | 6–13 | Overestimated age by 0.09 years in girls and underestimated by 0.02 years in boys |
Fernandes et al. [13] | 2011 | Brazilian | 160 | 5–15 | Reliable for age estimation—slight overestimation and underestimation were reported in the age categories 5–10 years and 11–15 years, respectively. |
Bagh et al. [24] | 2014 | Indian | 25 | 5–15 | Slight overestimation but no statistical difference |
Kumaresen et al. [18] | 2014 | Malaysian | 426 | 5–15 | Underestimation by 0.41 years but accurate for age estimation |
Shrestha et al. [19] | 2014 | Indian | 50 | 5–15 | Underestimated by 0.11 years in boys and 0.23 years in girls |
Gulsahi et al. [14] | 2015 | Turkish | 603 | 8–15 | Underestimation by 0.35 years |
Javadinejab et al. [4] | 2015 | Iranian | 577 | 3–15 | Underestimated age by 0.19 years |
Balla et al. [32] | 2016 | South Indian | 150 | 7–14.99 | Underestimated age |
Wolf et al. [22] | 2016 | German | 479 | 6–14 | Males—Overestimation (6–11 years) and Underestimation (12–14 years) Females—Overestimation (6–10 years) and Underestimation (11–14 years) |
Santana et al. [33] | 2017 | Mixed sample | 360 | 6–17 | Underestimated age in both males and females by -1.32 years and -1.19 years |
Apaydin and Yasar [20] | 2018 | Turkish | 330 | 5–15.90 | Underestimation of age by 0.580 years |
Nair et al. [34] | 2018 | Indian | 10 | 7–12 | Underestimation dental age |
Rozylo et al. [35] | 2018 | Polish | 2148 | 5–15 | Underestimation dental age |
Gannepalli et al. [36] | 2019 | Indian | 200 | 10–15 | Underestimated dental age by 1.50 years (male) and 1.54 years (females) |
Ozveren et al. [21] | 2019 | Turkish | 636 | 6–15 | Underestimated age in both sexes |
Yang et al. [7] | 2021 | Chinese | 1803 | 4–22.99 | Underestimation of age with a mean difference of 0.47 ± 1.11 years and 0.69 ± 1.19 years in males and females, respectively |
Formula | Sample Size | Age Range | Sex | Population Group | Maxillary | Mandibular | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean CA | Mean DA | Mean CA–DA | MAE | Correlation (R2) | p-Value | Mean CA | Mean DA | Mean CA–DA | MAE | Correlation (R2) | p-Value | |||||
Cameriere (2006) Italian [8] | 440 | 5.00 – 15.99 | B | SA Black & Indian | 10.49 | 9.88 | 0.61 | 1.00 | −0.68 | <0.001 | 10.49 | 10.05 | 0.44 | 1.04 | −0.67 | <0.001 |
220 | F | SA Black & Indian | 10.50 | 9.85 | 0.65 | 1.01 | −0.68 | <0.001 | 10.50 | 9.98 | 0.52 | 1.05 | −0.66 | <0.001 | ||
220 | M | SA Black & Indian | 10.48 | 9.90 | 0.58 | 0.99 | −0.68 | <0.001 | 10.48 | 10.12 | 0.36 | 1.04 | −0.68 | <0.001 | ||
