Comparative Analysis between 3D-Printed Models Designed with Generic and Dental-Specific Software
Abstract
:1. Introduction
2. Material and Methods
2.1. Model Digitalization and Design: First Phase
2.2. Digitization of the Model and Groups to Be Studied: Second Phase
2.3. Analysis of .STL Files
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- ▪
- The results of the descriptive analysis indicated that the softwares Blender for dental, InLAB, MeshMixer and Exocad showed greater accuracy and precision in the combinations of groups in which a D-CAD was present.
- ▪
- The comparison of the 3D graphs obtained with the overlap of digital meshes, using the analysis software with the best fit method, showed greater tolerance in the groups that used the D-CAD and showed better results.
- ▪
- Regarding the mean, the D-CAD groups obtained greater precision and lower dispersion than the mean obtained with the G-CAD.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanley, M.; Paz, A.G.; Miguel, I.; Coachman, C. Fully digital workflow, integrating dental scan, smile design and CAD-CAM: Case report. BMC Oral Health 2018, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Abad-Coronel, C. Digital dentistry: An increasingly virtual reality. Mouth 2017, 2, e19042017es. [Google Scholar] [CrossRef]
- Michelinakis, G.; Apostolakis, D.; Kamposiora, P.; Papavasiliou, G.; Özcan, M. The direct digital workflow in fixed implant prosthodontics: A narrative review. BMC Oral Health 2021, 21, 37. [Google Scholar] [CrossRef] [PubMed]
- Tanveer, W.R.; Pramana, A.; Molinero-Mourelle, P. Systematic Review of Clinical Applications of CAD/CAM Technology for Craniofacial Implants Placement and Manufacturing of Orbital Prostheses. Int. J. Environ. Res. Public Health 2021, 18, 1349. [Google Scholar] [CrossRef]
- Robles-Medina, M.; Romeo-Rubio, M.; Salido, M.P.; Pradíes, G. Digital Intraoral Impression Methods: An Update on Accuracy. Curr. Oral Health Rep. 2020, 7, 361–375. [Google Scholar] [CrossRef]
- Medina-Sotomayor, P.; Ordóñez, P.; Ortega, G. Accuracy of Intraoral Digital Impression Systems in Restorative Dentistry: A Review of the Literature. Odovtos Int. J. Dent. Sci. 2020, 23, 205–216. [Google Scholar] [CrossRef]
- Rutkūnas, V.; Gedrimienė, A.; Al-Haj Husain, N.; Pletkus, J.; Barauskis, D.; Jegelevičius, D.; Özcan, M. Effect of additional reference objects on accuracy of five intraoral scanners in partially and completely edentulous jaws: An in vitro study. J. Prosthet. Dent. 2023, 130, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Blatz, M.B.; Conejo, J. The Current State of Chairside Digital Dentistry and Materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef]
- Mörmann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137, 7S–13S. [Google Scholar] [CrossRef]
- Leberfinger, A.N.; Jones, C.M.; Mackay, D.R.; Samson, T.D.; Henry, C.R.; Ravnic, D.J. Computer-Aided Design and Manufacture of Intraoral Splints: A Potential Role in Cleft Care. J. Surg. Res. 2021, 261, 173–178. [Google Scholar] [CrossRef]
- Rekow, E.D. Digital dentistry: The new state of the art—Is it disruptive or destructive? Dent. Mater. 2020, 36, 9–24. [Google Scholar] [CrossRef]
- Stromeyer, S.; Wiedemeier, D.; Mehl, A.; Ender, A. Time Efficiency of Digitally and Conventionally Produced Single-Unit Restorations. Dent. J. 2021, 9, 62. [Google Scholar] [CrossRef]
- Lin, W.-S.; Harris, B.T.; Phasuk, K.; Llop, D.R.; Morton, D. Integrating a facial scan, virtual smile design, and 3D virtual patient for treatment with CAD-CAM ceramic veneers: A clinical report. J. Prosthet. Dent. 2018, 119, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Richert, R.; Goujat, A.; Venet, L.; Viguie, G.; Viennot, S.; Robinson, P.; Farges, J.-C.; Fages, M.; Ducret, M. Intraoral Scanner Technologies: A Review to Make a Successful Impression. J. Healthc. Eng. 2017, 2017, 8427595. [Google Scholar] [CrossRef]
