Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Specimens
2.2. Bending Test
2.3. Surface Hardness Test
2.4. Scanning Electron Microscopy Observation
2.5. Statistical Analysis
3. Results
3.1. SEM Observation of S-PRG Filler and Resin Powder
3.2. Flexural Strength
3.3. Flexural Modulus
3.4. SEM Observations of Fracture Surfaces after the Bending Test
3.5. Surface Hardness
3.6. Pearson Correlation Test
4. Discussion
5. Conclusions
- The flexural strength decreased with the increasing S-PRG filler content. The flexural strength and flexural modulus decreased with a smaller S-PRG filler size.
- The flexural strength of conventional APR incorporated with S-PRG-1 at 10% and S-PRG-3 at 10% and 20% exceeds 60 MPa, passing the requirements of the ISO standards. The flexural modulus and Vickers hardness demonstrate significant properties that could be used in clinical practice.
- The Pearson’s correlation test determined that the S-PRG filler content and particle size correlated with the mechanical properties of APR. The content of the S-PRG filler did not correlate with the flexural modulus. A positive correlation was observed for Vickers hardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gungor, H.; Gundogdu, M.; Alkurt, M.; Yeşil Duymuş, Z. Effect of polymerization cycles on flexural strengths and microhardness of different denture base materials. Dent. Mater. J. 2017, 36, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arioli Filho, J.N.; Butignon, L.E.; Pereira Rde, P.; Lucas, M.G.; Mollo Fde, A. Flexural strength of acrylic resin repairs processed by different methods: Water bath, microwave energy and chemical polymerization. J. Appl. Oral Sci. 2011, 19, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkurt, M.; Yeşil Duymuş, Z.; Gundogdu, M. Effect of repair resin type and surface treatment on the repair strength of heat-polymerized denture base resin. J. Prosthet. Dent. 2014, 111, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Sato, Y.; Owada, G.; Minakuchi, S. Effectiveness of a combination denture-cleaning method versus a mechanical method: Comparison of denture cleanliness, patient satisfaction, and oral health-related quality of life. J. Prosthodont. Res. 2018, 62, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Valentini, F.; Luz, M.S.; Boscato, N.; Pereira-Cenci, T. Biofilm formation on denture liners in a randomised controlled in situ trial. J. Dent. 2013, 41, 420–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.C.N.; Chung, A.K.H.; Paranjpe, A. Antibacterial and bioactive dental restorative materials: Do they really work? Am. J. Dent. 2018, 31, 3B–5B. [Google Scholar]
- Fujimoto, Y.; Iwasa, M.; Murayama, R.; Miyazaki, M.; Nagafuji, A.; Nakatsuka, T. Detection of ions released from S-PRG fillers and their modulation effect. Dent. Mater. J. 2010, 29, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Kaga, M.; Kakuda, S.; Ida, Y.; Toshima, H.; Hashimoto, M.; Endo, K.; Sano, H. Inhibition of enamel demineralization by buffering effect of S-PRG filler-containing dental sealant. Eur. J. Oral Sci. 2014, 122, 78–83. [Google Scholar] [CrossRef]
- Kawasaki, K.; Kambara, M. Effects of ion-releasing tooth-coating material on demineralization of bovine tooth enamel. Int. J. Dent. 2014, 2014, 463149. [Google Scholar] [CrossRef]
- Kaga, N.; Toshima, H.; Nagano-Takebe, F.; Hashimoto, M.; Nezu, T.; Yokoyama, A.; Endo, K.; Kaga, M. Inhibition of enamel demineralization by an ion-releasing tooth-coating material. Am. J. Dent. 2019, 32, 27–30. [Google Scholar]
- Kaga, N.; Nagano-Takebe, F.; Nezu, T.; Matsuura, T.; Endo, K.; Kaga, M. Protective effects of GIC and S-PRG filler restoratives on demineralization of bovine enamel in lactic acid solution. Materials 2020, 13, 2140. [Google Scholar] [CrossRef]