220 | B | SA Black | 10.48 | 9.91 | 0.57 | 1.05 | −0.66 | <0.001 | 10.48 | 10.04 | 0.44 | 1.13 | −0.65 | <0.001 | ||
110 | F | SA Black | 10.48 | 9.86 | 0.62 | 1.03 | −0.67 | <0.001 | 10.48 | 9.94 | 0.54 | 1.14 | −0.67 | <0.001 | ||
110 | M | SA Black | 10.48 | 9.96 | 0.52 | 1.08 | −0.64 | <0.001 | 10.48 | 10.15 | 0.33 | 1.12 | −0.65 | 0.006 | ||
220 | B | SA Indian | 10.48 | 9.83 | 0.65 | 0.94 | −0.70 | <0.001 | 10.48 | 10.04 | 0.44 | 0.96 | −0.69 | <0.001 | ||
110 | F | SA Indian | 10.53 | 9.85 | 0.68 | 0.99 | −0.69 | <0.001 | 10.53 | 10.02 | 0.51 | 0.96 | −0.66 | <0.001 | ||
110 | M | SA Indian | 10.49 | 9.83 | 0.66 | 0.90 | −0.71 | <0.001 | 10.49 | 10.09 | 0.40 | 0.96 | −0.72 | <0.001 | ||
Bayesian SA Black Cameriere (2017) [26] | 360 | 6.00 – 14.99 | B | SA Black & Indian | 10.49 | 10.65 | −0.16 | 0.88 | 0.82 | <0.001 | 10.49 | 10.74 | −0.25 | 0.80 | 0.83 | <0.001 |
180 | F | SA Black & Indian | 10.50 | 10.68 | −0.18 | 0.91 | 0.82 | 0.000 | 10.50 | 10.74 | −0.24 | 0.83 | 0.83 | <0.001 | ||
180 | M | SA Black & Indian | 10.47 | 10.61 | −0.14 | 0.89 | 0.82 | 0.000 | 10.47 | 10.73 | −0.26 | 0.77 | 0.84 | <0.001 | ||
180 | B | SA Black | 10.46 | 10.71 | −0.25 | 0.89 | 0.83 | 0.005 | 10.46 | 10.68 | −0.22 | 0.87 | 0.83 | <0.001 | ||
90 | F | SA Black | 10.47 | 10.65 | −0.18 | 0.84 | 0.83 | 0.139 | 10.47 | 10.63 | −0.16 | 0.89 | 0.83 | 0.020 | ||
90 | M | SA Black | 10.46 | 10.77 | −0.31 | 0.94 | 0.82 | 0.006 | 10.46 | 10.72 | −0.26 | 0.85 | 0.84 | 0.004 | ||
180 | B | SA Indian | 10.52 | 10.58 | −0.06 | 0.86 | 0.82 | 0.009 | 10.52 | 10.79 | −0.27 | 0.72 | 0.83 | <0.001 | ||
90 | F | SA Indian | 10.53 | 10.71 | −0.18 | 0.87 | 0.82 | 0.012 | 10.53 | 10.84 | −0.31 | 0.75 | 0.83 | 0.001 | ||
90 | M | SA Indian | 10.50 | 10.45 | 0.05 | 0.86 | 0.82 | 0.014 | 10.50 | 10.75 | −0.25 | 0.70 | 0.83 | 0.003 |
Age Cohorts (Year) | Sample Size (n) | South African Black Female | South African Black Male | South African Indian Female | South African Indian Male | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maxilla | Mandible | Maxilla | Mandible | Maxilla | Mandible | Maxilla | Mandible | ||||||||||
MD | MAE | MD | MAE | MD | MAE | MD | MAE | MD | MAE | MD | MAE | MD | MAE | MD | MAE | ||
Cameriere (2006) Italian Formula | |||||||||||||||||
5.00–5.99 | 40 | −0.34 | 0.62 | −0.90 | 0.96 | −0.62 | 0.93 | −1.33 | 1.33 | −0.27 | 0.79 | −1.00 | 1.04 | 0.06 | 0.51 | −0.69 | 1.04 |
6.00–6.99 | 40 | −0.37 | 0.58 | −0.29 | 1.00 | −0.54 | 0.66 | −0.79 | 0.79 | −0.02 | 0.71 | −0.42 | 0.62 | 0.14 | 0.59 | −0.53 | 0.60 |
