Isolation of Clinical Microbial Isolates during Orthodontic Aligner Therapy and Their Ability to Form Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains
2.2. Densitometric Indicators of Microbial Biofilms
2.3. Confocal Laser Scanning Microscopy
2.4. Statistics
3. Results and Discussions
Morphometric and Densitometric Indicators of Biofilms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fernandes, G.L.; Delbem, A.C.B. Nanosynthesis of Silver-Calcium Glycerophosphate: Promising Association against Oral Pathogens. Antibiotics 2018, 7, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saafan, A.; Zaazou, M.H. Assessment of photodynamic therapy and nanoparticles effects on caries models. J. Med. Sci. 2018, 6, 1289–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Weir, M.D. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent. Mater. 2014, 30, 182–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiedmer, D.; Petersen, F.C. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces. Biofouling 2017, 33, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, R.J.; Van Houte, J. On the formation of dental plaques. J. Periodontol. 1973, 44, 347–360. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Nyggard, M. Interbacterial aggregation of plaque bacteria. Arch. Oral Biol. 1970, 15, 1397–1400. [Google Scholar] [CrossRef]
- Leonhardt, Å.; Renvert, S.; Dahlén, G. Microbial findings at failing implants. Clin. Oral Implant. Res. 1990, 10, 339–345. [Google Scholar] [CrossRef]
- Kobayashi, H. Saliva–Promoted Adhesion of S. mutans MT8148 Associated with Dental Plaque and Caries Experience. J. Caries Res. 2007, 41, 217. [Google Scholar] [CrossRef]
- Kolenbrander, P.E.; London, J. Adhere today, here tomorrow: Oral bacteria adherens. J. Bacteriol. 1993, 175, 3247–3250. [Google Scholar] [CrossRef] [Green Version]
- Kolenbrander, P.E. Intragenic coaggregation among strains of human oral bacteria: Potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 1990, 56, 3890–3894. [Google Scholar] [CrossRef]
- Noiri, Y.; Li, L.; Ebisu, S. The colonization of periodontal disease-associated bacteria in human periodontal pocket. J. Dent. Res. 2001, 80, 1930–1934. [Google Scholar] [CrossRef] [PubMed]
- Sukontapatipark, W.; el-Agroudi, M.A.; Selliseth, N.J.; Thunold, K.; Selvig, K.A. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur. J. Orthod. 2001, 23, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Kilian, M.; Chapple, L.C.; Hannig, M.; Marsh, P.D.; Meuric, V.; Pedersen, A.M. The oral microbiome—An update for oral healthcare professionals. Br. Dent. J. 2016, 221, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; He, J.; Xue, J.; Wang, Y.; Li, K.; Zhang, K. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 2015, 17, 699–710. [Google Scholar] [CrossRef]
- Jabur, S.F. Influence of removable orthodontic appliance on oral microbiological status. J. Fac. Med. Baghdad 2008, 50, 199–202. [Google Scholar]
- Sun, F.; Ahmed, A.; Wang, L.; Dong, M.; Niu, W. Comparison of oral microbiota in orthodontic patients and healthy individuals. Microb. Pathog. 2018, 123, 473–477. [Google Scholar] [CrossRef]
- Rossini, G.; Parrini, S.; Castroflorio, T.; Deregibus, A.; Debernardi, C.L. Periodontal health during clear aligners treatment: A systematic review. Eur. J. Orthod. 2015, 37, 539–543. [Google Scholar] [CrossRef]
- Kim, S.; Choi, D.; Jang, I.; Cha, B.; Jost-Brinkmann, P.; Song, J. Microbiologic changes in subgingival plaque before and during the early period of orthodontic treatment. Angle Orthod. 2012, 82, 254–260. [Google Scholar] [CrossRef]
