Perceptions in Digital Smile Design: Assessing Laypeople and Dental Professionals’ Preferences Using an Artificial-Intelligence-Based Application
Abstract
:1. Introduction
2. Materials and Methods
- The first section included the GDPR agreement so that only the respondents who agreed with the conditions of personal data processing were able to complete the survey.
- The second section referred to social and demographic factors, such as gender, age, faculty, specialty, and year of study/practice.
- The third section contained items for assessing the dentists’ and laypeople’s perception about the pre-visualization focusing on facial, dental, and gingival esthetic criteria.
3. Results
Illustrative Survey
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karan-Romero, M.; Salazar-Gamarra, R.E.; Leon-Rios, X.A. Evaluation of Attitudes and Perceptions in Students about the Use of Artificial Intelligence in Dentistry. Dent. J. 2023, 11, 125. [Google Scholar] [CrossRef] [PubMed]
- Roganović, J.; Radenković, M.; Miličić, B. Responsible Use of Artificial Intelligence in Dentistry: Survey on Dentists’ and Final-Year Undergraduates’ Perspectives. Healthcare 2023, 11, 1480. [Google Scholar] [CrossRef]
- Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Bin Halim, M.S.; Maqsood, A.; Alam, M.K. Artificial Intelligence Techniques: Analysis, Application, and Outcome in Dentistry—A Systematic Review. BioMed. Res. Int. 2021, 2021, 9751564. [Google Scholar] [CrossRef]
- Khanagar, S.B.; Al-Ehaideb, A.; Maganur, P.C.; Vishwanathaiah, S.; Patil, S.; Baeshen, H.A.; Sarode, S.C.; Bhandi, S. Developments, application, and performance of artificial intelligence in dentistry—A systematic review. J. Dent. Sci. 2021, 16, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Thurzo, A.; Urbanová, W.; Novák, B.; Czako, L.; Siebert, T.; Stano, P.; Mareková, S.; Fountoulaki, G.; Kosnáčová, H.; Varga, I. Where Is the Artificial Intelligence Applied in Dentistry? Systematic Review and Literature Analysis. Healthcare 2022, 10, 1269. [Google Scholar] [CrossRef] [PubMed]
- Cervino, G.; Fiorillo, L.; Arzukanyan, A.V.; Spagnuolo, G.; Cicciù, M. Dental Restorative Digital Workflow: Digital Smile Design from Aesthetic to Function. Dent. J. 2019, 7, 30. [Google Scholar] [CrossRef]
- Favaretto, M.; Shaw, D.; De Clercq, E.; Joda, T.; Elger, B.S. Big Data and Digitalization in Dentistry: A Systematic Review of the Ethical Issues. Int. J. Environ. Res. Public Health 2020, 17, 2495. [Google Scholar] [CrossRef]
- Sabbah, A. Smile Analysis. Dent. Clin. North Am. 2022, 66, 307–341. [Google Scholar] [CrossRef] [PubMed]
- Blatz, M.; Chiche, G.; Bahat, O.; Roblee, R.; Coachman, C.; Heymann, H. Evolution of Aesthetic Dentistry. J. Dent. Res. 2019, 98, 1294–1304. [Google Scholar] [CrossRef]
- Gürel, G.; Paolucci, B.; Iliev, G.; Filtchev, D.; Schayder, A. The fifth dimension in esthetic dentistry. Int. J. Esthet. Dent. 2021, 16, 10–32. [Google Scholar]
- Smilecloud. Available online: https://www.smilecloud.com/ (accessed on 8 June 2022).
- Fradeani Education Dentistry Courses. Available online: https://www.fradeanieducation.com/en (accessed on 8 June 2022).
