The Remineralization of Enamel from Saliva: A Chemical Perspective
Abstract
:1. Introduction and Scope
2. Crystallization of Calcium Phosphate In Vitro in the Absence of Other Compounds
3. Crystallization of Calcium Phosphate In Vitro in the Presence of Other Compounds
4. The Role of Pellicle
5. The Role of Plaque
6. The Role of Calculus
7. Enhancing the Remineralization of Enamel
8. Nature and Quality of the Remineralized Enamel
9. Conclusions
10. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiner, S.; Wagner, H.D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271–298. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates. J. Mater. Sci. 2007, 42, 1061–1095. [Google Scholar] [CrossRef]
- Dorozhkin, S.V.; Epple, M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 2002, 41, 3130–3146. [Google Scholar] [CrossRef]
- Barbour, M.E.; Rees, G.D. The role of erosion, abrasion and attrition in tooth wear. J. Clin. Dent. 2006, 17, 88–93. [Google Scholar] [PubMed]
- Robinson, C.; Shore, R.C.; Brookes, S.J.; Strafford, S.; Wood, S.R.; Kirkham, J. The chemistry of enamel caries. Crit. Rev. Oral Biol. Med. 2000, 11, 481–495. [Google Scholar] [CrossRef]
- Fejerskov, O.; Nyvad, B.; Kidd, E. Dental Caries: The Disease and Its Clinical Management; Wiley Blackwell: Oxford, UK, 2015. [Google Scholar]
- Wang, L.; Nancollas, G.H. Calcium orthophosphates: Crystallization and dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef]
- Enax, J.; Amaechi, B.T.; Farah, R.; Liu, J.A.; Schulze zur Wiesche, E.; Meyer, F. Remineralization strategies for teeth with molar incisor hypomineralization (MIH): A literature review. Dent. J. 2023, 11, 80. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphates in nature, biology and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef]
- Cabalen, M.B.; Molina, G.F.; Bono, A.; Burrow, M.F. Nonrestorative caries treatment: A systematic review update. Int. Dent. J. 2022, 72, 746–764. [Google Scholar] [CrossRef]
- Nancollas, G.H. Enamel apatite nucleation and crystal-growth. J. Dent. Res. 1979, 58, 861–870. [Google Scholar] [CrossRef]
- Ebrahimpour, A.; Zhang, J.; Nancollas, G.H. Dual constant composition method and its application to studies of phase transformation and crystallization of mixed phases. J. Cryst. Growth 1991, 113, 83–91. [Google Scholar] [CrossRef]
- Paschalis, E.P.; Wikiel, K.; Nancollas, G.H. Dual constant composition kinetics characterisation of apatitic surfaces. J. Biomed. Mater. Res. 1994, 28, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Synthetic amorphous calcium phosphates (ACPs): Preparation, structure, properties, and biomedical applications. Biomater. Sci. 2021, 9, 7748–7798. [Google Scholar] [CrossRef] [PubMed]
- Sturm, E.V.; Cölfen, H. Mesocrystals: Structural and morphogenetic aspects. Chem. Soc. Rev. 2016, 45, 5821–5833. [Google Scholar] [CrossRef] [PubMed]
- Detsch, R.; Hagmeyer, D.; Neumann, M.; Schaefer, S.; Vortkamp, A.; Wuelling, M.; Ziegler, G.; Epple, M. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater. 2010, 6, 3223–3233. [Google Scholar] [CrossRef]
- Brown, W.E.; Gregory, T.M.; Chow, L.C. Effects of fluoride on enamel solubility and cariostasis. Caries Res. 1977, 11, 118–136. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Duijsters, P.P.E. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res. 1982, 16, 201–210. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Duijsters, P.P.E. Influence of fluoride in solution on tooth demineralization. 1. Chemical-data. Caries Res. 1983, 17, 193–199. [Google Scholar] [CrossRef]