- Miki, S.; Kitagawa, H.; Kitagawa, R.; Kiba, W.; Hayashi, M.; Imazato, S. Antibacterial activity of resin composites containing surface pre-reacted glass-ionomer (S-PRG) filler. Dent. Mater. 2016, 32, 1095–1102. [Google Scholar] [CrossRef]
- Kitagawa, H.; Miki-Oka, S.; Mayanagi, G.; Abiko, Y.; Takahashi, N.; Imazato, S. Inhibitory effect of resin composite containing S-PRG filler on Streptococcus mutans glucose metabolism. J. Dent. 2018, 70, 92–96. [Google Scholar] [CrossRef]
- Mayumi, K.; Miyaji, H.; Miyata, S.; Nishida, E.; Furihata, T.; Kanemoto, Y.; Sugaya, T.; Shitomi, K.; Akasaka, T. Antibacterial coating of tooth surface with ion-releasing pre-reacted glass-ionomer (S-PRG) nanofillers. Heliyon 2021, 7, e06147. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, C.; Takakuda, K.; Wakabayashi, N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J. Dent. 2016, 44, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Alshahrani, F.A.; Hamid, S.K.; Alghamdi, L.A.; Alqarawi, F.K.; Al-Dulaijan, Y.A.; AlRumaih, H.S.; Alalawi, H.; Al Ghamdi, M.A.; Alzoubi, F.; Gad, M.M. Impact of polymerization technique and ZrO2 nanoparticle addition on the fracture load of interim implant-supported fixed cantilevered prostheses in comparison to CAD/CAM material. Dent. J. 2022, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Hada, T.; Kanazawa, M.; Miyamoto, N.; Liu, H.; Iwaki, M.; Komagamine, Y.; Minakuchi, S. Effect of different filler contents and printing directions on the mechanical properties for photopolymer resins. Int. J. Mol. Sci. 2022, 23, 2296. [Google Scholar] [CrossRef] [PubMed]
- Abushowmi, T.H.; AlZaher, Z.A.; Almaskin, D.F.; Qaw, M.S.; Abualsaud, R.; Akhtar, S.; Al-Thobity, A.M.; Al-Harbi, F.A.; Gad, M.M.; Baba, N.Z. Comparative effect of glass fiber and nano-filler addition on denture repair strength. J. Prosthodont. 2020, 29, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Kohno, T.; Tsuboi, R.; Thongthai, P.; Xu, H.H.; Kitagawa, H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent. Mater. J. 2022, 39, 69–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukai, Y.; Kamijo, K.; Fujino, F.; Hirata, Y.; Teranaka, T.; Ten Cate, J.M. Effect of denture base-resin with prereacted glass-ionomer filler on dentin demineralization. Eur. J. Oral Sci. 2009, 117, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Tonprasong, W.; Inokoshi, M.; Tamura, M.; Uo, M.; Wada, T.; Takahashi, R.; Hatano, K.; Shimizubata, M.; Minakuchi, S. Tissue conditioner incorporating a nano-sized surface pre-reacted glass-ionomer (S-PRG) filler. Materials 2021, 14, 6648. [Google Scholar]
- Raszewski, Z.; Nowakowska, D.; Wieckiewicz, W.; Nowakowska-Toporowska, A. Release and recharge of fluoride ions from acrylic resin modified with bioactive glass. Polymers 2021, 13, 1054. [Google Scholar] [CrossRef]
- Karci, M.; Demir, N.; Yazman, S. Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. J. Prosthodont. 2019, 28, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Chęcińska, K.; Chęciński, M.; Sikora, M.; Nowak, Z.; Karwan, S.; Chlubek, D. The effect of zirconium dioxide (ZrO2) nanoparticles addition on the mechanical parameters of polymethyl methacrylate (PMMA): A systematic review and meta-analysis of experimental studies. Polymers 2022, 14, 1047. [Google Scholar] [CrossRef] [PubMed]
- Azmy, E.; Al-Kholy, M.R.Z.; Al-Thobity, A.M.; Gad, M.M.; Helal, M.A. Comparative effect of incorporation of ZrO2, TiO2, and SiO2 nanoparticles on the strength and surface properties of PMMA denture base material: An in vitro study. Int. J. Biomater. 2022, 2022, 5856545. [Google Scholar] [CrossRef]
- ISO 10477:2020. Dentistry-Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Geneva, Switzerland, 2020.
- ISO 20795–1:2013. Dentistry-Base Polymers-Part 1: Denture Base Polymers. International Organization for Standardization: Geneva, Switzerland, 2013.