- Cofar, F.; Barbur, I.; Giordani, G.; Giordani, M.; Popp, I.; Lascu, G.; Van Dooren, E.; Bratu, T.; Blatz, M. Multidisciplinary design: Creating a common perspective in complex cases. J. Esthet. Restor. Dent. 2022, 34, 244–251. [Google Scholar] [CrossRef]
- Ntovas, P.; Karkazi, F.; Özbilen, E.; Flavio, A.; Ladia, O.; Papazoglou, E.; Yilmaz, H.N.; Coachman, C. Perception of smile attractiveness among laypeople and orthodontists regarding the buccal corridor space, as it is defined by the eyes. An innovated technique. J. Esthet. Restor. Dent. 2023, 35, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Manchikalapudi, G.; Basapogu, S. Role of Dentofacial Harmony among Young and Old Adult Females in Smile Per-ception of Dental Specialists and Laypeople: A Cross-Sectional Study. J. Pharm. Bioallied. Sci. 2023, 15 (Suppl. S1), S588–S594. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.S.; Ranganath, V.; A Yerawadekar, S.; Kumar, C.N.; Sarode, G.S. Pink Esthetics: A Study on Significant Gingival Parameters. J. Contemp. Dent. Pract. 2020, 21, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Ke, X.; Wang, C.; Sun, H.; Yang, Y.; Luo, X.; Liu, T. A quantitative research on clinical parameters of gingival contour for anterior teeth esthetic analysis and design. J. Esthet. Restor. Dent. 2018, 30, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Monnet-Corti, V.; Antezack, A.; Pignoly, M. Comment parfaire l’esthétique du sourire: Toujours en rose! Orthod. Fr. 2018, 89, 71–80. [Google Scholar] [CrossRef]
- Czumbel, L.M.; Farkasdi, S.; Gede, N.; Mikó, A.; Csupor, D.; Lukács, A.; Gaál, V.; Kiss, S.; Hegyi, P.; Varga, G. Hyaluronic Acid Is an Effective Dermal Filler for Lip Augmentation: A Meta-Analysis. Front. Surg. 2021, 8, 681028. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, G.; Özel, G.S.; Memişoglu, G.; Emir, F.; Şen, S. Evaluating the Facial Esthetic Outcomes of Digital Smile Designs Generated by Artificial Intelligence and Dental Professionals. Appl. Sci. 2023, 13, 9001. [Google Scholar] [CrossRef]
- Alikhasi, M.; Yousefi, P.; Afrashtehfar, K.I. Smile Design. Dent. Clin. North Am. 2022, 66, 477–487. [Google Scholar] [CrossRef]
- Agrawal, R.; Pisulkar, S.; Belkhode, V.; Nimonkar, S.; Borle, A.; Godbole, S. Perception of buccal corridor space on smile aesthetics among specialty dentist and layperson. J. Int. Soc. Prev. Community Dent. 2019, 9, 499–504. [Google Scholar] [CrossRef]