- Jaeger, C.; Welzel, T.; Meyer-Zaika, W.; Epple, M. A solid-state NMR investigation of the structure of nanocrystalline hydroxyapatite. Magn. Reson. Chem. 2006, 44, 573–580. [Google Scholar] [CrossRef]
- Arends, J.; ten Cate, J.M. Tooth enamel remineralization. J. Cryst. Growth 1981, 53, 135–147. [Google Scholar] [CrossRef]
- Xu, G.; Aksay, I.; Groves, J. Continuous crystalline carbonate apatite thin films. A biomimetic approach. J. Am. Chem. Soc. 2001, 123, 2196–2203. [Google Scholar] [CrossRef] [PubMed]
- Kanzaki, N.; Treboux, G.; Onuma, K.; Tsutsumi, S.; Ito, A. Calcium phosphate clusters. Biomaterials 2001, 22, 2921–2929. [Google Scholar] [CrossRef]
- Yin, X.L.; Stott, M.J. Biological calcium phosphates and Posner’s cluster. J. Chem. Phys. 2003, 118, 3717–3723. [Google Scholar] [CrossRef]
- Habraken, W.J.E.M.; Tao, J.; Brylka, L.J.; Friedrich, H.; Bertinetti, L.; Schenk, A.S.; Verch, A.; Dmitrovic, V.; Bomans, P.H.H.; Frederik, P.M.; et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 2013, 4, 1507. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Schroder, J.; Hauschild, S.; Rosenfeldt, S.; Dulle, M.; Forster, S. Simultaneous SAXS/WAXS/UV-Vis study of the nucleation and growth of nanoparticles: A test of classical nucleation theory. Langmuir 2015, 31, 11678–11691. [Google Scholar] [CrossRef]
- Albeck, S.; Weiner, S.; Addadi, L. Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chem. Eur. J. 1996, 2, 278–284. [Google Scholar] [CrossRef]
- Lippert, F.; Parker, D.M.; Jandt, K.D. In vitro demineralization/remineralization cycles at human tooth enamel surfaces investigated by AFM and nanoindentation. J. Coll. Interf. Sci. 2004, 280, 442–448. [Google Scholar] [CrossRef]
- Lechner, B.D.; Röper, S.; Messerschmidt, J.; Blume, A.; Magerle, R. Monitoring demineralization and subsequent remineralization of human teeth at the dentin-enamel junction with atomic force microscopy. ACS Appl. Mater. Interfaces 2015, 7, 18937–18943. [Google Scholar] [CrossRef] [PubMed]
- Orme, C.A.; Noy, A.; Wierzbicki, A.; McBride, M.T.; Grantham, M.; Teng, H.H.; Dove, P.M.; DeYoreo, J.J. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 2001, 411, 775–779. [Google Scholar] [CrossRef]
- Onuma, K. Recent research on pseudobiological hydroxyapatite crystal growth and phase transition mechanisms. Prog. Cryst. Growth Charact. Mater. 2006, 52, 223–245. [Google Scholar] [CrossRef]
- Cho, K.R.; Jo, S.B.; Kim, B.; Kim, W.; Park, J.H.; Ji, Y.; Kim, Y.J.; Singh, R.K.; Lee, J.H.; Kim, H.W. Erosion-driven enamel crystallite growth phenomenon at the tooth surface in vitro. ACS Appl. Bio Mater. 2022, 5, 3753–3765. [Google Scholar] [CrossRef] [PubMed]
- Fuierer, T.A.; Lore, M.; Puckett, S.A.; Nancollas, G.H. A mineralization adsorption and mobility study of hydroxyapatite surfaces in the presence of zinc and magnesium ions. Langmuir 1994, 10, 4721–4725. [Google Scholar] [CrossRef]
- Salimi, M.H.; Heughebaert, J.C.; Nancollas, G.H. Crystal growth of calcium phosphates in the presence of magnesium ions. Langmuir 1985, 1, 119–122. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Mayer, I.; Driessens, F.C.M.; Verbeeck, R.M.H.; Heijligers, H.J.M. Synthetic apatites containing Na, Mg, and CO3 and their comparison with tooth enamel mineral. Calcif. Tissue Int. 1983, 35, 169–171. [Google Scholar] [CrossRef]
- Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 1990, 24, 721–734. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. [Google Scholar] [CrossRef]