7.00–7.99 | 40 | 0.05 | 0.33 | −0.42 | 0.47 | −0.58 | 0.67 | −0.74 | 0.86 | −0.04 | 0.28 | −0.13 | 0.24 | 0.10 | 0.60 | −0.34 | 0.56 |
8.00–8.99 | 40 | −0.51 | 0.97 | −0.57 | 0.86 | 0.02 | 0.29 | −0.09 | 0.80 | 0.63 | 1.12 | 0.38 | 0.78 | 0.17 | 0.44 | −0.31 | 0.59 |
9.00–9.99 | 40 | 0.42 | 0.64 | 0.09 | 0.48 | −0.19 | 0.68 | −0.18 | 0.73 | 0.23 | 0.74 | 0.07 | 0.81 | 0.36 | 0.55 | −0.11 | 0.63 |
10.99–10.99 | 40 | 0.49 | 0.72 | 0.38 | 0.60 | 0.48 | 0.94 | 0.12 | 0.74 | 0.31 | 0.58 | 0.12 | 0.34 | 0.18 | 0.96 | −0.08 | 0.71 |
11.99–11.99 | 40 | 0.39 | 0.78 | 0.36 | 0.78 | 0.30 | 0.83 | 0.22 | 0.72 | 0.80 | 0.80 | 0.80 | 0.80 | 0.49 | 0.53 | 0.56 | 0.56 |
12.99–12.99 | 40 | 1.51 | 1.51 | 1.37 | 1.40 | 0.97 | 1.05 | 1.26 | 1.26 | 1.30 | 1.33 | 1.27 | 1.30 | 0.86 | 0.86 | 0.96 | 0.96 |
13.99–13.99 | 40 | 1.36 | 1.40 | 1.76 | 1.82 | 1.48 | 1.48 | 1.41 | 1.41 | 0.65 | 0.65 | 0.67 | 0.79 | 1.13 | 1.22 | 1.12 | 1.18 |
14.99–14.99 | 40 | 1.60 | 1.60 | 1.63 | 1.63 | 2.30 | 2.29 | 1.84 | 1.84 | 1.59 | 1.59 | 1.48 | 1.48 | 1.41 | 1.41 | 1.50 | 1.50 |
15.99–15.99 | 40 | 2.26 | 2.26 | 2.59 | 2.59 | 2.06 | 2.06 | 1.85 | 1.85 | 2.26 | 2.26 | 2.34 | 2.34 | 2.27 | 2.27 | 2.27 | 2.27 |
Bayesian SA Black Cameriere (2017) Formula | |||||||||||||||||
6.00–6.99 | 40 | 0.48 | 1.15 | 0.98 | 1.72 | 0.38 | 1.17 | −0.01 | 1.02 | 0.79 | 1.23 | 0.02 | 0.89 | 1.57 | 1.78 | 0.21 | 0.61 |
7.00–7.99 | 40 | 0.01 | 0.97 | −0.58 | 0.85 | −0.85 | 1.20 | −1.07 | 1.15 | −0.17 | 0.53 | −0.46 | 0.57 | 0.35 | 1.38 | −0.50 | 1.02 |
8.00–8.99 | 40 | −1.33 | 1.33 | −1.21 | 1.22 | −0.81 | 1.11 | −0.27 | 1.53 | 0.32 | 0.78 | −0.14 | 0.57 | −0.36 | 0.75 | −0.85 | 0.90 |
9.00–9.99 | 40 | −0.02 | 0.64 | −0.19 | 0.36 | −1.03 | 1.03 | −0.81 | 0.93 | −0.16 | 0.60 | −0.04 | 0.80 | −0.49 | 0.65 | −0.51 | 0.77 |
10.99–10.99 | 40 | −0.53 | 0.81 | −0.40 | 0.86 | −0.12 | 0.68 | −0.23 | 0.53 | −0.61 | 0.96 | −0.73 | 0.94 | 0.03 | 0.63 | −0.06 | 0.47 |
11.99–11.99 | 40 | −0.41 | 0.94 | −0.51 | 0.70 | −0.92 | 0.99 | −0.60 | 0.81 | −0.87 | 1.50 | −0.54 | 1.12 | −0.59 | 1.02 | −0.54 | 0.96 |
12.99–12.99 | 40 | −0.32 | 0.71 | −0.29 | 1.11 | −0.27 | 0.71 | 0.15 | 0.58 | −0.85 | 0.91 | −0.68 | 0.85 | −0.45 | 0.61 | −0.33 | 0.67 |
13.99–13.99 | 40 | −0.04 | 0.44 | 0.03 | 0.49 | 0.13 | 0.79 | −0.21 | 0.40 | −0.61 | 0.64 | −0.53 | 0.55 | −0.10 | 0.44 | −0.15 | 0.37 |
14.99–14.99 | 40 | 0.51 | 0.61 | 0.65 | 0.73 | 0.73 | 0.73 | 0.70 | 0.73 | 0.56 | 0.65 | 0.38 | 0.47 | 0.50 | 0.50 | 0.49 | 0.49 |
Maxillary | Mandibular | ||||||||
---|---|---|---|---|---|---|---|---|---|