- Parrini, S.; Rossini, G.; Castroflorio, T.; Fortini, A.; Deregibus, A.; Debernardi, C. Laypeople’s perceptions of frontal smile esthetics: A systematic review. Am. J. Orthod. Dentofacial. Orthop. 2016, 150, 740–750. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, E.; Cofar, F.; Tokar, A.; Giordani, G.; Popp, I.; Sousa, N.; Stankov, V.; Gurel, G. IJED Espresso. Int. J. Esthet. Dent. 2022, 2, 138–139. [Google Scholar]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Jafri, Z.; Ahmad, N.; Sawai, M.; Sultan, N.; Bhardwaj, A. Digital Smile Design-An innovative tool in aesthetic dentistry. J. Oral Biol. Craniofacial Res. 2020, 10, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Cocconi, R.; Raffaini, M.; Fradeani, M.; Van Doren, E.; Gori, S.; Rossi, P. Team Approach in Esthetic Dentistry . Int. J. Esthet. Dent. 2020, 15, 372–373. [Google Scholar]
- Pethani, F. Promises and perils of artificial intelligence in dentistry. Aust. Dent. J. 2021, 66, 124–135. [Google Scholar] [CrossRef] [PubMed]
Dental Technician (n; %) | Dentist (n; %) | Student (n; %) | No Connection to Dentistry (n; %) | Total (n; %) | p-Value | |
---|---|---|---|---|---|---|
Symmetry | 0.05 | |||||
Facial symmetry; scale | 0.42 | |||||
1 (least important) | 1; 1.6 | 2; 1.8 | 4; 2.4 | 6; 3.3 | 13;2.5 | |
2 | 2; 3.3 | 4; 3.5 | 10; 6.1 | 13; 7.1 | 29; 5.6 | |
3 | 16; 26.2 | 15; 13.3 | 26; 15.9 | 38; 20.9 | 95; 18.3 | |
4 | 19; 31.1 | 40; 35.4 | 66;40.2 | 62; 34.4 | 187; 36.0 | |
5 (extremely important) | 23; 37.7 | 52; 46.0 | 58; 35.4 | 63; 34.6 | 196; 37.7 | |
Nose symmetry; scale | 0.56 | |||||
1 (least important) | 2; 3.3 | 2; 1.8 | 4; 2.4 | 7; 3.8 | 15; 2.9 | |
2 | 5; 8.2 | 3; 2.7 | 10; 6.1 | 13; 7.1 | 31; 6.0 | |
3 | 11; 18.0 | 14; 12.4 | 30; 18.3 | 29; 15.9 | 84; 16.2 | |
4 | 18; 29.5 | 39; 34.5 | 49; 29.9 | 68; 37.4 | 174; 33.5 | |
5 (extremely important) | 25; 41.0 | 55; 48.7 | 71; 43.3 | 65; 35.7 | 216; 41.5 | |
Smile symmetry; scale | <0.0001 | |||||
1 (least important) | 0; 0 | 3; 2.7 | 1; 0.6 | 5; 2.7 | 9; 1.7 | |
2 | 1; 1.6 | 1; 0.9 | 4; 2.4 | 8; 4.4 | 14; 2.7 | |
3 | 10; 16.4 | 5; 4.4 | 23; 14.0 | 42; 23.1 | 80; 15.4 | |
4 | 15; 24.6 | 24; 21.2 | 46; 28.0 | 64; 35.2 | 149; 28.7 | |
5 (extremely important) | 35; 57.4 | 80; 70.8 | 90; 54.9 | 63; 34.6 | 268; 51.5 | |
Cheekbones; scale | 0.123 | |||||
1 (least important) | 3; 4.9 | 3; 2.7 | 10; 6.1 | 13; 7.1 | 29; 5.6 | |
2 | 17; 27.9 | 22; 19.5 | 22; 13.4 | 32; 17.6 | 93; 17.9 | |
