Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ti Discs and Group Allocation
- (1)
- Ultrasonic scaling with a metal tip at a low power setting;
- (2)
- Ultrasonic scaling with a metal tip at a medium power setting;
- (3)
- Ultrasonic scaling with a PEEK tip at a low power setting;
- (4)
- Ultrasonic scaling with a PEEK tip at a medium power setting;
- (5)
- Air-polishing with erythritol powder;
- (6)
- Ti brush only;
- (7)
- Active control group: Rinsing with air–water spray using a dental triplex only.
- Subgroup (a)
- Trace elements were analysed by inductively coupled plasma mass spectrometry (ICP-MS).
- Subgroup (b)
- Ti particle size was measured with a scanning electron microscope (SEM) with the aid of energy-dispersive X-ray spectrometry (EDS) for particle differentiation.
2.2. Mechanical Instrumentation on Ti Surface
2.2.1. Ultrasonic Scaling–Metal and PEEK Tip
2.2.2. Air-Polishing
2.2.3. Ti Brush
2.2.4. Control
2.3. Particle Analysis—Scanning Electron Microscopy
2.3.1. Sample Preparation for SEM—Particle Filtration and Collection
2.3.2. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
2.3.3. Data Collection and Interpretation
2.4. Trace Element Analysis—Inductively Coupled Plasma Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. Scanning Electron Microscopy and Energy-Dispersive Spectroscopy
3.1.1. Ti Disc and Instruments
3.1.2. Particle Identification—Energy-Dispersive Spectroscopy
Metal Tip Ultrasonic Scaling
PEEK Tip Ultrasonic Scaling
Ti Brush
Erythritol Air-Polishing
Control
3.1.3. Particle Analysis
Size of Released Ti Particles
Quantity of Released Ti Particles—Particle Count
3.2. Trace Element Analysis—Inductively Coupled Plasma Mass Spectrometry
4. Discussion
4.1. Size of Ti Particles
4.2. Quantity of Ti Particles
4.3. Limitations of the Current Study
- The reported size and quantity of Ti from the current study can be applied in future in vitro and in vivo analyses to identify the potential role of Ti released during mechanical decontamination procedures.
- It has been reported in the literature and by the current study that metal instruments can also generate other non-Ti metal particles. The quantity, as well as the potential pro-inflammatory and cellular response, of non-Ti metal particles should be evaluated to aid in justifying the instrument of choice in the clinical setting.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Periodontol. 2018, 89, S267–S290. [Google Scholar] [CrossRef] [PubMed]
- Zitzmann, N.U.; Berglundh, T. Definition and prevalence of peri-implant diseases. J. Clin. Periodontol. 2008, 35, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S313–S318. [Google Scholar] [CrossRef] [PubMed]
- Atieh, M.A.; Alsabeeha, N.H.M.; Faggion, C.M., Jr.; Duncan, W.J. The Frequency of Peri-Implant Diseases: A Systematic Review and Meta-Analysis. J. Periodontol. 2013, 84, 1586–1598. [Google Scholar] [CrossRef] [PubMed]
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wang, T.; Pu, Y.; Tang, Z.; Meng, H. Influence on proliferation and adhesion of human gingival fibroblasts from different titanium surface decontamination treatments: An in vitro study. Arch. Oral Biol. 2018, 87, 204–210. [Google Scholar] [CrossRef]