- Diker, B.; Tak, Ö. Accuracy of six intraoral scanners for scanning complete-arch and 4-unit fixed partial dentures: An in vitro study. J. Prosthet. Dent. 2021, 128, 187–194. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Xu, X.; Wang, J.; Hou, X.; Li, K.; Lu, X.; Shi, H.; Lee, E.-S.; Jiang, H.B. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning 2021, 2021, 9950131. [Google Scholar] [CrossRef]
- Passos, L.; Meiga, S.; Brigagão, V.; Street, A. Impact of different scanning strategies on the accuracy of two current intraoral scanning systems in complete-arch impressions: An in vitro study. Int. J. Comput. Dent. 2019, 22, 307–319. [Google Scholar] [PubMed]
- Buhrer Samra, A.P.; Morais, E.; Mazur, R.F.; Vieira, S.R.; Rached, R.N. CAD/CAM in dentistry—A critical review. Odonto Mag. Ciência 2016, 31, 140. [Google Scholar] [CrossRef]
- Nully, A.B. A comparison of the trueness and accuracy of the full arch of nine intraoral digital scanners and four digital laboratory scanners. Dent. J. 2021, 9, 75. [Google Scholar] [CrossRef]
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef]
- Kwon, S.R.; Hernández, M.; Blanchette, D.R.; Lam, M.T.; Gratton, D.G.; Aquilino, S.A. Effect of Computer-Assisted Learning on Students’ Dental Anatomy Waxing Performance. J. Dent. Educ. 2015, 79, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Clunie, L.; Morris, N.P.; Joynes, V.C.T.; Pickering, J.D. How comprehensive are research studies investigating the efficacy of technology-enhanced learning resources in anatomy education? A systematic review. Anat. Sci. Educ. 2018, 11, 303–319. [Google Scholar] [CrossRef]
- Kalberer, N.; Mehl, A.; Schimmel, M.; Müller, F.; Srinivasan, M. CAD-CAM milled versus rapidly prototyped (3D-printed) complete dentures: An in vitro evaluation of trueness. J. Prosthet. Dent. 2019, 121, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Abad-Coronel, C.; Valdiviezo, Z.O.P.; Naranjo, Y.O.B. Intraoral Scanning Devices Applied in Fixed Prosthodontics. Acta Sci. Dent. Sci. 2019, 3, 44–51. [Google Scholar] [CrossRef]
- Eaton, K.A.; Reynolds, P.A.; Grayden, S.K.; Wilson, N.H.F. A vision of dental education in the third millennium. Br. Dent. J. 2008, 205, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Piedra-Cascón, W.; Hsu, V.T.; Revilla-León, M. Facially Driven Digital Diagnostic Waxing: New Software Features to Simulate and Define Restorative Outcomes. Curr. Oral Health Rep. 2019, 6, 284–294. [Google Scholar] [CrossRef]
- Lee, S.J.; Kim, S.W.; Lee, J.J.; Cheong, C.W. Comparison of intraoral and extraoral digital scanners: Evaluation of surface topography and accuracy. Dent. J. 2020, 8, 52. [Google Scholar] [CrossRef]
- Keul, C.; Güth, J.F. Influence of intraoral conditions on the accuracy of full-arch scans by Cerec Primescan AC: An in vitro and in vivo comparison. Int. J. Comput. Dent. 2022, 25, 17–25. [Google Scholar]
- Chruściel-Nogalska, M.; Smektała, T.; Tutak, M.; Sporniak-Tutak, K.; Olszewski, R. Open-source software in dentistry: A systematic review. Int. J. Technol. Assess. Health Care 2017, 33, 487–493. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Koizumi, H.; Furuchi, M.; Sato, Y.; Ohkubo, C.; Matsumura, H. Use of digital impression systems with intraoral scanners for fabricating restorations and fixed dental prostheses. J. Oral Sci. 2018, 60, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, C.S.; Puppin-Rontani, J.; Tonolli, G.; Atria, P.J. Workflow of digitally guided direct composite resin restorations using? Open-source software and 3D printing: A clinical technique. Quintessence Int. 2021, 52, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Kollmuss, M.; Kist, S.; Goeke, J.E.; Hickel, R.; Huth, K.C. Comparison of chairside and laboratory CAD/CAM to conventional produced all-ceramic crowns regarding morphology, occlusion, and aesthetics. Clin. Oral Investig. 2015, 20, 791–797. [Google Scholar] [CrossRef]