3 | 25; 41.0 | 36; 31.9 | 66; 40.2 | 64; 35.2 | 191; 36.7 | |
4 | 11; 18.0 | 43; 38.1 | 45; 27.4 | 51; 28.0 | 150; 28.8 | |
5 (extremely important) | 5; 8.2 | 9; 8.0 | 21; 12.8 | 22; 12.1 | 57; 11.0 | |
Nose shape; scale | 0.07 | |||||
1 (least important) | 3; 4.9 | 2; 1.8 | 2; 1.2 | 5; 2.7 | 12; 2.3 | |
2 | 9; 14.8 | 8; 7.1 | 7; 4.3 | 9; 4.9 | 33; 6.3 | |
3 | 16; 26.2 | 17; 15.0 | 33; 20.1 | 44; 24.2 | 110; 21.2 | |
4 | 17; 27.9 | 49; 43.4 | 64; 39.0 | 61; 33.5 | 191; 36.7 | |
5 (extremely important) | 16; 26.2 | 37; 32.7 | 58; 35.4 | 63; 34.6 | 174; 33.5 | |
Appearance of lips; scale | 0.29 | |||||
1 (least important) | 1; 1.6 | 1; 0.9 | 3; 1.8 | 4; 2.2 | 9; 1.7 | |
2 | 5; 8.2 | 4; 3.5 | 9; 5.5 | 11; 6.0 | 29; 5.6 | |
3 | 19; 31.1 | 16; 14.2 | 30; 18.3 | 38; 20.9 | 103; 19.8 | |
4 | 16; 26.2 | 47; 41.6 | 71; 43.3 | 74; 40.7 | 208; 40.0 | |
5 (extremely important) | 20;32.8 | 45; 39.8 | 51; 31.1 | 55; 30.2 | 171; 32.9 | |
Appearance of chin; scale | 0.04 | |||||
1 (least important) | 0; 0 | 1; 0.9 | 5; 3.0 | 10; 5.5 | 16; 3.1 | |
2 | 8; 13.1 | 7; 6.2 | 21; 12.8 | 25; 13.7 | 61; 11.7 | |
3 | 27; 44.3 | 33; 29.2 | 59; 36.0 | 63; 34.6 | 182; 35.0 | |
4 | 19; 31.1 | 44; 38.9 | 47; 28.7 | 57; 31.3 | 167; 32.1 | |
5 (extremely important) | 7; 11.5 | 28; 24.8 | 32; 19.5 | 27; 14.8 | 94; 18.1 | |
Appearance of skin; scale | 0.05 | |||||
1 (least important) | 6; 9.8 | 8; 7.1 | 5; 3 | 6; 3.3 | 25; 4.8 | |
2 | 4; 6.6 | 5; 4.4 | 11; 6.7 | 11; 6.0 | 31; 6.0 | |
3 | 13; 21.3 | 19; 16.8 | 45; 27.4 | 32; 17.6 | 109; 21.0 | |
4 | 13; 21.3 | 48; 4.5 | 46; 28.0 | 46; 25.3 | 153; 29.4 | |
5 (extremely important) | 25; 41.0 | 33; 29.2 | 57; 34.8 | 87; 47.8 | 202; 38.8 | |
Shape of the face; scale | 0.06 | |||||
1 (least important) | 3; 4.9 | 5; 4.4 | 7; 4.3 | 9; 4.9 | 24; 4.6 | |
2 | 7; 11.5 | 9; 8.0 | 10; 6.1 | 22; 12.1 | 48; 9.2 | |
3 | 20; 32.8 | 30; 26.5 | 54; 32.9 | 54; 29.7 | 158; 30.4 | |
4 | 8; 13.1 | 43; 38.1 | 50; 30.5 | 62; 34.1 | 163; 31.3 | |
5 (extremely important) | 23; 37.7 | 26; 23.0 | 43; 26.2 | 35; 19.2 | 127; 24.4 | |
Shape of the lips; scale | 0.41 | |||||
1 (least important) | 2; 3.3 | 1; 0.9 | 3; 1.8 | 4; 2.2 | 10; 1.9 | |
2 | 5; 8.2 | 2; 1.8 | 13; 7.9 | 11; 6.0 | 31; 6.0 | |
3 | 16; 26.2 | 23; 20.4 | 34; 20.7 | 50; 27.5 | 123; 23.7 | |
4 | 20; 32.8 | 53; 46.9 | 70; 42.7 | 64; 35.2 | 207; 39.8 | |
5 (extremely important) | 18; 29.5 | 34; 30.1 | 44; 26.8 | 53; 29.1 | 149; 28.7 | |
Volume of the lips; scale | 0.85 | |||||
