Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Eligibility Criteria
- (P) Population: Adult patients with stage III-IV periodontitis presenting with residual pockets and intrabony defects with at least 3 mm of intrabony components after the completion of steps I and II of periodontal therapy (causal-related therapy; supra- and sub-gingival instrumentation) [9].
- (I) Intervention: Periodontal regeneration via the use of orally derived stem cells.
- (C) Comparison: All other strategies for periodontal regeneration.
- (O) Outcome measures:
- (S) Types of studies: Only randomized controlled clinical trials (RCTs) were considered.
- Written in English language;
- At least 6 months of follow-up.
- Lack of pre-treatment and post-treatment outcome measures
- Case reports, case series, retrospective studies, animal studies, and in vitro studies.
2.3. Search Strategy
2.4. Study Selection
2.5. Data Extraction for Analysis
- Author(s) and year of publication;
- Number of patients included in the study;
- Number of defects treated in both the test and control groups;
- Type of stem cells used in the test group;
- Type of bone defect treated;
- Type of treatment of the test group;
- Type of treatment of the control group;
- CAL gain;
- PPD reduction;
- GR;
- RBG;
- Study duration.
2.6. Risk of Bias of Individual Studies
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Risk of Bias
3.3. Study Characteristics
- Test: ten intrabony periodontal defects were treated with GMSCs associated with a β-TCP scaffold and a collagen membrane.
- Control: ten intrabony periodontal defects were treated with β-TCP and collagen membrane alone.
- Test: nine intrabony defects were treated with ABMMSCs embedded on a collagen scaffold, enriched with a fibrin lysate and autologous platelets, using the minimally invasive surgical technique (MIST) [9].
- Control B: ten intrabony defects were treated using MIST, with only the collagen scaffold enriched with fibrin lysate and autologous platelets.
- Control C: eight intrabony defects were treated with the MIST technique alone.
- Test: 20 intrabony defects were treated with heterologous bone graft and the adjunctive use of PDLSCs.
- Control: 21 intrabony defects were treated with heterologous bone grafts only.
- Test: 15 intrabony defects were accessed with the MIST technique and were treated with DPSCs soaked onto a collagen sponge.
- Control: 14 intrabony defects were treated with only the insertion of a collagen sponge using the MIST technique.
- Test: 10 intrabony defects were treated with PDLSCs together with a heterologous bone substitute.
- Control: 10 intrabony defects were treated with a heterologous bone substitute alone.
3.4. Results of the Analyses
- CAL gain: A total of four studies [54,55,56,57] compared the post-operative CAL gain, with a minimum of a 6-month follow-up between the test and control groups. Very high heterogeneity was encountered between the groups (p < 0.001; I2 = 90%). The meta-analysis conducted using a random-effect model revealed a non-statistically significant improvement in the test group [MD = 1.05; 95% CI (−0.88, 2.97) p = 0.29] (Figure 3).
- PPD reduction: A total of four studies [54,55,56,57] compared post-operative PPD reductions, with a minimum of a 6-month follow-up between the experimental group and the control group. There was a high heterogeneity between the groups (p < 0.001; I2 = 83%). A non-statistically significant adjunctive improvement in PPD reduction in the experimental group [MD = 1.32; 95% CI (−0.25, 2.88) p = 0.10] was shown via the meta-analysis (Figure 4).
- GR: three studies [55,56,57] compared GR between the test and the control arm with a 12-month follow-up. The meta-analysis results displayed low heterogeneity between the groups (p = 0.37; I2 = 0%), so, using a random effect model, they revealed a non-statistically significant difference between the test and control groups [MD = −0.08; 95% CI (−0.79, 0.63) p = 0.83] (Figure 5).
- RBG: A total of three studies [19,55,56] compared RBG between the test group and the control group. The heterogeneity was high between the groups (p < 0.01; I2 = 84%). There was no statistically significant difference in RBG between the test and control groups [MD = 0.50; 95% CI (−0.88, 1.88) p = 0.48] (Figure 6).
4. Discussion
5. Conclusions
6. Indications for Future Research
- RCTs evaluating the clinical efficacy, as well as patient-related outcomes and cost–benefit analyses of periodontal regeneration using dento-periodontal stem cells.
- This RCTs should be designed with an increased number of patients enrolled and a long-term follow-up.