Coefficients | Estimates | Standard Error | t-Value | p-Value | Coefficients | Estimates | Standard Error | t-Value | p-Value |
South African Black Females (KZN) | |||||||||
Age = 10.06 − 4.14(X1) -1.59(X5) -1.78(X7) + 0.66(N0) | Age = 10.50 – 1.00(s) + 0.59(N0) + 7.66(X1) – 4.30(X4) | ||||||||
Intercept | 10.06 | 0.33 | 30.14 | <0.001 | Intercept | 10.50 | 0.41 | 25.83 | <0.001 |
Max X1 | −4.14 | 1.65 | −2.50 | 0.013 | S | −1.00 | 0.53 | −1.89 | 0.061 |
Max X5 | −1.59 | 0.77 | −2.07 | 0.041 | N0 | 0.59 | 0.09 | 6.73 | <0.001 |
Max X7 | −1.78 | 0.47 | −3.75 | 0.0003 | Man X1 | 7.66 | 2.31 | 3.32 | 0.001 |
N0 | 0.66 | 0.07 | 9.34 | <0.001 | Man X4 | −4.30 | 2.93 | −1.47 | 0.146 |
South African Black Males (KZN) | |||||||||
Age = 9.70 – 5.20(X3) – 0.89 (X7) + 0.84 (N0) | Age = 9.68 – 1.30(s) + 0.81(N0) + 4.33(X6) | ||||||||
Intercept | 9.70 | 0.29 | 32.72 | <0.001 | Intercept | 9.68 | 0.36 | 27.10 | <0.001 |
Max X3 | −5.20 | 1.08 | −4.79 | <0.001 | S | −1.30 | 0.20 | −6.50 | <0.001 |
Max X7 | −0.89 | 0.31 | −2.84 | 0.005 | N0 | 0.81 | 0.08 | 10.68 | <0.001 |
N0 | 0.84 | 0.07 | 12.64 | <0.001 | Man X6 | 4.33 | 1.50 | 2.88 | 0.005 |
South African Indian Female (KZN) | |||||||||
Age = 10.47 + 2.73(X2) – 2.65(X3) – 3.99(X5) – 6.81(X6) – 0.64(X7) + 0.58 (N0) | Age = 9.91 – 1.23(s) + 0.68(N0) | ||||||||
Intercept | 10.47 | 0.34 | 30.64 | <0.001 | Intercept | 9.91 | 0.28 | 35.79 | <0.001 |
Max X2 | 2.73 | 1.01 | 2.69 | <0.001 | S | -1.23 | 0.11 | -10.83 | <0.001 |
Max X3 | −2.65 | 1.69 | −1.56 | 0.122 | N0 | 0.68 | 0.06 | 12.09 | <0.001 |
Max X5 | −3.99 | 1.12 | −3.57 | <0.001 | |||||
Max X6 | −6.81 | 2.61 | −2.61 | 0.01 | |||||
Max X7 | −0.64 | 0.33 | −1.96 | 0.052 | |||||
N0 | 0.58 | 0.07 | 8.92 | <0.001 | |||||
South African Indian Male (KZN) | |||||||||
Age = 10.71 + 5.06(X2) – 2.80(X4) – 1.82(X5) – 3.76(X6) – 1.79(X7) + 0.59(N0) | Age = 10.43 – 2.30(s) + 0.64(N0) + 4.99(X2) + 4.37(X3) + 3.03(X6) | ||||||||
Intercept | 10.71 | 0.30 | 36.28 | <0.001 | Intercept | 10.43 | 0.39 | 26.74 | <0.001 |
Max X2 | 5.06 | 1.53 | 3.30 | 0.001 | S | −2.30 | 0.36 | −6.42 | <0.001 |
Max X4 | −2.80 | 1.10 | −2.56 | <0.001 | N0 | 0.64 | 0.08 | 8.54 | <0.001 |
Max X5 | −1.82 | 0.86 | −2.12 | 0.037 | Man X2 | 4.99 | 2.51 | 1.98 | 0.050 |
Max X6 | −3.76 | 0.94 | −4.01 | <0.001 | Man X3 | 4.37 | 1.86 | 2.35 | 0.028 |
Max X7 | −1.79 | 0.32 | −5.59 | <0.001 | Man X6 | 3.03 | 1.17 | 2.58 | 0.011 |
N0 | 0.59 | 0.06 | 9.79 | <0.001 |
Maxillary | Mandibular | ||||||||
---|---|---|---|---|---|---|---|---|---|
Coefficients | Estimates | Standard Error | t-Value | p-Value | Coefficients | Estimates | Standard Error | t-Value | p-Value |