- Diaz, P.; Gonzalo, E.; Gil Villagra, L.J.; Miegimolle, B.; Suarez, M.J. What is the prevalence of peri-implantitis? A systematic review and meta-analysis. BMC Oral Health 2022, 22, 449. [Google Scholar] [CrossRef]
- Belibasakis, G.N. Microbiological and immuno-pathological aspects of peri-implant diseases. Arch. Oral Biol. 2014, 59, 66–72. [Google Scholar] [CrossRef]
- Heitz-Mayfield, L.J.A.; Lang, N.P. Comparative biology of chronic and aggressive periodontitis vs. peri-implantitis. Periodontology 2000 2010, 53, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Hirooka, H.; Polyzois, I.; Kelekis-Cholakis, A.; Wang, H.-L. Diagnosis and non-surgical treatment of peri-implant diseases and maintenance care of patients with dental implants—Consensus report of working group 3. Int. Dent. J. 2019, 69, 12–17. [Google Scholar] [CrossRef]
- Darby, I. Risk factors for periodontitis & peri-implantitis. Periodontology 2000 2022, 90, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Mombelli, A. Maintenance therapy for teeth and implants. Periodontology 2000 2019, 79, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Jepsen, S.; Berglundh, T.; Genco, R.; Aass, A.M.; Demirel, K.; Derks, J.; Figuero, E.; Giovannoli, J.L.; Goldstein, M.; Lambert, F.; et al. Primary prevention of peri-implantitis: Managing peri-implant mucositis. J. Clin. Periodontol. 2015, 42, S152–S157. [Google Scholar] [CrossRef] [PubMed]
- Algraffee, H.; Borumandi, F.; Cascarini, L. Peri-implantitis. Br. J. Oral Maxillofac. Surg. 2012, 50, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Figuero, E.; Graziani, F.; Sanz, I.; Herrera, D.; Sanz, M. Management of peri-implant mucositis and peri-implantitis. Periodontology 2000 2014, 66, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Jepsen, S.; Obreja, K.; Galarraga-Vinueza, M.E.; Ramanauskaite, A. Surgical therapy of peri-implantitis. Periodontology 2000 2022, 88, 145–181. [Google Scholar] [CrossRef] [PubMed]
- Louropoulou, A.; Slot, D.E.; Van der Weijden, F.A. Titanium surface alterations following the use of different mechanical instruments: A systematic review. Clin. Oral Implant. Res. 2012, 23, 643–658. [Google Scholar] [CrossRef] [PubMed]
- Tawse-Smith, A.; Atieh, M.A.; Tompkins, G.; Duncan, W.J.; Reid, M.R.; Stirling, C.H. The effect of piezoelectric ultrasonic instrumentation on titanium discs: A microscopy and trace elemental analysis in vitro study. Int. J. Dent. Hyg. 2016, 14, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Eger, M.; Sterer, N.; Liron, T.; Kohavi, D.; Gabet, Y. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci. Rep. 2017, 7, 39612. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Jacobs, J.J. Biologic effects of implant debris. Bull. Hosp. Jt. Dis. 2009, 67, 182–188. [Google Scholar]
- Goodman, S.B.; Ma, T.; Chiu, R.; Ramachandran, R.; Smith, R.L. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials 2006, 27, 6096–6101. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Sharkey, P.F.; Tuan, R.S. Particle bioreactivity and wear-mediated osteolysis. J. Arthroplast. 2004, 19, 1028–1038. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Kaminek, P.; Ticha, V.; Rihakova, P.; Ditmar, R. Particle disease. A comprehensive theory of periprosthetic osteolysis: A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2002, 146, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.J.; Roebuck, K.A.; Archibeck, M.; Hallab, N.J.; Glant, T.T. Osteolysis: Basic Science. Clin. Orthop. Relat. Res. 2001, 393, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Pioletti, D.P.; Takei, H.; Kwon, S.Y.; Wood, D.; Sung, K.L.P. The cytotoxic effect of titanium particles phagocytosed by osteoblasts. J. Biomed. Mater. Res. A 1999, 46, 399–407. [Google Scholar] [CrossRef]