- Rudenko, P.; Vatnikov, Y.; Sachivkina, N.; Rudenko, A.; Kulikov, E.; Lutsay, V.; Notina, E.; Bykova, I.; Petrov, A.; Drukovskiy, S.; et al. Search for Promising Strains of Probiotic Microbiota Isolated from Different Biotopes of Healthy Cats for Use in the Control of Surgical Infections. Pathogens 2021, 10, 667. [Google Scholar] [CrossRef]
- Rudenko, P.; Sachivkina, N.; Vatnikov, Y.; Shabunin, S.; Engashev, S.; Kontsevaya, S.; Karamyan, A.; Bokov, D.; Kuznetsova, O.; Vasilieva, E. Role of microorganisms isolated from cows with mastitis in Moscow region in biofilm formation. Vet. World 2021, 14, 40–48. [Google Scholar] [CrossRef]
- Sachivkina, N.; Vasilieva, E.; Lenchenko, E.; Kuznetsova, O.; Karamyan, A.; Ibragimova, A.; Zhabo, N.; Molchanova, M. Reduction in pathogenicity in yeast-like fungi by farnesol in quail model. Animals 2022, 12, 489. [Google Scholar] [CrossRef] [PubMed]
- Arsene, M.M.J.; Viktorovna, P.I.; Sergei, G.V.; Hajjar, F.; Vyacheslavovna, Y.N.; Vladimirovna, Z.A.; Aleksandrovna, V.E.; Nikolayevich, S.A.; Sachivkina, N. Phytochemical Analysis, Antibacterial and Antibiofilm Activities of Aloe vera Aqueous Extract against Selected Resistant Gram-Negative Bacteria Involved in Urinary Tract Infections. Fermentation 2022, 8, 626. [Google Scholar] [CrossRef]
- Patel, R. A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. J. Fungi 2019, 5, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angeletti, S.; Ciccozzi, M. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: An Updating Review. Infect. Genet. Evol. 2019, 76, 104063. [Google Scholar] [CrossRef] [PubMed]
- Sachivkina, N.; Podoprigora, I.; Bokov, D. Morphological characteristics of Candida albicans, Candida krusei, Candida guilliermondii, and Candida glabrata biofilms, and response to Farnesol. Vet. World 2021, 14, 1608–1614. [Google Scholar] [CrossRef] [PubMed]
- Sachivkina, N.P.; Lenchenko, E.M.; Mannapova, R.T.; Strizhakov, A.A.; Romanova, E.V.; Lukina, D.M. Candida Biofilm Modeling: Past and Present. Farmatsiya 2019, 68, 18–22. [Google Scholar] [CrossRef]
- Lenchenko, E.M.; Blumenkrants, D.; Sachivkina, N.; Shadrova, N.; Ibragimova, A. Morphological and adhesive properties of Klebsiella pneumoniae biofilms. Vet. World 2020, 13, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łysik, D.; Deptuła, P.; Chmielewska, S.; Bucki, R.; Mystkowska, J. Degradation of Polylactide and Polycaprolactone as a Result of Biofilm Formation Assessed under Experimental Conditions Simulating the Oral Cavity Environment. Materials 2022, 15, 7061. [Google Scholar] [CrossRef]
- Guo, M.; Zhang, Z.; Lu, J.; Wang, D.; Yan, Y.; Zhang, S.; Yu, X.; Su, S.; Yuan, L.; Li, Z.; et al. Differences in Supragingival Microbiome in Patients with and without Full-Crown Prostheses. Dent. J. 2022, 10, 152. [Google Scholar] [CrossRef]
- Campos, M.S.; Marchini, L.; Bernardes, L.A.S.; Paulino, L.C.; Nobrega, F.G. Biofilm microbial communities of denture stomatitis. Oral Microbiol. Immunol. 2008, 23, 419–424. [Google Scholar] [CrossRef]
- Benítez-Páez, A.; Belda-Ferre, P.; Simón-Soro, A.; Mira, A. Microbiota diversity and gene expression dynamics in human oral biofilms. BMC Genom. 2014, 15, 311. [Google Scholar] [CrossRef] [PubMed]
- Kormas, I.; Pedercini, C.; Pedercini, A.; Raptopoulos, M.; Alassy, H.; Wolff, L.F. Peri-Implant Diseases: Diagnosis, Clinical, Histological, Microbiological Characteristics and Treatment Strategies. A Narrative Review. Antibiotics 2020, 9, 835. [Google Scholar] [CrossRef] [PubMed]