1 (least important) | 3; 4.9 | 1;0.9 | 4;2.4 | 5; 2.7 | 13; 2.5 | |
2 | 6; 9.8 | 8; 7.1 | 13; 7.9 | 18; 9.9 | 45; 8.7 | |
3 | 19; 31.1 | 28; 24.8 | 46; 28.0 | 55; 30.2 | 148; 28.5 | |
4 | 19; 31.1 | 48; 42.5 | 67; 40.9 | 64; 35.2 | 198; 38.1 | |
5 (extremely important) | 14; 23.0 | 28; 24.8 | 34; 20.7 | 40; 22.0 | 116; 22.3 |
Dental Technician (n; %) | Dentist (n; %) | Student (n; %) | No Connection to Dentistry (n; %) | Total (n; %) | p-Value | |
---|---|---|---|---|---|---|
Do you consider that appearance may influence self-esteem? | 0.05 | |||||
Maybe | 7; 11.5 | 8; 7.1 | 9; 5.5 | 24; 13.2 | 48; 9.2 | |
No | 1; 1.6 | 0; 0 | 1; 0.6 | 5; 2.7 | 7; 1.3 | |
Yes | 53; 86.9 | 105; 92.9 | 154; 93.9 | 153; 84.1 | 465; 89.4 | |
Decision to undergo Digital Smile Design procedures as a patient after the SmileCloud pre-visualizations | 0.002 | |||||
No | 4; 6.6 | 2; 1.8 | 11; 6.7 | 6; 3.3 | 23;4.4 | |
Still undecided | 5; 8.2 | 1; 0.9 | 10; 6.1 | 24; 13.2 | 40; 7.7 | |
Yes | 52; 85.2 | 110; 97.3 | 143; 87.2 | 152; 83.5 | 45; 87.9 | |
Digital Smile Design visibility; scale | <0.0001 | |||||
1 (least important) | 1; 1.6 | 4; 3.5 | 9; 5.5 | 13; 7.1 | 27; 5.2 | |
2 | 2; 3.3 | 2; 1.8 | 15; 9.1 | 24; 13.2 | 43; 8.3 | |
3 | 8; 13.1 | 16; 14.2 | 21; 12.8 | 52; 28.6 | 97; 18.7 | |
4 | 27; 44.3 | 27; 23.9 | 48; 29.3 | 46; 25.3 | 148; 28.5 | |
5 (extremely important) | 23; 37.7 | 64; 56.6 | 71; 43.3 | 47; 25.8 | 205; 39.4 | |
Digital Smile Design concept familiarity | <0.0001 | |||||
Maybe | 5; 8.2 | 8; 7.1 | 9; 5.5 | 33; 18.1 | 55; 10.6 | |
No | 2; 3.3 | 7; 6.2 | 19; 11.6 | 84; 46.2 | 112; 21.5 | |
Yes | 54; 88.5 | 98; 86.7 | 136; 82.9 | 65; 35.7 | 353; 67.9 | |
Digital Smile Design procedure before undergoing treatment | 0.09 | |||||
Maybe | 2; 3.3 | 5; 4.4 | 6; 3.7 | 17; 9.3 | 30; 5.8 | |
No | 1; 1.6 | 3; 2.7 | 10; 6.1 | 11; 6.0 | 25; 4.8 | |
Yes | 58; 95.1 | 105; 92.9 | 148; 90.2 | 154; 84.6 | 465; 89.4 |
Dental Technician (n; %) | Dentist (n; %) | Student (n; %) | No Connection to Dentistry (n; %) | Total (n; %) | p-Value | |
---|---|---|---|---|---|---|
Figure 1 | ||||||
Middle | 41; 67.2 | 70; 61.9 | 95; 57.9 | 73; 40.1 | 279; 53.7 | <0.0001 |
Left | 1; 1.6 | 0; 0 | 2; 1.2 | 10; 5.5 | 13; 2.5 | |
Right | 19; 31.1 | 43; 38.1 | 67; 40.9 | 99; 54.4 | 228; 43.8 | |
Figure 2 | 0.01 | |||||
Middle | 39; 63.9 | 67; 59.3 | 85; 51.8 | 72; 39. | 263; 50.6 | |
Left | 1; 1.6 | 0; 0 | 11; 6.7 | 9; 4.9 | 21; 4.0 | |
Right | 21; 34.4 | 46; 40.7 | 68; 41.5 | 101; 55.5 | 236; 45.4 | |