- Berryman, Z.; Bridger, L.; Hussaini, H.M.; Rich, A.M.; Atieh, M.; Tawse-Smith, A. Titanium particles: An emerging risk factor for peri-implant bone loss. Saudi Dent. J. 2019, 32, 283–292. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, M.; Kelk, P.; Belibasakis, G.N.; Bylund, D.; Thorén, M.M.; Johansson, A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J. Periodontal Res. 2016, 52, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Wachi, T.; Shuto, T.; Shinohara, Y.; Matono, Y.; Makihira, S. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption. Toxicology 2015, 327, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Taira, M.; Kagiya, T.; Harada, H.; Sasaki, M.; Kimura, S.; Narushima, T.; Nezu, T.; Araki, Y. Microscopic observations and in-flammatory cytokine productions of human macrophage phagocytising submicron titanium particles. J. Mater. Sci. Mater. Med. 2010, 21, 267–275. [Google Scholar] [CrossRef]
- Noronha Oliveira, M.; Schunemann, W.; Mathew, M.; Henriques, B.; Magini, R.; Teughels, W.; Souza, J. Can degradation products released from dental implants affect peri-implant tissues? J. Periodontal. Res. 2018, 53, 1–11. [Google Scholar] [CrossRef]
- Suárez-López del Amo, F.; Garaicoa-Pazmiño, C.; Fretwurst, T.; Castilho, R.M.; Squarize, C.H. Dental implants-associated release of titanium particles: A systematic review. Clin. Oral Implant. Res. 2018, 29, 1085–1100. [Google Scholar] [CrossRef] [PubMed]
- Fragkioudakis, I.; Tseleki, G.; Doufexi, A.-E.; Sakellari, D. Current Concepts on the Pathogenesis of Peri-implantitis: A Narrative Review. Eur. J. Dent. 2021, 15, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Olmedo, D.; Fernández, M.M.; Guglielmotti, M.B.; Cabrini, R.L. Macrophages Related to Dental Implant Failure. Implant. Dent. 2003, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.G.; Koh, H.S.; Kluess, D.; O’Connor, D.; Mathur, A.; Truskey, G.A.; Rubin, J.; Zhou, D.X.F.; Sung, K.-L.P. Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 4578–4583. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, R.; Watari, F.; Takashi, N.; Tanimura, Y.; Uo, M.; Totsuka, Y. Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials 2002, 23, 3757–3764. [Google Scholar] [CrossRef] [PubMed]
- Obando-Pereda, G.; Fischer, L.; Stach-Machado, D. Titanium and zirconia particle-induced pro-inflammatory gene expression in cultured macrophages and osteolysis, inflammatory hyperalgesia and edema in vivo. Life Sci. 2014, 97, 96–106. [Google Scholar] [CrossRef]