- Studies focusing on clinical protocols to obtain an efficient number of MSCs from the oral cavity.
- Studies focusing on side effects in both the short and long term via the use of MSCs.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef]
- Morales, A.; Strauss, F.J.; Hämmerle, C.H.F.; Romandini, M.; Cavalla, F.; Baeza, M.; Sanz, M.; Gamonal, J. Performance of the 2017 AAP/EFP case definition compared with the CDC/AAP definition in population-based studies. J. Periodontol. 2022, 93, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Loos, B.G.; Needleman, I. Endpoints of active periodontal therapy. J. Clin. Periodontol. 2020, 47, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Matuliene, G.; Pjetursson, B.E.; Salvi, G.E.; Schmidlin, K.; Brägger, U.; Zwahlen, M.; Lang, N.P. Influence of residual pockets on progression of periodontitis and tooth loss: Results after 11 years of maintenance. J. Clin. Periodontol. 2008, 35, 685–695. [Google Scholar] [CrossRef]
- Marruganti, C.; Romandini, M.; Gaeta, C.; Cagidiaco, E.F.; Discepoli, N.; Parrini, S.; Graziani, F.; Grandini, S. Healthy lifestyles are associated with a better response to periodontal therapy: A prospective cohort study. J. Clin. Periodontol. 2023, 50, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotti, F.; Baima, G.; Rendinelli, M.; Citterio, F.; Mariani, G.M.; Mussano, F.; Romano, F.; Romandini, M.; Aimetti, M. Pocket closure after repeated subgingival instrumentation: A stress test to the EFP guideline for stage III-IV periodontitis. Clin. Oral. Investig. 2023, 27, 6701–6708. [Google Scholar] [CrossRef] [PubMed]
- Suvan, J.; Leira, Y.; Moreno Sancho, F.M.; Graziani, F.; Derks, J.; Tomasi, C. Subgingival instrumentation for treatment of periodontitis. A systematic review. J. Clin. Periodontol. 2020, 47, 155–175. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S. Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef]
- Nibali, L.; Koidou, V.P.; Nieri, M.; Barbato, L.; Pagliaro, U.; Cairo, F. Regenerative surgery versus access flap for the treatment of intra-bony periodontal defects: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 320–351. [Google Scholar] [CrossRef]
- Aimetti, M.; Baima, G.; Aliyeva, N.; Lorenzetti, V.; Citterio, F.; Franco, F.; Di Scipio, F.; Berta, G.N.; Romano, F. Influence of locally delivered doxycycline on the clinical and molecular inflammatory status of intrabony defects prior to periodontal regeneration: A double-blind randomized controlled trial. J. Periodontal Res. 2023, 58, 1096–1104. [Google Scholar] [CrossRef]
- Sculean, A.; Nikolidakis, D.; Nikou, G.; Ivanovic, A.; Chapple, I.L.C.; Stavropoulos, A. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review. Periodontology 2000 2015, 68, 182–216. [Google Scholar] [CrossRef] [PubMed]
- Aimetti, M.; Fratini, A.; Manavella, V.; Giraudi, M.; Citterio, F.; Ferrarotti, F.; Mariani, G.M.; Cairo, F.; Baima, G.; Romano, F. Pocket resolution in regenerative treatment of intrabony defects with papilla preservation techniques: A systematic review and meta-analysis of randomized clinical trials. J. Clin. Periodontol. 2021, 48, 843–858. [Google Scholar] [CrossRef]
- Calzavara, D.; Morante, S.; Sanz, J.; Noguerol, F.; Gonzalez, J.; Romandini, M.; Sanz, M. The apically incised coronally advanced surgical technique (AICAST) for periodontal regeneration in isolated defects: A case series. Quintessence Int. 2021, 53, 24–34. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: A randomized-controlled trial in intra-bony defects. J. Clin. Periodontol. 2011, 38, 365–373. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Improved wound stability with a modified minimally invasive surgical technique in the regenerative treatment of isolated interdental intrabony defects. J. Clin. Periodontol. 2009, 36, 157–163. [Google Scholar] [CrossRef]