- Son, K.; Lee, K.-B. Effect of computer literacy on the working time of the dental CAD software program. J. Prosthodont. Res. 2021, 65, 255–260. [Google Scholar] [CrossRef]
- Son, K.; Lee, W.-S.; Lee, K.-B. Prediction of the learning curves of 2 dental CAD software programs. J. Prosthet. Dent. 2019, 121, 95–100. [Google Scholar] [CrossRef]
- Son, K.; Lee, K.-B. Prediction of learning curves of 2 dental CAD software programs, part 2: Differences in learning effects by type of dental personnel. J. Prosthet. Dent. 2020, 123, 747–752. [Google Scholar] [CrossRef]
- Dentsply Sirona. New inLab Software 22.0 Integrates CEREC Primemill Into Streamlined Workflows; Dental Products Report; Dentsply Sirona: Charlotte, NC, USA, 2022. [Google Scholar]
- Gerth, M.; Steinbrecher, T. Ten Years of Exocad with Tillmann Steinbrecher and Maik Gerth; Dental Tribune: Leipzig, Germany, 2020. [Google Scholar]
- Kurbad, A.; Kurbad, S. Cerec Smile Design: A Software Tool to Enhance Restorations in the Esthetic Zone. Int. J. Comput. Dent. 2013, 16, 255–269. [Google Scholar] [PubMed]
- Coachman, C.; Blatz, M.B.; Bohner, L.; Sesma, N. Dental software classification and dento-facial interdisciplinary planning platform. J. Esthet. Restor. Dent. 2021, 33, 99–106. [Google Scholar] [CrossRef]
- Buzayan, M.M.; Yeoh, O.T.; Alsadaie, K.I.; Sivakumar, I. Designing of Occlusal Appliance Digital Protocol Using an Open Source 3D Modelling Software Program: A Technical Report. Int. J. Comput. Dent. 2023, preprint. [Google Scholar] [CrossRef]
- Saravia-Rojas, M.; Gutiérrez-Trevejo, J.; Fukuhara-Nakama, M.; Velásquez-Huaman, Z. Autodesk Meshmixer used in dental education: Is it possible? Stomatol. Mag. Hered. 2021, 31, 323–329. [Google Scholar]
- Shan, T.; Tay, F.; Gu, L. Application of Artificial Intelligence in Dentistry. J. Dent. Res. 2020, 100, 232–244. [Google Scholar] [CrossRef]
- Rico, J.P.; Brinkmann, J.C.; Martin, M.C.; González, M.A.; Arribas, C.T.; Alonso, V.R.; Suárez, C.L.; Suárez García, M.J. Digital Impression Taking for Maxillary Full-Arch Restoration with Immediate Loading: A Case Report. J. Oral Implantol. 2022, 48, 125–132. [Google Scholar] [CrossRef]
- Chiu, A.; Chen, Y.-W.; Hayashi, J.; Sadr, A. Accuracy of CAD/CAM Digital Impressions with Different Intraoral Scanner Parameters. Sensors 2020, 20, 1157. [Google Scholar] [CrossRef]
- Fuentes-Lufer, B.; Ramirez, C.; Vicent, P. Dimensional Comparison between Digitized Models Obtained with the Silicone Tray Impression Technique and a Master Model. In Vitro Study; University of Valparaiso: Valparaiso, IN, USA, 2022; pp. 2–70. [Google Scholar]
- Chen, X.; Li, X.; Xu, L.; Sun, Y.; Politis, C.; Egger, J. Development of a computer-aided design software for dental splint in orthognathic surgery. Sci. Rep. 2016, 6, 38867. [Google Scholar] [CrossRef] [PubMed]
- Gilboe, D.B.; Scott, D.A. Computer systems for dental practice management: A new generation of independent dental software. Tex. Dent. J. 1994, 111, 9–14. [Google Scholar] [PubMed]
- Kernen, F.; Kramer, J.; Wanner, L.; Wismeijer, D.; Nelson, K.; Flügge, T. A review of virtual planning software for guided implant surgery-data import and visualization, drill guide design and manufacturing. BMC Oral Health 2020, 20, 251. [Google Scholar] [CrossRef]
- Wood, R.E.; Gardner, T. Use of dental CBCT software for evaluation of medical CT-acquired images in a multiple fatality incident: Proof of principles. J. Forensic Sci. 2020, 66, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, N.D.; Groth, C.; Shannon, T. CAD/CAM software for three-dimensional printing. J. Clin. Orthod. JCO 2018, 52, 22–27. [Google Scholar]