Figure 3 | 0.03 | |||||
Middle | 25; 41.0 | 47; 41.6 | 83; 50.6 | 105; 57.7 | 260; 50.0 | |
Left | 4; 6.6 | 2; 1.8 | 6; 3.7 | 9; 4.9 | 21; 4.0 | |
Right | 32; 52.5 | 64; 56.6 | 75; 45.7 | 68; 37.4 | 239; 46.0 |
Dental Technician (n; %) | Dentist (n; %) | Student (n; %) | No Connection to Dentistry (n; %) | Total (n; %) | p-Value | |
---|---|---|---|---|---|---|
Appearance of teeth; scale | 0.23 | |||||
1 (least important) | 1; 1.6 | 3; 2.7 | 2; 1.2 | 1; 05 | 7; 1.3 | |
2 | 1; 1.6 | 0; 0 | 2; 1.2 | 1; 0.5 | 4; 0.8 | |
3 | 3; 4.9 | 1; 0.9 | 7; 4.3 | 9; 4.9 | 20; 3.8 | |
4 | 15; 24.6 | 19; 16.8 | 35; 21.3 | 53; 29.1 | 122; 23.5 | |
5 (extremely important) | 41; 67.2 | 90; 79.6 | 118; 72.0 | 118; 64.8 | 367; 70.6 | |
Teeth alignment; scale | 0.12 | |||||
1 (least important) | 0; 0 | 2; 1.8 | 2; 1.2 | 2; 1.1 | 6; 1.2 | |
2 | 3; 4.9 | 2; 1.8 | 3; 1.8 | 3; 1.6 | 11; 2.1 | |
3 | 2; 3.3 | 3; 2.7 | 9; 5.5 | 22; 12.1 | 36; 6.9 | |
4 | 16; 26.2 | 35; 31.0 | 53; 32.3 | 59; 32.4 | 163; 31.3 | |
5 (extremely important) | 40; 65.6 | 71; 62.8 | 97; 59.1 | 96; 5.7 | 304; 58.5 | |
Teeth visibility; scale | <0.0001 | |||||
1 (least important) | 0; 0 | 1; 0.9 | 2; 1.2 | 3; 1.6 | 6; 1.2 | |
2 | 1; 1.6 | 2; 1.8 | 9; 5.5 | 12; 6.6 | 24; 4.6 | |
3 | 12; 19.7 | 5; 4.4 | 22; 13.4 | 41; 22.5 | 80; 15.4 | |
4 | 26; 42.6 | 34; 30.1 | 68; 41.5 | 50; 27.5 | 178; 34.2 | |
5 (extremely important) | 22; 36.1 | 71; 62.8 | 63; 38.4 | 76; 41.8 | 232; 44.6 | |
Teeth color; scale. | 0.012 | |||||
1 (least important) | 0; 0 | 2; 1.8 | 1; 0.6 | 4; 2.2 | 7; 1.3 | |
2 | 1; 1.6 | 2; 1.8 | 3; 1.8 | 2; 1.1 | 8; 1.5 | |
3 | 5; 8.2 | 16; 14.2 | 12; 7.3 | 12; 6.6 | 45; 8.7 | |
4 | 16; 26.2 | 43; 38.1 | 72; 43.9 | 48; 26.4 | 179; 34.4 | |
5 (extremely important) | 39; 63.9 | 50; 44.2 | 76; 46.3 | 116; 63.7 | 281; 54.0 | |
Teeth shape; scale | 0.79 | |||||
1 (least important) | 1; 1.6 | 1; 0.9 | 2; 1.2 | 3; 1.6 | 7; 1.3 | |
2 | 5; 8.2 | 3; 2.7 | 6; 3.7 | 8; 4.4 | 22; 4.2 | |
3 | 13; 21.3 | 16; 14.2 | 26; 15.9 | 35; 19.2 | 90; 17.3 | |
4 | 20; 32.8 | 48; 42.5 | 71; 43.3 | 65; 35.7 | 204; 39.2 | |
5 (extremely important) | 22; 36.1 | 45; 39.8 | 59; 36.0 | 71; 39.0 | 197; 37.9 | |
Gums visibility; scale | <0.0001 | |||||
1 (least important) | 3; 4.9 | 2; 1.8 | 5; 3.0 | 14; 7.7 | 24; 4.6 | |
2 | 8; 13.1 | 6; 5.3 | 9; 5.5 | 25; 13.7 | 48; 9.2 | |
3 | 17; 27.9 | 10; 8.8 | 38; 23.2 | 42; 23.1 | 107; 20.6 | |
4 | 16; 26.2 | 35; 31.0 | 48; 29.3 | 45; 24.7 | 144; 27.7 | |