South African Black Females (KZN) | |||||||||
Age = 9.45 − 3.79(X3) − 1.76(X7) + 1.06(N0) | Age = 9.77 − 1.49(s) + 1.03(N0) − 0.27(X8) + 8.12(X1) | ||||||||
Intercept | 9.45 | 0.46 | 20.65 | <0.001 | Intercept | 9.77 | 0.61 | 15.97 | <0.001 |
Max X3 | −3.79 | 1.79 | −2.12 | 0.036 | S | −1.49 | 0.29 | −5.08 | <0.001 |
Max X7 | −1.76 | 0.63 | −2.77 | 0.006 | N0 | 1.03 | 0.10 | 10.32 | <0.001 |
N0 | 1.06 | 0.08 | 13.19 | <0.001 | Man X8 | −0.27 | 0.17 | −1.59 | 0.115 |
Man X1 | 8.12 | 2.80 | 2.90 | 0.004 | |||||
South African Black Males (KZN) | |||||||||
Age = 10.47 − 6.92(X3) − 0.99(X7) + 0.97(N0) − 0.36(X8) | Age = 11.10 − 1.98(s) + 0.87(N0) − 0.80(X8) + 7.80(X6) | ||||||||
Intercept | 10.47 | 0.43 | 24.40 | <0.001 | Intercept | 11.10 | 0.54 | 20.58 | <0.001 |
Max X3 | −6.92 | 1.56 | −4.42 | <0.001 | S | −1.98 | 0.29 | −6.85 | <0.001 |
Max X7 | −0.99 | 0.47 | −2.13 | 0.034 | N0 | 0.87 | 0.09 | 10.12 | <0.001 |
N0 | 0.97 | 0.07 | 13.06 | <0.001 | Man X8 | −0.80 | 0.22 | −3.58 | <0.001 |
Max X8 | −0.36 | 0.14 | −2.49 | 0.014 | Man X6 | 7.80 | 2.26 | 3.46 | <0.001 |
South African Indian Female (KZN) | |||||||||
Age = 13.46 + 11.70(X1) + 3.31(X2) − 9.72(X3) − 7.92(X5) − 8.19(X6) − 1.35(X7) + 0.45(N0) − 0.88 (X8) | Age = 13.15 − 2.76(s) + 0.54(N0) − 1.59(X8) + 7.92(X2) − 6.72(X3) + 12.40(X6) | ||||||||
Intercept | 13.46 | 0.57 | 23.59 | <0.001 | Intercept | 13.15 | 0.54 | 24.29 | <0.001 |
Max X1 | 11.70 | 5.45 | 2.15 | 0.033 | S | −2.76 | 0.63 | −4.36 | <0.001 |
Max X2 | 3.31 | 2.13 | 1.56 | 0.121 | N0 | 0.54 | 0.08 | 6.35 | <0.001 |
Max X3 | −69.72 | 3.59 | −2.71 | 0.008 | Man X8 | −1.59 | 0.31 | −5.06 | <0.001 |
Max X5 | −7.92 | 2.02 | −3.92 | <0.001 | Man X2 | 7.92 | 4.40 | 1.80 | 0.074 |
Max X6 | −8.19 | 5.04 | −1.63 | 0.106 | Man X3 | −6.72 | 4.55 | −1.48 | 0.141 |
Max X7 | −1.35 | 0.59 | −2.30 | 0.023 | Man X6 | 12.40 | 5.59 | 2.22 | 0.028 |
N0 | 0.45 | 0.09 | 4.93 | <0.001 | |||||
Max X8 | −0.88 | 0.19 | −4.72 | <0.001 | |||||
South African Indian Male (KZN) | |||||||||
Age = 10.17 + 5.50(X2) − 2.30(X3) − 2.71(X4) − 2.86(X6) − 1.86(X7) + 0.97(N0) − 0.39(X8) | Age = 9.44 − 1.31(s) + 1.09(N0) − 0.46(X8) + 8.89(X1) | ||||||||
Intercept | 10.17 | 0.43 | 23.50 | <0.001 | Intercept | 9.44 | 0.44 | 21.66 | <0.001 |
Max X2 | 5.50 | 2.26 | 2.44 | 0.016 | S | −1.31 | 0.25 | −5.17 | <0.001 |
Max X3 | −2.30 | 1.52 | −1.51 | 0.132 | N0 | 1.09 | 0.07 | 15.68 | <0.001 |
Max X4 | −2.71 | 1.46 | −1.85 | 0.066 | Man X8 | −0.46 | 0.22 | −2.09 | 0.038 |
Max X6 | −2.86 | 1.29 | −2.22 | 0.028 | Man X1 | 8.89 | 3.79 | 2.35 | 0.020 |