- Nibali, L.; Sultan, D.; Arena, C.; Pelekos, G.; Lin, G.-H.; Tonetti, M. Periodontal infrabony defects: Systematic review of healing by defect morphology following regenerative surgery. J. Clin. Periodontol. 2021, 48, 101–114. [Google Scholar] [CrossRef]
- Nibali, L.; Mehta, J.; Al-Shemeri, D.; Anoixiadou, S.; Parashis, A.; Vouros, I. Association between defect morphology and healing of intrabony defects treated with minimally invasive non-surgical therapy: A pilot exploratory analysis of two cohorts. J. Periodontal Res. 2023, 58, 708–714. [Google Scholar] [CrossRef]
- Chen, F.-M.; Gao, L.-N.; Tian, B.-M.; Zhang, X.-Y.; Zhang, Y.-J.; Dong, G.-Y.; Lu, H.; Chu, Q.; Xu, J.; Yu, Y.; et al. Treatment of periodontal intrabony defects using autologous periodontal ligament stem cells: A randomized clinical trial. Stem Cell Res. Ther. 2016, 7, 33. [Google Scholar] [CrossRef]
- Kanemoto, Y.; Miyaji, H.; Nishida, E.; Miyata, S.; Mayumi, K.; Yoshino, Y.; Kato, A.; Sugaya, T.; Akasaka, T.; Nathanael, A.J.; et al. Periodontal tissue engineering using an apatite/collagen scaffold obtained by a plasma- and precursor-assisted biomimetic process. J. Periodontal Res. 2022, 57, 205–218. [Google Scholar] [CrossRef]
- Bianchi, S.; Bernardi, S.; Simeone, D.; Torge, D.; Macchiarelli, G.; Marchetti, E. Proliferation and Morphological Assessment of Human Periodontal Ligament Fibroblast towards Bovine Pericardium Membranes: An In Vitro Study. Materials 2022, 15, 8284. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Cao, J.; Wang, Y. Rethinking regeneration: Empowerment of stem cells by inflammation. Cell Death Differ. 2015, 22, 1891–1892. [Google Scholar] [CrossRef]
- Gao, P.; Kajiya, M.; Motoike, S.; Ikeya, M.; Yang, J. Application of mesenchymal stem/stromal cells in periodontal regeneration: Opportunities and challenges. Jpn. Dent. Sci. Rev. 2024, 60, 95–108. [Google Scholar] [CrossRef]
- Fernandes, S.; Chong, J.J.H.; Paige, S.L.; Iwata, M.; Torok-Storb, B.; Keller, G.; Reinecke, H.; Murry, C.E. Comparison of Human Embryonic Stem Cell-Derived Cardiomyocytes, Cardiovascular Progenitors, and Bone Marrow Mononuclear Cells for Cardiac Repair. Stem Cell Rep. 2015, 5, 753–762. [Google Scholar] [CrossRef]
- Nakamura, K.; Murry, C.E. Function Follows Form—A Review of Cardiac Cell Therapy. Circ. J. 2019, 83, 2399–2412. [Google Scholar] [CrossRef] [PubMed]
- Kaigler, D.; Pagni, G.; Park, C.H.; Braun, T.M.; Holman, L.A.; Yi, E.; Tarle, S.A.; Bartel, R.L.; Giannobile, W.V. Stem Cell Therapy for Craniofacial Bone Regeneration: A Randomized, Controlled Feasibility Trial. Cell Transpl. 2013, 22, 767–777. [Google Scholar] [CrossRef]
- Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.; et al. Stem cell-based therapy for human diseases. Sig. Transduct. Target. Ther. 2022, 7, 272. [Google Scholar] [CrossRef]
- Han, P.; Johnson, N.; Abdal-Hay, A.; Moran, C.S.; Salomon, C.; Ivanovski, S. Effects of periodontal cells-derived extracellular vesicles on mesenchymal stromal cell function. J. Periodontal Res. 2023, 58, 1188–1200. [Google Scholar] [CrossRef]
- Shimizu, Y.; Takeda-Kawaguchi, T.; Kuroda, I.; Hotta, Y.; Kawasaki, H.; Hariyama, T.; Shibata, T.; Akao, Y.; Kunisada, T.; Tatsumi, J.; et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis. J. Periodontal Res. 2022, 57, 162–172. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Deng, J.-J.; Jiang, Q.-L.; Wang, C.-L.; Zhang, L.; Li, T.; Jiang, J. Thyrotropin inhibits osteogenic differentiation of human periodontal ligament stem cells. J. Periodontal Res. 2023, 58, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Li, Q.; Sun, X.; Yin, Y. O-GlcNAcylation of TLR4 inhibits osteogenic differentiation of periodontal ligament stem cells. J. Periodontal Res. 2024, 59, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef]