- Levrini, L.; Mangano, A.; Montanari, P.; Margherini, S.; Caprioglio, A.; Abbate, G.M. Periodontal health status in patients treated with the invisalign(®) system and fixed orthodontic appliances: A 3 months clinical and microbiological evaluation. Eur. J. Dent. 2015, 9, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Li, J.; Mei, L.; Du, J.; Levrini, L.; Abbate, G.M.; Li, H. Periodontal Health during orthodontic treatment with clear aligners and fixed appliances. J. Am. Dent. Assoc. 2018, 149, 712–720.e12. [Google Scholar] [CrossRef] [PubMed]
- Tektas, S.; Thurnheer, T.; Eliades, T.; Attin, T.; Karygianni, L. Initial bacterial adhesion and biofilm formation on aligner materials. Antibiotics 2020, 9, 908. [Google Scholar] [CrossRef]
- Low, B.; Lee, W.; Seneviratne, C.J.; Samaranayake, L.P.; Hagg, U. Ultrastructure and morphology of biofilms on thermoplastic orthodontic appliances in “fast” and “slow” plaque formers. Eur. J. Orthod. 2011, 33, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Gracco, A.; Mazzoli, A.; Favoni, O.; Conti, C.; Ferraris, P.; Tosi, G.; Guarneri, M.P. Short-Term chemical and physical changes in invisalign appliances. Aust. Orthod. J. 2009, 25, 34–40. [Google Scholar]
- Schuster, S.; Eliades, G.; Zinelis, S.; Eliades, T.; Bradley, T.G. Structural conformation and leaching from in vitro aged and retrieved invisalign appliances. Am. J. Orthod. Dentofac. Orthop. 2004, 126, 725–728. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, R.; Long, H.; Li, Y.; Gao, M.; Lai, W. The Dynamics of the oral microbiome and oral health among patients receiving clear aligner orthodontic treatment. Oral Dis. 2020, 26, 473–483. [Google Scholar] [CrossRef]
- Sfondrini, M.F.; Butera, A.; Di Michele, P.; Luccisano, C.; Ottini, B.; Sangalli, E.; Gallo, S.; Pascadopoli, M.; Gandini, P.; Scribante, A. Microbiological Changes during Orthodontic Aligner Therapy: A Prospective Clinical Trial. Appl. Sci. 2021, 11, 6758. [Google Scholar] [CrossRef]
Species | Gram-Negative (−) or Positive (+) | Number of Isolates | ||
---|---|---|---|---|
lg CFU/1 mL | Absolute Number | % | ||
Actinomyces israelii | + | 2.45 ± 1.01 | 2 | 2.94 |
Actinomyces naeslundii | + | 4.54 ± 1.38 | 3 | 4.41 |
Actinomyces viscosus | + | 2.29 ± 0.75 | 1 | 1.47 |
Bifidobacterium bifidum | + | 5.67 ± 2.21 | 4 | 5.88 |
Campylobacter concisus | − | 2.35 ± 0.51 | 1 | 1.47 |
Campylobacter gracilis | − | 3.22 ± 0.78 | 2 | 2.94 |
Candida albicans | YLF | 6.38 ± 1.86 | 4 | 5.88 |
Candida parapsilosis | YLF | 2.45 ± 0.60 | 3 | 4.41 |
Capnocytophaga gingivalis | − | 4.05 ± 1.20 | 3 | 4.41 |
Clostridium aminobutyricum | + | 1.19 ± 0.29 | 2 | 2.94 |
Escherichia coli | − | 5.67 ± 2.05 | 5 | 7.35 |
Fusobacterium canifelinum | − | 1.18 ± 0.43 | 2 | 2.94 |
Fusobacterium nucleatum | − | 2.54 ± 0.86 | 2 | 2.94 |
Gemella sanguinis | + | 2.66 ± 0.97 | 3 | 4.41 |
Lactobacillus rhamnosus | + | 4.38 ± 1.27 | 2 | 2.94 |
Leptotrichia buccalis | − | 4.82 ± 1.31 | 2 | 2.94 |
Leptotrichia shahii | − | 2.16 ± 0.50 | 1 | 1.47 |
Peptostreptococcus anaerobius | + | 8.72 ± 2.24 | 3 | 4.41 |
Porphyromonas gingivalis | − | 6.40 ± 2.01 | 3 | 4.41 |
Prevotella buccae | − | 5.68 ± 1.80 | 4 | 5.88 |
Prevotella denticola | − | 2.89 ± 0.56 | 2 | 2.94 |
Prevotella intermedia | − | 2.42 ± 0.84 | 1 | 1.47 |
Prevotella oris | − | 1.39 ± 0.26 | 1 | 1.47 |
Staphylococcus aureus | + | 6.05 ± 1.44 | 4 | 5.88 |
Streptococcus gordonii | + | 3.88 ± 1.20 | 3 | 4.41 |