- Abad-Coronel, C.; Atria, P.J.; Muñoz, C.R.; Conejo, J.; Córdova, N.M.; Pendola, M.; Blatz, M. Analysis of the mesh resolution of an.STL exported from an intraoral scanner file. J. Esthet. Restor. Dent. 2022, 34, 816–825. [Google Scholar] [CrossRef]
- Monaco, C.; Scheda, L.; Baldissara, P.; Zucchelli, G. Implant Digital Impression in the Esthetic Area. J. Prosthodont. 2019, 28, 536–540. [Google Scholar] [CrossRef]
- Steinhäuser-Andresen, S.; Detterbeck, A.; Funk, C.; Krumm, M.; Kasperl, S.; Holst, A.; Hirschfelder, U. Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology. J. Orofac. Orthop. 2011, 72, 111–124. [Google Scholar] [CrossRef]
- Freedman, M.; Quinn, F.; O’Sullivan, M. Single unit CAD/CAM restorations: A literature review. J. Ir. Dent. Assoc. 2007, 53, 38–45. [Google Scholar]
- Gintaute, A.; Weber, K.; Zitzmann, N.U.; Brägger, U.; Ferrari, M.; Joda, T. A Double-Blind Crossover RCT Analyzing Technical and Clinical Performance of Monolithic ZrO2 Implant Fixed Dental Prostheses (iFDP) in Three Different Digital Workflows. J. Clin. Med. 2021, 10, 2661. [Google Scholar] [CrossRef] [PubMed]
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Marginal and internal fit of CAD-CAM inlay/onlay restorations: A systematic review of in vitro studies. J. Prosthet. Dent. 2019, 121, 590–597.e3. [Google Scholar] [CrossRef] [PubMed]
- Al-Meraikhi, H.; Yilmaz, B.; McGlumphy, E.; Brantley, W.A.; Johnston, W.M. Distortion of CAD-CAM-fabricated implant-fixed titanium and zirconia complete dental prosthesis frameworks. J. Prosthet. Dent. 2018, 119, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.; Jia, H.; Xia, T.; Zhang, D. Comparative efficacy and safety of abrocitinib, baricitinib, and upadacitinib for moderate-to-severe atopic dermatitis: A network meta-analysis. Dermatol. Ther. 2022, 35, e15636. [Google Scholar] [CrossRef]
- Su, F.-Y.; Tsai, J.-C.; Morton, D.; Lin, W.-S. Use of intraoral scan for implant-supported dental prosthesis to design and fabricate a CAD-CAM verification device: A dental technique. J. Prosthet. Dent. 2020, 125, 204–207. [Google Scholar] [CrossRef]
- Asar, N.V.; Yun, S.; Schwartz, S.; Turkyilmaz, I. Analysis of the relationship between the surface topography of prepared tooth surfaces and data quality of digital impressions from an intraoral scanner. J. Dent. Sci. 2022, 17, 545–550. [Google Scholar] [CrossRef]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef]
- Fung, L.; Brisebois, P. Implementing Digital Dentistry into Your Esthetic Dental Practice. Dent. Clin. N. Am. 2020, 64, 645–657. [Google Scholar] [CrossRef] [PubMed]
- Flügge, T.; Att, W.; Metzger, M.; Nelson, K. Precision of Dental Implant Digitization Using Intraoral Scanners. Int. J. Prosthodont. 2016, 29, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Gan, N.; Xiong, Y.; Jiao, T. Accuracy of Intraoral Digital Impressions for Whole Upper Jaws, Including Full Dentitions and Palatal Soft Tissues. PLoS ONE. 2016, 611, e0158800. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Berland, L.; Traub, D.; Williams, A. The aesthetic edge. A new approach to smile design. Dent. Today 2003, 22, 70–73. [Google Scholar]
- Vogler, J.A.H.; Billen, L.; Walther, K.A.; Wöstmann, B. Conventional cast vs. CAD/CAM post and core in a fully digital chairside workflow—An in vivo comparative study of accuracy of fit and feasibility of impression taking. J Dent. 2023, 136, 104638. [Google Scholar] [CrossRef] [PubMed]