Max X7 | −1.86 | 0.46 | −4.01 | <0.001 | |||||
N0 | 0.97 | 0.07 | 14.08 | <0.001 | |||||
Max X8 | −0.39 | 0.14 | −2.74 | <0.001 |
Formulae | Age Range | Correlation (R2) | p-Value |
---|---|---|---|
Maxillary | |||
Cameriere KZN Black Female (Excluding M3) | 5.00–15.99 | 0.92 | 0.2 |
Cameriere KZN Black Female (Including M3) | 5.00–19.99 | 0.92 | 0.5 |
Mandibular | |||
Cameriere KZN Black Female (Excluding M3) | 5.00–15.99 | 0.91 | 0.3 |
Cameriere KZN Black Female (Including M3) | 5.00–19.99 | 0.92 | 0.5 |
Maxillary | |||
Cameriere KZN Black Male (Excluding M3) | 5.00–15.99 | 0.94 | 0.2 |
Cameriere KZN Black Male (Including M3) | 5.00–19.99 | 0.93 | 0.1 |
Mandibular | |||
Cameriere KZN Black Male (Excluding M3) | 5.00–15.99 | 0.94 | 0.2 |
Cameriere KZN Black Male (Including M3) | 5.00–19.99 | 0.93 | 0.3 |
Maxillary | |||
Cameriere KZN Indian Female (Excluding M3) | 5.00–15.99 | 0.95 | 0.5 |
Cameriere KZN Indian Female (Including M3) | 5.00–19.99 | 0.91 | 0.2 |
Mandibular | |||
Cameriere KZN Indian Female (Excluding M3) | 5.00–15.99 | 0.95 | 0.5 |
Cameriere KZN Indian Female (Including M3) | 5.00–19.99 | 0.90 | 0.2 |
Maxillary | |||
Cameriere KZN Indian Male (Excluding M3) | 5.00–15.99 | 0.96 | 0.7 |
Cameriere KZN Indian Male (Including M3) | 5.00–19.99 | 0.95 | 0.4 |
Mandibular | |||
Cameriere KZN Indian Male (Excluding M3) | 5.00–15.99 | 0.95 | 0.7 |
Cameriere KZN Indian Male (Including M3) | 5.00–19.99 | 0.95 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishwarkumar, S.; Pillay, P.; Chetty, M.; Satyapal, K.S. The Application of the Cameriere’s Methodologies for Dental Age Estimation in a Select KwaZulu-Natal Population of South Africa. Dent. J. 2022, 10, 130. https://doi.org/10.3390/dj10070130
Ishwarkumar S, Pillay P, Chetty M, Satyapal KS. The Application of the Cameriere’s Methodologies for Dental Age Estimation in a Select KwaZulu-Natal Population of South Africa. Dentistry Journal. 2022; 10(7):130. https://doi.org/10.3390/dj10070130
Chicago/Turabian StyleIshwarkumar, Sundika, Pamela Pillay, Manogari Chetty, and Kapil Sewsaran Satyapal. 2022. "The Application of the Cameriere’s Methodologies for Dental Age Estimation in a Select KwaZulu-Natal Population of South Africa" Dentistry Journal 10, no. 7: 130. https://doi.org/10.3390/dj10070130
APA StyleIshwarkumar, S., Pillay, P., Chetty, M., & Satyapal, K. S. (2022). The Application of the Cameriere’s Methodologies for Dental Age Estimation in a Select KwaZulu-Natal Population of South Africa. Dentistry Journal, 10(7), 130. https://doi.org/10.3390/dj10070130