- Larsen, M.J.; Pearce, E.I.F. Saturation of human saliva with respect to calcium salts. Arch. Oral Biol. 2003, 48, 317–322. [Google Scholar] [CrossRef]
- ten Cate, J.M.; Buzalaf, M.A.R. Fluoride mode of action: Once there was an observant dentist. J. Dent. Res. 2019, 98, 725–730. [Google Scholar] [CrossRef]
- de Sousa-Pereira, P.; Amado, F.; Abrantes, J.; Ferreira, R.; Esteves, P.J.; Vitorino, R. An evolutionary perspective of mammal salivary peptide families: Cystatins, histatins, statherin and PRPs. Arch. Oral Biol. 2013, 58, 451–458. [Google Scholar] [CrossRef]
- Gron, P. State of calcium and inorganic orthophosphate in human saliva. Arch. Oral Biol. 1973, 18, 1365–1378. [Google Scholar] [CrossRef]
- Amado, F.; Lobo, M.J.; Domingues, P.; Duarte, J.A.; Vitorino, R. Salivary peptidomics. Expert Rev. Proteom. 2010, 7, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Flemming, J.; Hannig, C.; Hannig, M. Caries management—The role of surface interactions in de- and remineralization-processes. J. Clin. Med. 2022, 11, 7044. [Google Scholar] [CrossRef] [PubMed]
- Enax, J.; Ganss, B.; Amaechi, B.T.; Schulze zur Wiesche, E.; Meyer, F. The composition of the dental pellicle: An updated literature review. Front. Oral Health 2023, 4, 1260442. [Google Scholar] [CrossRef] [PubMed]
- Hay, D.I.; Carlson, E.R.; Schluckebier, S.K.; Moreno, E.C.; Schlesinger, D.H. Inhibition of calcium-phosphate precipitation by human salivary acidic proline-rich proteins—Structure-activity-relationships. Calcif. Tissue Int. 1987, 40, 126–132. [Google Scholar] [CrossRef]
- Chin, K.O.A.; Johnsson, M.; Bergey, E.J.; Levine, M.J.; Nancollas, G.H. A constant composition kinetics study of the influence of salivary cystatins, statherin, amylase and human serum-albumin on hydroxyapatite dissolution. Coll. Surf. A 1993, 78, 229–234. [Google Scholar] [CrossRef]
- Goobes, R.; Goobes, G.; Shaw, W.J.; Drobny, G.P.; Campbell, C.T.; Stayton, P.S. Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite. Biochemistry 2007, 46, 4725–4733. [Google Scholar] [CrossRef]
- Ding, L.; Zeng, J.X.; Luo, M.Z.; Zhou, J. Molecular simulation of statherin adsorption on hydroxyapatite (001) surface. Adv. Mater. Interfaces 2022, 9, 2201289. [Google Scholar] [CrossRef]
- Goobes, G.; Goobes, R.; Schueler-Furman, O.; Baker, D.; Stayton, P.S.; Drobny, G.P. Folding of the C-terminal bacterial binding domain in statherin upon adsorption onto hydroxyapatite crystals. Proc. Natl. Acad. Sci. USA 2006, 103, 16083–16088. [Google Scholar] [CrossRef]
- Tao, J.H.; Fijneman, A.; Wan, J.Q.; Prajapati, S.; Mukherjee, K.; Fernandez-Martinez, A.; Moradian-Oldak, J.; De Yoreo, J.J. Control of calcium phosphate nucleation and transformation through interactions of enamelin and amelogenin exhibits the “goldilocks effect”. Cryst. Growth Des. 2018, 18, 7391–7400. [Google Scholar] [CrossRef]
- Ionta, F.Q.; Mendonça, F.L.; de Oliveira, G.C.; de Alencar, C.R.B.; Honorio, H.M.; Magalhaes, A.C.; Rios, D. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J. Dent. 2014, 42, 175–179. [Google Scholar] [CrossRef]
- Baumann, T.; Bereiter, R.; Lussi, A.; Carvalho, T.S. The effect of different salivary calcium concentrations on the erosion protection conferred by the salivary pellicle. Sci. Rep. 2017, 7, 12999. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Qiu, S.R.; Zachowicz, W.; Guan, X.Y.; DeYoreo, J.J.; Nancollas, G.H.; Hoyer, J.R. Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides. Langmuir 2006, 22, 7279–7285. [Google Scholar] [CrossRef] [PubMed]