- Seo, B.-M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.-Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Roato, I.; Baima, G.; Orrico, C.; Mosca Balma, A.; Alotto, D.; Romano, F.; Ferracini, R.; Aimetti, M.; Mussano, F. Senescent Markers Expressed by Periodontal Ligament-Derived Stem Cells (PDLSCs) Harvested from Patients with Periodontitis Can Be Rejuvenated by RG108. Biomedicines 2023, 11, 2535. [Google Scholar] [CrossRef] [PubMed]
- Melcher, A.H. On the repair potential of periodontal tissues. J. Periodontol. 1976, 47, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Karring, T.; Nyman, S.; Lindhe, J. Healing following implantation of periodontitis affected roots into bone tissue. J. Clin. Periodontol. 1980, 7, 96–105. [Google Scholar] [CrossRef]
- Huang, G.T.-J.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Z.; Xi, X.; Zhao, F.; Liu, H.; Liu, D. Cellular communication network factor 1 interlinks autophagy and ERK signaling to promote osteogenesis of periodontal ligament stem cells. J. Periodontal Res. 2022, 57, 1169–1182. [Google Scholar] [CrossRef]
- Iwata, T.; Kaneda-Ikeda, E.; Takahashi, K.; Takeda, K.; Nagahara, T.; Kajiya, M.; Sasaki, S.; Ishida, S.; Yoshioka, M.; Matsuda, S.; et al. Regulation of osteogenesis in bone marrow-derived mesenchymal stem cells via histone deacetylase 1 and 2 co-cultured with human gingival fibroblasts and periodontal ligament cells. J. Periodontal Res. 2023, 58, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Chauca-Bajaña, L.; Velasquez-Ron, B.; Tomás-Carmona, I.; Camacho-Alonso, F.; Pérez-Jardón, A.; Pérez-Sayáns, M. Regeneration of periodontal bone defects with mesenchymal stem cells in animal models. Systematic review and meta-analysis. Odontology 2023, 111, 105–122. [Google Scholar] [CrossRef]
- Nagahara, T.; Yoshimatsu, S.; Shiba, H.; Kawaguchi, H.; Takeda, K.; Iwata, T.; Mizuno, N.; Fujita, T.; Kurihara, H. Introduction of a mixture of β-tricalcium phosphate into a complex of bone marrow mesenchymal stem cells and type I collagen can augment the volume of alveolar bone without impairing cementum regeneration. J. Periodontol. 2015, 86, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, M.; Xu, X.; Wu, Z.; Tao, J.; Yin, F.; Luo, K.; Jiang, J. Cementum protein 1 gene-modified adipose-derived mesenchymal stem cell sheets enhance periodontal regeneration in osteoporosis rat. J. Periodontal Res. 2023, 58, 755–768. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X.; Wang, X.; Wang, X.; Zhang, J.; Gao, Y.; Pan, J.; Wang, S. Identifying genes for regulating osteogenic differentiation of human periodontal ligament stem cells in inflammatory environments by bioinformatics analysis. J. Periodontal Res. 2023, 59, 311–324. [Google Scholar] [CrossRef]
- Sun, L.; Du, X.; Kuang, H.; Sun, H.; Luo, W.; Yang, C. Stem cell-based therapy in periodontal regeneration: A systematic review and meta-analysis of clinical studies. BMC Oral. Health 2023, 23, 492. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Jia, L.; Xu, N.; Xiao, Y.; Li, Q. The Application of Stem Cells in Tissue Engineering for the Regeneration of Periodontal Defects in Randomized Controlled Trial: A Systematic Review and Meta-Analysis. J. Evid. Based Dent. Pr. 2022, 22, 101713. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. PRISMA Group Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.C.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef]