5 (extremely important) | 17; 2.9 | 60; 53.1 | 64; 39.0 | 56; 30.8 | 197; 37.9 | |
Gums appearance; scale | <0.0001 | |||||
1 (least important) | 1; 1.6 | 3; 2.7 | 3; 1.8 | 9; 4.9 | 16; 3.1 | |
2 | 4; 6.6 | 6; 5.3 | 8; 4.9 | 21; 11.5 | 39; 7.5 | |
3 | 21; 34.4 | 16; 14.2 | 31; 18.9 | 50; 27.5 | 118; 22.7 | |
4 | 20; 32.8 | 28; 24.8 | 46; 28.0 | 49; 26.9 | 143; 27.5 | |
5 (extremely important) | 15; 24.6 | 60; 53.1 | 76; 46.3 | 53; 29.1 | 204; 39.2 | |
Gums symmetry; scale | <0.0001 | |||||
1 (least important) | 0; 0 | 2; 1.8 | 6; 3.7 | 12; 6.6 | 20; 3.8 | |
2 | 6; 9.8 | 3; 2.7 | 15; 9.1 | 25; 13.7 | 49; 9.4 | |
3 | 15; 24.6 | 14; 12.4 | 33; 20.1 | 52; 28.6 | 114; 21.9 | |
4 | 23; 37.7 | 36; 31.9 | 48; 29.3 | 51; 28.0 | 158; 30.4 | |
5 (extremely important) | 17; 27.9 | 58; 51.3 | 62; 37.8 | 42; 23.1 | 179; 34.4 | |
Maxilla width; scale | 0.194 | |||||
1 (least important) | 0; 0 | 1; 0.9 | 6; 3.7 | 7; 3.8 | 14; 2.7 | |
2 | 7; 11.5 | 7; 6.2 | 13; 7.9 | 17; 9.3 | 44; 8.5 | |
3 | 23; 37.7 | 24; 21.2 | 48; 29.3 | 58; 31.9 | 153; 29.4 | |
4 | 20; 32.8 | 49; 43.4 | 64; 39.0 | 68; 37.4 | 201; 38.7 | |
5 (extremely important) | 11; 18.0 | 32; 28.3 | 33; 20.1 | 32; 17.6 | 108; 20.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buduru, S.; Cofar, F.; Mesaroș, A.; Tăut, M.; Negucioiu, M.; Almășan, O. Perceptions in Digital Smile Design: Assessing Laypeople and Dental Professionals’ Preferences Using an Artificial-Intelligence-Based Application. Dent. J. 2024, 12, 104. https://doi.org/10.3390/dj12040104
Buduru S, Cofar F, Mesaroș A, Tăut M, Negucioiu M, Almășan O. Perceptions in Digital Smile Design: Assessing Laypeople and Dental Professionals’ Preferences Using an Artificial-Intelligence-Based Application. Dentistry Journal. 2024; 12(4):104. https://doi.org/10.3390/dj12040104
Chicago/Turabian StyleBuduru, Smaranda, Florin Cofar, Anca Mesaroș, Manuela Tăut, Marius Negucioiu, and Oana Almășan. 2024. "Perceptions in Digital Smile Design: Assessing Laypeople and Dental Professionals’ Preferences Using an Artificial-Intelligence-Based Application" Dentistry Journal 12, no. 4: 104. https://doi.org/10.3390/dj12040104
APA StyleBuduru, S., Cofar, F., Mesaroș, A., Tăut, M., Negucioiu, M., & Almășan, O. (2024). Perceptions in Digital Smile Design: Assessing Laypeople and Dental Professionals’ Preferences Using an Artificial-Intelligence-Based Application. Dentistry Journal, 12(4), 104. https://doi.org/10.3390/dj12040104