- Weaver, M.L.; Qiu, S.R.; Hoyer, J.R.; Casey, W.H.; Nancollas, G.H.; De Yoreo, J.J. Improved model for inhibition of pathological mineralization based on citrate-calcium oxalate monohydrate interaction. ChemPhysChem 2006, 7, 2081–2084. [Google Scholar] [CrossRef] [PubMed]
- Elhadj, S.; De Yoreo, J.J.; Hoyer, J.R.; Dove, P.M. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc. Natl. Acad. Sci. USA 2006, 103, 19237–19242. [Google Scholar] [CrossRef]
- Moradian-Oldak, J.; George, A. Biomineralization of enamel and dentin mediated by matrix proteins. J. Dent. Res. 2021, 100, 1020–1029. [Google Scholar] [CrossRef]
- Kegulian, N.C.; Visakan, G.; Bapat, R.A.; Moradian-Oldak, J. Ameloblastin and its multifunctionality in amelogenesis: A review. Matrix Biol. 2024, 131, 62–76. [Google Scholar] [CrossRef]
- Hannig, M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin. Oral. Investig. 1999, 3, 88–95. [Google Scholar] [CrossRef]
- Ash, A.; Ridout, M.J.; Parker, R.; Mackie, A.R.; Burnett, G.R.; Wilde, P.J. Effect of calcium ions on in vitro pellicle formation from parotid and whole saliva. Colloid Surf. B-Biointerfaces 2013, 102, 546–553. [Google Scholar] [CrossRef]
- Wei, Y.; Dang, G.P.; Ren, Z.Y.; Wan, M.C.; Wang, C.Y.; Li, H.B.; Zhang, T.; Tay, F.R.; Niu, L.N. Recent advances in the pathogenesis and prevention strategies of dental calculus. npj Biofilms Microbomes 2024, 10, 56. [Google Scholar] [CrossRef]
- Jakubovics, N.S.; Goodman, S.D.; Mashburn-Warren, L.; Stafford, G.P.; Cieplik, F. The dental plaque biofilm matrix. Periodontol. 2000 2021, 86, 32–56. [Google Scholar] [CrossRef]
- Jakubovics, N.S.; Kolenbrander, P.E. The road to ruin: The formation of disease-associated oral biofilms. Oral Dis. 2010, 16, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmad, A.; Wunder, A.; Auschill, T.; Follo, M.; Braun, G.; Hellwig, E.; Arweiler, N. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J. Med. Microbiol. 2007, 56, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, L.M.A.; Cury, A.A.D.; Bortolin, M.C.; Vogel, G.L.; Cury, J.A. Ca, Pi, and F in the fluid of biofilm formed under sucrose. J. Dent. Res. 2006, 85, 834–838. [Google Scholar] [CrossRef]
- Reynolds, E.C.; Cai, F.; Shen, P.; Walker, G.D. Retention in plaque and remineralization of enamel lesions by various forms of calcium in a mouthrinse or sugar-free chewing gum. J. Dent. Res. 2003, 82, 206–211. [Google Scholar] [CrossRef]
- Cochrane, N.J.; Shen, P.; Byrne, S.J.; Walker, G.D.; Adams, G.G.; Yuan, Y.; Reynolds, C.; Hoffmann, B.; Dashper, S.G.; Reynolds, E.C. Remineralisation by chewing sugar-free gums in a randomised, controlled in situ trial including dietary intake and gauze to promote plaque formation. Caries Res. 2012, 46, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Akcali, A.; Lang, N.P. Dental calculus: The calcified biofilm and its role in disease development. Periodontol. 2000 2018, 76, 109–115. [Google Scholar] [CrossRef]
- Kodaka, T.; Debari, K.; Sano, T.; Yamada, M. Scanning electron-microscopy and energy-dispersive X-ray-microanalysis studies of several human calculi containing calcium-phosphate crystals. Scanning Microsc. 1994, 8, 241–257. [Google Scholar]
- Sundberg, M.; Friskopp, J. Crystallography of supragingival and subgingival human dental calculus. Scand. J. Dent. Res. 1985, 93, 30–38. [Google Scholar] [CrossRef]
- Nancollas, G.H.; Johnsson, M.A. Calculus formation and inhibition. Adv. Dent. Res. 1994, 8, 307–311. [Google Scholar] [CrossRef]
- Chen, L.J.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Meyer, F.; Enax, J.; Amaechi, B.T.; Limeback, H.; Fabritius, H.O.; Ganss, B.; Pawinska, M.; Paszynska, E. Hydroxyapatite as remineralization agent for children’s dental care. Front. Dent. Med. 2022, 3, 859560. [Google Scholar] [CrossRef]