Streptococcus mitis | + | 7.51 ± 1.64 | 3 | 4.41 |
Streptococcus sanguinis | + | 0.27 ± 0.18 | 1 | 1.47 |
Streptococcus salivarius | + | 0.31 ± 0.20 | 1 | 1.47 |
Total: 28 | 13 Gr+ and 13 Gr− | 68 | 100% |
Optic Density | |||||||
---|---|---|---|---|---|---|---|
ODS | ODA | Average Error | |||||
1 | 2 | 3 | 4 | 5 | |||
Actinomyces israelii | 0.312 | 0.331 | np | np | np | 0.3215 | 0.0095 |
Actinomyces naeslundii | 0.244 | 0.293 | 0.302 | np | np | 0.2797 | 0.0238 |
Actinomyces viscosus | 0.284 | np | np | np | np | np | np |
Bifidobacterium bifidum | 0.246 | 0.256 | 0.267 | 0.275 | np | 0.261 | 0.01 |
Campylobacter concisus | 0.358 | np | np | np | np | np | np |
Campylobacter gracilis | 0.261 | 0.265 | np | np | np | 0.263 | 0.002 |
Candida albicans | 0.420 | 0.502 | 0.431 | 0.384 | np | 0.4343 | 0.0338 |
Candida parapsilosis | 0.390 | 0.347 | 0.333 | np | np | 0.3567 | 0.0222 |
Capnocytophaga gingivalis | 0.350 | 0.291 | np | np | np | 0.3205 | 0.0295 |
Clostridium aminobutyricum | 0.279 | 0.193 | np | np | np | 0.236 | 0.043 |
Escherichia coli | 0.462 | 0.411 | 0.380 | 0.376 | 0.382 | 0.4022 | 0.0274 |
Fusobacterium canifelinum | 0.177 | 0.193 | np | np | np | 0.185 | 0.008 |
Fusobacterium nucleatum | 0.398 | 0.347 | np | np | np | 0.3725 | 0.0255 |
Gemella sanguinis | 0.199 | 0.193 | 0.180 | np | np | 0.1907 | 0.0071 |
Lactobacillus rhamnosus | 0.325 | 0.303 | np | np | np | 0.314 | 0.011 |
Leptotrichia buccalis | 0.179 | 0.191 | np | np | np | 0.185 | 0.006 |
Leptotrichia shahii | 0.208 | np | np | np | np | np | np |
Peptostreptococcus anaerobius | 0.418 | 0.403 | 0.384 | np | np | 0.4017 | 0.0118 |
Porphyromonas gingivalis | 0.132 | 0.176 | 0.173 | np | np | 0.1603 | 0.0189 |
Prevotella buccae | 0.327 | 0.345 | 0.396 | 0.401 | np | 0.3673 | 0.0313 |
Prevotella denticola | 0.470 | 0.392 | np | np | np | 0.431 | 0.039 |
Prevotella intermedia | 0.132 | np | np | np | np | np | np |
Prevotella oris | 0.193 | np | np | np | np | np | np |
Staphylococcus aureus | 0.421 | 0.394 | 0.385 | 0.400 | np | 0.4 | 0.0105 |
Streptococcus gordonii | 0.189 | 0.195 | 0.215 | np | np | 0.1997 | 0.0102 |
Streptococcus mitis | 0.244 | 0.230 | 0.261 | np | np | 0.245 | 0.0107 |
Streptococcus sanguinis | 0.281 | np | np | np | np | np | np |
Streptococcus salivarius | 0.253 | np | np | np | np | np | np |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baybekov, O.; Stanishevskiy, Y.; Sachivkina, N.; Bobunova, A.; Zhabo, N.; Avdonina, M. Isolation of Clinical Microbial Isolates during Orthodontic Aligner Therapy and Their Ability to Form Biofilm. Dent. J. 2023, 11, 13. https://doi.org/10.3390/dj11010013
Baybekov O, Stanishevskiy Y, Sachivkina N, Bobunova A, Zhabo N, Avdonina M. Isolation of Clinical Microbial Isolates during Orthodontic Aligner Therapy and Their Ability to Form Biofilm. Dentistry Journal. 2023; 11(1):13. https://doi.org/10.3390/dj11010013
Chicago/Turabian StyleBaybekov, Oleg, Yaroslav Stanishevskiy, Nadezhda Sachivkina, Anna Bobunova, Natallia Zhabo, and Marina Avdonina. 2023. "Isolation of Clinical Microbial Isolates during Orthodontic Aligner Therapy and Their Ability to Form Biofilm" Dentistry Journal 11, no. 1: 13. https://doi.org/10.3390/dj11010013
APA StyleBaybekov, O., Stanishevskiy, Y., Sachivkina, N., Bobunova, A., Zhabo, N., & Avdonina, M. (2023). Isolation of Clinical Microbial Isolates during Orthodontic Aligner Therapy and Their Ability to Form Biofilm. Dentistry Journal, 11(1), 13. https://doi.org/10.3390/dj11010013