- Ballo, A.M.; Sim, J.W. A Novel Digital Implant Planning Workflow in Patients with Preexisting Metal Restorations: A Technical Report. J. Prosthodont. 2021, 30, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Jennes, M.E.; Soetebeer, M.; Beuer, F. In vivo full-arch accuracy of intraoral scanners: A narrative review. Int. J. Comput. Dent. 2022, 25, 9–16. [Google Scholar]
- Mosier, M.; Barmak, B.; Gómez-Polo, M.; Zandinejad, A.; Revilla-León, M. Digital and Analog Vertical Dimension Measurements: A Clinical Observational Study. Int. J. Prosthodont. 2021, 34, 419–427. [Google Scholar] [CrossRef]
- Simmons-Ehrhardt, T.; Falsetti, C.; Falsetti, A.B.; Ehrhardt, C.J. Open-Source Tools for Dense Facial Tissue Depth Mapping of Computed Tomography Models. Hum. Biol. 2018, 90, 63–76. [Google Scholar] [CrossRef]
- Schafer, H.; Prus, M.; Meyer, Q.; Submuth, J. Multiresolution attributes for hardware tessellated objects. IEEE Trans. Vis. Comput Graph. 2013, 19, 1488–1498. [Google Scholar] [CrossRef]
- Pfeiffer, J.; MacLeod, R.; Fornoff, P. InLAB MC X5 versus Cerec MC XL. Int. J. Comput. Dent. 2014, 17, 317–321. [Google Scholar] [PubMed]
Software Paired Groups | ||
---|---|---|
Group 1 | Exocad Dental, Darmstadt, Germany. | Blender for dental, New York, NY, USA. |
Group 2 | InLAB SW, Dentsply-Sirona, Bensheim, Germany. | Exocad Dental, Darmstadt, Germany. |
Group 3 | Autodesk Mesh Mixer, San Francisco, CA, USA. | Exocad Dental, Darmstadt, Germany. |
Group 4 | Blender for dental, New York, NY, USA | InLAB SW, Dentsply-Sirona, Bensheim, Germany. |
Group 5 | Autodesk Mesh Mixer, San Francisco, CA, USA. | Blender for dental, New York, NY, USA |
Group 6 | InLAB SW, Dentsply-Sirona, Bensheim, Germany. | Autodesk Mesh Mixer, San Francisco, CA, USA. |
Statistics | Groups | |||||
---|---|---|---|---|---|---|
G1 | G2 | G3 | G4 | G5 | G6 | |
Mean | −0.0956 | −0.1017 | −0.0694 | −0.0324 | −0.1024 | −0.0852 |
Standard deviation | 0.0866 | 0.1031 | 0.0693 | 0.0456 | 0.0819 | 0.0721 |
Variance | 0.0075 | 0.0106 | 0.0048 | 0.0021 | 0.0067 | 0.0052 |
Minimum | −0.2470 | −0.2548 | −0.1870 | −0.0700 | −0.2210 | −0.2033 |
Maximum | −0.0384 | −0.0372 | −0.0254 | 0.0462 | −0.0393 | −0.0207 |
Cluster | Statistical | p-Value |
---|---|---|
Blender–Exocad | 0.737 | 0.023 < 0.05 |
InLAB–Exocad | 0.744 | 0.034 < 0.05 |
Blender–Meshmixer | 0.746 | 0.027 < 0.05 |
Blender–InLAB | 0.799 | 0.079 > 0.05 |
Meshmixer–Exocad | 0.845 | 0.210 > 0.05 |
Meshmixer–InLAB | 0.881 | 0.314 > 0.05 |
Cluster | Average Range | Kruskal–Wallis H | p-Value |
---|---|---|---|
Blender–Exocad | 12.20 | 3524 | 0.620 > 0.05 |
InLAB–Exocad | 12.50 | ||
Blender–Meshmixer | 17.80 | ||
Blender–InLAB | 18.60 | ||
Meshmixer–Exocad | 10.75 | ||
Meshmixer–InLAB | 2.00 |
Levene’s Statistic | Gl1 | Gl2 | p-Value | |
---|---|---|---|---|
Based on the average | 0.502 | 5 | 22 | 0.772 > 0.05 |
Based on the median | 0.152 | 5 | 22 | 0.977 > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Coronel, C.; Pazán, D.P.; Hidalgo, L.; Larriva Loyola, J. Comparative Analysis between 3D-Printed Models Designed with Generic and Dental-Specific Software. Dent. J. 2023, 11, 216. https://doi.org/10.3390/dj11090216
Abad-Coronel C, Pazán DP, Hidalgo L, Larriva Loyola J. Comparative Analysis between 3D-Printed Models Designed with Generic and Dental-Specific Software. Dentistry Journal. 2023; 11(9):216. https://doi.org/10.3390/dj11090216
Chicago/Turabian StyleAbad-Coronel, Cristian, Doménica Patricia Pazán, Lorena Hidalgo, and Jaime Larriva Loyola. 2023. "Comparative Analysis between 3D-Printed Models Designed with Generic and Dental-Specific Software" Dentistry Journal 11, no. 9: 216. https://doi.org/10.3390/dj11090216
APA StyleAbad-Coronel, C., Pazán, D. P., Hidalgo, L., & Larriva Loyola, J. (2023). Comparative Analysis between 3D-Printed Models Designed with Generic and Dental-Specific Software. Dentistry Journal, 11(9), 216. https://doi.org/10.3390/dj11090216