- Pasold, J.; Markhoff, J.; Tillmann, J.; Krogull, M.; Pisowocki, P.; Bader, R. Direct influence of titanium and zirconia particles on the morphology and functionality of mature human osteoclasts. J. Biomed. Mater. Res. Part A 2017, 105, 2608–2615. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G., Jr.; Valderrama, P.; Burbano, M.; Blansett, J.; Levine, R.; Kessler, H.; Rodrigues, D.C. Foreign Bodies Associated with Peri-Implantitis Human Biopsies. J. Periodontol. 2015, 86, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Siddiqi, A.; Duncan, W.J.; Girvan, L.; Hussaini, H.M.; Tawse-Smith, A. Titanium Particles in Peri-Implant Tissues: Surface Analysis and Histologic Response. Clin. Adv. Periodontics 2012, 2, 232–238. [Google Scholar] [CrossRef]
- Flatebø, R.S.; Høl, P.J.; Leknes, K.N.; Kosler, J.; Lie, S.A.; Gjerdet, N.R. Mapping of titanium particles in peri-implant oral mucosa by Laser Ablation Inductively Coupled Plasma Mass Spectrometry and high-resolution optical darkfield microscopy. J. Oral Pathol. Med. 2011, 40, 412–420. [Google Scholar] [CrossRef]
- Tanaka, N.; Ichinose, S.; Kimijima, Y.; Mimura, M. Investigation of titanium leak to bone tissue surrounding dental titanium implant: Electron microscopic findings and analysis by electron diffraction. Med. Electron. Microsc. 2000, 33, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Revell, P.A. The combined role of wear particles, macrophages and lymphocytes in the loosening of total joint prostheses. J. R. Soc. Interface 2008, 5, 1263–1278. [Google Scholar] [CrossRef] [PubMed]
- Harrel, S.K.; Wilson, T.G.; Pandya, M.; Diekwisch, T.G.H. Titanium particles generated during ultrasonic scaling of implants. J. Periodontol. 2019, 90, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Mensi, M.; Cochis, A.; Sordillo, A.; Uberti, F.; Rimondini, L. Biofilm Removal and Bacterial Re-Colonization Inhibition of a Novel Erythritol/Chlorhexidine Air-Polishing Powder on Titanium Disks. Materials 2018, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
Instrumentation | Sample Size | Mean Diameter (SD) (μm) | Comparison against | Mean Difference (μm) | SE | Sig. * |
---|---|---|---|---|---|---|
USM Low | 10 | 1.06 (0.16) | USM Medium | 0.09 | 0.106 | p = 0.98 |
USP Low | 0.17 | 0.106 | p = 0.46 | |||
USP Medium | −0.19 | 0.016 | p = 0.71 | |||
AP Erythritol | −0.94 | 0.106 | p < 0.05 * | |||
Ti Brush | 0.01 | 0.106 | p = 1.00 | |||
Control | −2.24 | 0.109 | p < 0.05 * | |||
USM Medium | 10 | 1.15 (0.14) | USP Low | 0.26 | 0.106 | p = 0.11 |
USP Medium | −0.10 | 0.106 | p = 0.99 | |||
AP Erythritol | −0.85 | 0.106 | p < 0.05 * | |||
Ti Brush | 0.10 | 0.106 | p = 0.98 | |||
Control | −2.15 | 0.109 | p < 0.05 * | |||
USP Low | 10 | 0.89 (0.27) | USP Medium | −0.36 | 0.106 | p < 0.05 * |
AP Erythritol | −1.11 | 0.106 | p < 0.05 * | |||
Ti Brush | −0.16 | 0.106 | p = 0.50 | |||
Control | −2.41 | 0.109 | p < 0.05 * | |||
USP Medium | 10 | 1.25 (0.24) | AP Erythritol | −0.75 | 0.106 | p < 0.05 * |
Ti Brush | 0.20 | 0.106 | p = 0.68 | |||
Control | −2.05 | 0.109 | p < 0.05 * | |||
AP Erythritol | 10 | 2.00 (0.54) | Ti Brush | −0.75 | 0.106 | p < 0.05 * |
Control | −2.05 | 0.109 | p < 0.05 * | |||
Ti Brush | 10 | 1.05 (0.11) | Control | −2.25 | 0.109 | p < 0.05 * |
Control | 10 | 3.30 (1.28) | - | - | - | - |
Instrumentation | Sample Size | Mean Particle Count (SD) | Comparison against | Mean Difference | SE | Sig. * |
---|---|---|---|---|---|---|
USM Low | 10 | 4043 (1197) | USM Medium | 737 | 0.197 | p = 0.86 |