- Philip, N. State of the art enamel remineralization systems: The next frontier in caries management. Caries Res. 2018, 53, 284–295. [Google Scholar] [CrossRef]
- Limeback, H.; Enax, J.; Meyer, F. Improving oral health with fluoride-free calcium-phosphate-based biomimetic toothpastes: An update of the clinical evidence. Biomimetics 2023, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.X.; Dong, Z.Y.; Ke, X.; Luo, J.; Li, J.S. Advances in biomineralization-inspired materials for hard tissue repair. Int. J. Oral Sci. 2021, 13, 42. [Google Scholar] [CrossRef]
- Epple, M.; Enax, J.; Meyer, F. Prevention of caries and dental erosion by fluorides: A critical discussion based on physico-chemical data and principles. Dent. J. 2022, 10, 6. [Google Scholar] [CrossRef]
- Faidt, T.; Friedrichs, A.; Grandthyll, S.; Spengler, C.; Jacobs, K.; Müller, F. Effect of fluoride treatment on the acid resistance of hydroxyapatite. Langmuir 2018, 34, 15253–15258. [Google Scholar] [CrossRef] [PubMed]
- Faidt, T.; Zeitz, C.; Grandthyll, S.; Hans, M.; Hannig, M.; Jacobs, K.; Muller, F. Time dependence of fluoride uptake in hydroxyapatite. ACS Biomater. Sci. Eng. 2017, 3, 1822–1826. [Google Scholar] [CrossRef]
- Storsberg, J.; Loza, K.; Epple, M. Incorporation of fluoride into human teeth after immersion in fluoride-containing solutions. Dent. J. 2022, 10, 153. [Google Scholar] [CrossRef]
- de Leeuw, N.H. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. J. Phys. Chem. B 2004, 108, 1809–1811. [Google Scholar] [CrossRef]
- de Leeuw, N.H. A computer modelling study of the uptake and segregation of fluoride ions at the hydrated hydroxyapatite (0001) surface: Introducing Ca10(PO4)6(OH)2 potential model. Phys. Chem. Chem. Phys. 2004, 6, 1860–1866. [Google Scholar] [CrossRef]
- Cochrane, N.J.; Cai, F.; Huq, N.L.; Burrow, M.F.; Reynolds, E.C. New approaches to enhanced remineralization of tooth enamel. J. Dent. Res. 2010, 89, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Rolla, G. On the role of calcium-fluoride in the cariostatic mechanism of fluoride. Acta Odontol. Scand. 1988, 46, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Roveri, N.; Battistella, E.; Bianchi, C.L.; Foltran, I.; Foresti, E.; Iafisco, M.; Lelli, M.; Naldoni, A.; Palazzo, B.; Rimondini, L. Surface enamel remineralization: Biomimetic apatite nanocrystals and fluoride ions different effects. J. Nanomater. 2009, 2009, 746383. [Google Scholar] [CrossRef]
- Huang, S.; Gao, S.; Cheng, L.; Yu, H. Remineralization potential of nano-hydroxyapatite on initial enamel lesions: An in vitro study. Caries Res. 2011, 45, 460–468. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Alshareif, D.O.; Azees, P.A.A.; Shehata, M.A.; Lima, P.P.; Abdollahi, A.; Kalkhorani, P.S.; Evans, V.; Bagheri, A.; Okoye, L.O. Anti-caries evaluation of a nano-hydroxyapatite dental lotion for use after toothbrushing: An in situ study. J. Dent. 2021, 115, 103863. [Google Scholar] [CrossRef]
- Najibfard, K.; Ramalingam, K.; Chedjieu, I.; Amaechi, B.T. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011, 22, 139–143. [Google Scholar]
- Stookey, G.K. The effect of saliva on dental caries. J. Am. Dent. Assoc. 2008, 139, 11S–17S. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.B.; Ding, C.M.; He, L.B.; Yang, X.; Gou, Y.P.; Xu, X.Y.; Liu, Y.P.; Zhao, C.S.; Li, J.S.; Li, J.Y. Bioinspired heptapeptides as functionalized mineralization inducers with enhanced hydroxyapatite affinity. J. Mat. Chem. B 2018, 6, 1984–1994. [Google Scholar] [CrossRef]