- Kamijo, K.; Mukai, Y.; Tominaga, T.; Iwaya, I.; Fujino, F.; Hirata, Y.; Teranaka, T. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler. Dent. Mater. J. 2009, 28, 227–233. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. [Google Scholar] [CrossRef] [Green Version]
- Aldegheishem, A.; AlDeeb, M.; Al-Ahdal, K.; Helmi, M.; Alsagob, E.I. Influence of reinforcing agents on the mechanical properties of denture base resin: A systematic review. Polymers 2021, 13, 3083. [Google Scholar] [CrossRef]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Flexural strength and hardness of filler-reinforced PMMA targeted for denture base application. Materials 2021, 14, 2659. [Google Scholar] [CrossRef]
- Zidan, S.; Silikas, N.; Haider, J.; Alhotan, A.; Jahantigh, J.; Yates, J. Evaluation of equivalent flexural strength for complete removable dentures made of zirconia-impregnated PMMA nanocomposites. Materials 2020, 13, 2580. [Google Scholar] [CrossRef] [PubMed]
- Zidan, S.; Silikas, N.; Alhotan, A.; Haider, J.; Yates, J. Investigating the mechanical properties of ZrO2-impregnated PMMA nanocomposite for denture-based applications. Materials 2019, 12, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, R.; Morita, Y.; Matayoshi, S.; Nakano, K. Inhibitory effect of surface pre-reacted glass-ionomer (S-PRG) eluate against adhesion and colonization by Streptococcus mutans. Sci. Rep. 2018, 8, 5056. [Google Scholar] [CrossRef] [PubMed]
- Hatano, K.; Inokoshi, M.; Tamura, M.; Uo, M.; Shimizubata, M.; Tonprasong, W.; Wada, T.; Takahashi, R.; Imai, K.; Minakuchi, S. Novel antimicrobial denture adhesive containing S-PRG filler. Dent. Mater. J. 2021, 40, 1365–1372. [Google Scholar] [CrossRef]
- Nyvad, B.; Takahashi, N. Integrated hypothesis of dental caries and periodontal diseases. J. Oral Microbiol. 2020, 12, 171. [Google Scholar] [CrossRef] [Green Version]
S-PRG Filler Content (wt%) | Particle Size (μm) | Flexural Strength (MPa) | Flexural Modulus (GPa) |
---|---|---|---|
Control (0) | Control (0) | 74.99 ± 5.3 a | 2.80 ± 0.2 d |
10 | 1 | 62.15 ± 6.6 b | 1.72 ± 0.2 e |
20 | 1 | 51.87 ± 4.2 c | 1.93 ± 0.2 e |
30 | 1 | 47.15 ± 3.7 c | 1.96 ± 0.3 e |
40 | 1 | 37.80 ± 4.3 d | 2.10 ± 0.3 e |
10 | 3 | 68.68 ± 6.4 ab | 2.63 ± 0.3 d |
20 | 3 | 62.70 ± 3.8 b | 2.79 ± 0.3 d |
30 | 3 | 51.28 ± 4.2 c | 2.63 ± 0.2 d |
40 | 3 | 48.05 ± 4.7 c | 2.73 ± 0.3 d |
S-PRG Filler Content (wt%) | Particle Size (μm) | Vickers Hardness (HV) |
---|---|---|
Control (0) | Control (0) | 13.84 ± 0.6 a |
10 | 1 | 13.61 ± 0.6 a |
20 | 1 | 13.48 ± 0.5 a |
30 | 1 | 14.95 ± 0.8 b |
40 | 1 | 14.97 ± 0.9 b |
10 | 3 | 14.92 ± 0.6 b |
20 | 3 | 14.86 ± 0.9 b |
30 | 3 | 15.48 ± 0.6 b |
40 | 3 | 15.18 ± 1.0 b |
S-PRG Filler Content | Particle Size | ||
---|---|---|---|
Flexural strength | r value | −0.894 | 0.420 |
p value | 0.003 | 0.300 | |
Flexural modulus | r value | 0.185 | 0.992 |
p value | 0.660 | 0.001 | |
Vickers hardness | r value | 0.570 | 0.628 |
p value | 0.139 | 0.095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaga, N.; Morita, S.; Yamaguchi, Y.; Matsuura, T. Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin. Dent. J. 2023, 11, 72. https://doi.org/10.3390/dj11030072
Kaga N, Morita S, Yamaguchi Y, Matsuura T. Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin. Dentistry Journal. 2023; 11(3):72. https://doi.org/10.3390/dj11030072
Chicago/Turabian StyleKaga, Naoyuki, Sho Morita, Yuichiro Yamaguchi, and Takashi Matsuura. 2023. "Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin" Dentistry Journal 11, no. 3: 72. https://doi.org/10.3390/dj11030072
APA StyleKaga, N., Morita, S., Yamaguchi, Y., & Matsuura, T. (2023). Effect of Particle Sizes and Contents of Surface Pre-Reacted Glass Ionomer Filler on Mechanical Properties of Auto-Polymerizing Resin. Dentistry Journal, 11(3), 72. https://doi.org/10.3390/dj11030072