USP Low | 3968 | 0.197 | p < 0.05 * | |||
USP Medium | 3975 | 0.197 | p < 0.05 * | |||
AP Erythritol | 4035 | 0.197 | p < 0.05 * | |||
Ti Brush | 2797 | 0.197 | p < 0.05 * | |||
Control | 4030 | 0.202 | p < 0.05 * | |||
USM Medium | 10 | 3306 (1352) | USP Low | 3231 | 0.197 | p < 0.05 * |
USP Medium | 3238 | 0.197 | p < 0.05 * | |||
AP Erythritol | 3298 | 0.197 | p < 0.05 * | |||
Ti Brush | 2060 | 0.197 | p < 0.05 * | |||
Control | 3293 | 0.197 | p < 0.05 * | |||
USP Low | 10 | 75 (29) | USP Medium | 7 | 0.197 | p = 1.00 |
AP Erythritol | 67 | 0.197 | p < 0.05 * | |||
Ti Brush | −1171 | 0.197 | p < 0.05 * | |||
Control | 62 | 0.202 | p < 0.05 * | |||
USP Medium | 10 | 68 (23) | AP Erythritol | 60 | 0.197 | p < 0.05 * |
Ti Brush | −1178 | 0.197 | p < 0.05 * | |||
Control | 55 | 0.202 | p < 0.05 * | |||
AP Erythritol | 10 | 8 (1) | Ti Brush | −1238 | 0.197 | p < 0.05 * |
Control | −5 | 0.202 | p = 0.06 | |||
Ti Brush | 10 | 1246 (584) | Control | 1233 | 0.202 | p < 0.05 * |
Control | 10 | 13 (8) | - | - | - | - |
Instrumentation | Sample Size | Mean Ti Mass (SD) (μg) | Comparison against | Mean Difference (μg) | SE | Sig. * |
---|---|---|---|---|---|---|
USM Low | 10 | 34.00 (12.54) | USM Medium | −0.40 | 0.182 | p = 1.00 |
USP Low | 33.34 | 0.182 | p < 0.05 * | |||
USP Medium | 33.11 | 0.182 | p < 0.05 * | |||
AP Erythritol | 33.33 | 0.182 | p < 0.05 * | |||
Ti Brush | 27.55 | 0.182 | p < 0.05 * | |||
Control | 33.81 | 0.182 | p < 0.05 * | |||
USM Medium | 10 | 34.40 (6.08) | USP Low | 33.74 | 0.182 | p < 0.05 * |
USP Medium | 33.51 | 0.182 | p < 0.05 * | |||
AP Erythritol | 33.73 | 0.182 | p < 0.05 * | |||
Ti Brush | 27.95 | 0.182 | p < 0.05 * | |||
Control | 34.21 | 0.182 | p < 0.05 * | |||
USP Low | 10 | 0.66 (0.14) | USP Medium | −0.23 | 0.182 | p = 0.99 |
AP Erythritol | −0.01 | 0.182 | p = 1.00 | |||
Ti Brush | −5.79 | 0.182 | p < 0.05 * | |||
Control | 0.47 | 0.182 | p < 0.05 * | |||
USP Medium | 10 | 0.89 (0.68) | AP Erythritol | 0.22 | 0.182 | p = 1.00 |
Ti Brush | −5.56 | 0.182 | p < 0.05 * | |||
Control | 0.70 | 0.182 | p < 0.05 * | |||
AP Erythritol | 10 | 0.67 (0.12) | Ti Brush | −5.78 | 0.182 | p < 0.05 * |
Control | 0.48 | 0.182 | p < 0.05 * | |||
Ti Brush | 10 | 6.45 (2.03) | Control | 6.26 | 0.182 | p < 0.05 * |
Control | 10 | 0.19 (0.14) | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, A.; Tawse-Smith, A.; Ma, S.; Duncan, W.J.; Reid, M.; Atieh, M.A. Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study. Dent. J. 2024, 12, 123. https://doi.org/10.3390/dj12050123
Kao A, Tawse-Smith A, Ma S, Duncan WJ, Reid M, Atieh MA. Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study. Dentistry Journal. 2024; 12(5):123. https://doi.org/10.3390/dj12050123
Chicago/Turabian StyleKao, Anthony, Andrew Tawse-Smith, Sunyoung Ma, Warwick J. Duncan, Malcolm Reid, and Momen A. Atieh. 2024. "Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study" Dentistry Journal 12, no. 5: 123. https://doi.org/10.3390/dj12050123
APA StyleKao, A., Tawse-Smith, A., Ma, S., Duncan, W. J., Reid, M., & Atieh, M. A. (2024). Quantity and Size of Titanium Particles Released from Different Mechanical Decontamination Procedures on Titanium Discs: An In Vitro Study. Dentistry Journal, 12(5), 123. https://doi.org/10.3390/dj12050123