- Hu, D.; Ren, Q.; Li, Z.C.; Han, S.L.; Ding, L.J.; Lu, Z.Q.; Zhang, L.L. Unveiling the mechanism of an amelogenin-derived peptide in promoting enamel biomimetic remineralization. Int. J. Biol. Macromol. 2023, 253, 127322. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Z.; Moradian-Oldak, J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials 2009, 30, 478–483. [Google Scholar] [CrossRef]
- Mukherjee, K.; Ruan, Q.C.; Liberman, D.; White, S.N.; Moradian-Oldak, J. Repairing human tooth enamel with leucine-rich amelogenin peptide-chitosan hydrogel. J. Mater. Res. 2016, 31, 556–563. [Google Scholar] [CrossRef]
- Ruan, Q.; Moradian-Oldak, J. Amelogenin and enamel biomimetics. J. Mater. Chem. B 2015, 3, 3112–3129. [Google Scholar] [CrossRef] [PubMed]
- Lew, A.J.; Beniash, E.; Gilbert, P.; Buehler, M.J. Role of the mineral in the self-healing of cracks in human enamel. ACS Nano 2022, 16, 10273–10280. [Google Scholar] [CrossRef]
- Moradian-Oldak, J. Protein-mediated enamel mineralization. Front. Biosci. 2012, 17, 1996–2023. [Google Scholar] [CrossRef] [PubMed]
- Pretty, I.A.; Ellwood, R.P. The caries continuum: Opportunities to detect, treat and monitor the re-mineralization of early caries lesions. J. Dent. 2013, 41, S12–S21. [Google Scholar] [CrossRef]
- Kind, L.; Stevanovic, S.; Wuttig, S.; Wimberger, S.; Hofer, J.; Müller, B.; Pieles, U. Biomimetic remineralization of carious lesions by self-assembling peptide. J. Dent. Res. 2017, 96, 790–797. [Google Scholar] [CrossRef]
- Eisenburger, M.; Addy, M.; Hughes, J.A.; Shellis, R.P. Effect of time on the remineralisation of enamel by synthetic saliva after citric acid erosion. Caries Res. 2001, 35, 211–215. [Google Scholar] [CrossRef]
- Zhou, S.L.; Zhou, J.; Watanabe, S.; Watanabe, K.; Wen, L.Y.; Xuan, K. In vitro study of the effects of fluoride-releasing dental materials on remineralization in an enamel erosion model. J. Dent. 2012, 40, 255–263. [Google Scholar] [CrossRef]
- Zheng, L.; Zheng, J.; Zhang, Y.F.; Qian, L.M.; Zhou, Z.R. Effect of CPP-ACP on the remineralization of acid-eroded human tooth enamel: Nanomechanical properties and microtribological behaviour study. J. Phys. D-Appl. Phys. 2013, 46, 404006. [Google Scholar] [CrossRef]
- Arsecularatne, J.A.; Hoffman, M.J. The wear behaviour of remineralised human dental enamel: An in vitro study. Wear 2020, 444, 203165. [Google Scholar] [CrossRef]
- Ilie, O.; van Turnhout, A.G.; van Loosdrecht, M.C.M.; Picioreanu, C. Numerical modelling of tooth enamel subsurface lesion formation induced by dental plaque. Caries Res. 2014, 48, 73–89. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enax, J.; Fandrich, P.; Schulze zur Wiesche, E.; Epple, M. The Remineralization of Enamel from Saliva: A Chemical Perspective. Dent. J. 2024, 12, 339. https://doi.org/10.3390/dj12110339
Enax J, Fandrich P, Schulze zur Wiesche E, Epple M. The Remineralization of Enamel from Saliva: A Chemical Perspective. Dentistry Journal. 2024; 12(11):339. https://doi.org/10.3390/dj12110339
Chicago/Turabian StyleEnax, Joachim, Pascal Fandrich, Erik Schulze zur Wiesche, and Matthias Epple. 2024. "The Remineralization of Enamel from Saliva: A Chemical Perspective" Dentistry Journal 12, no. 11: 339. https://doi.org/10.3390/dj12110339
APA StyleEnax, J., Fandrich, P., Schulze zur Wiesche, E., & Epple, M. (2024). The Remineralization of Enamel from Saliva: A Chemical Perspective. Dentistry Journal, 12(11), 339. https://doi.org/10.3390/dj12110339