- Baima, G.; Citterio, F.; Romandini, M.; Romano, F.; Mariani, G.M.; Buduneli, N.; Aimetti, M. Surface decontamination protocols for surgical treatment of peri-implantitis: A systematic review with meta-analysis. Clin. Oral. Implant. Res. 2022, 33, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Romano, F.; Perotto, S.; Baima, G.; Macrì, G.; Picollo, F.; Romandini, M.; Mariani, G.M.; Aimetti, M. Estimates and multivariable risk assessment of mid-buccal gingival recessions in an Italian adult population according to the 2018 World Workshop Classification System. Clin. Oral. Investig. 2022, 26, 4769–4780. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Monjaraz, B.; Santiago-Osorio, E.; Ledesma-Martínez, E.; Aguiñiga-Sánchez, I.; Sosa-Hernández, N.A.; Mendoza-Núñez, V.M. Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int. 2020, 2020, 8890873. [Google Scholar] [CrossRef] [PubMed]
- Shalini, H.S.; Vandana, K.L. Direct application of autologous periodontal ligament stem cell niche in treatment of periodontal osseous defects: A randomized controlled trial. J. Indian. Soc. Periodontol. 2018, 22, 503–512. [Google Scholar] [CrossRef]
- Abdal-Wahab, M.; Abdel Ghaffar, K.A.; Ezzatt, O.M.; Hassan, A.A.A.; El Ansary, M.M.S.; Gamal, A.Y. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J. Periodontal Res. 2020, 55, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Apatzidou, D.A.; Bakopoulou, A.A.; Kouzi-Koliakou, K.; Karagiannis, V.; Konstantinidis, A. A tissue-engineered biocomplex for periodontal reconstruction. A proof-of-principle randomized clinical study. J. Clin. Periodontol. 2021, 48, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audagna, M.; Aimetti, M. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef]
- Sánchez, N.; Fierravanti, L.; Núñez, J.; Vignoletti, F.; González-Zamora, M.; Santamaría, S.; Suárez-Sancho, S.; Fernández-Santos, M.E.; Figuero, E.; Herrera, D.; et al. Periodontal regeneration using a xenogeneic bone substitute seeded with autologous periodontal ligament-derived mesenchymal stem cells: A 12-month quasi-randomized controlled pilot clinical trial. J. Clin. Periodontol. 2020, 47, 1391–1402. [Google Scholar] [CrossRef]
- Mancini, L.; Romandini, M.; Fratini, A.; Americo, L.M.; Panda, S.; Marchetti, E. Biomaterials for Periodontal and Peri-Implant Regeneration. Materials 2021, 14, 3319. [Google Scholar] [CrossRef]
- Graziano, A.; d’Aquino, R.; Laino, G.; Papaccio, G. Dental pulp stem cells: A promising tool for bone regeneration. Stem Cell Rev. 2008, 4, 21–26. [Google Scholar] [CrossRef]
- Monti, M.; Graziano, A.; Rizzo, S.; Perotti, C.; Del Fante, C.; d’Aquino, R.; Redi, C.A.; Rodriguez y Baena, R. In Vitro and In Vivo Differentiation of Progenitor Stem Cells Obtained After Mechanical Digestion of Human Dental Pulp. J. Cell. Physiol. 2017, 232, 548–555. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, M. Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells Int. 2015, 2015, e972313. [Google Scholar] [CrossRef] [PubMed]
- Roguljic, H.; Matthews, B.G.; Yang, W.; Cvija, H.; Mina, M.; Kalajzic, I. In vivo Identification of Periodontal Progenitor Cells. J. Dent. Res. 2013, 92, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.; Tarle, S.A.; Osibin, W.; Kinfu, Y.; Kaigler, D. Standardization and Safety of Alveolar Bone–derived Stem Cell Isolation. J. Dent. Res. 2014, 93, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Tarlé, S.; Kaigler, D. Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 102. [Google Scholar] [CrossRef]
- Lemaitre, M.; Monsarrat, P.; Blasco-Baque, V.; Loubières, P.; Burcelin, R.; Casteilla, L.; Planat-Bénard, V.; Kémoun, P. Periodontal Tissue Regeneration Using Syngeneic Adipose-Derived Stromal Cells in a Mouse Model. Stem Cells Transl. Med. 2017, 6, 656–665. [Google Scholar] [CrossRef]
- Nguyen-Thi, T.-D.; Nguyen-Huynh, B.-H.; Vo-Hoang, T.-T.; Nguyen-Thanh, T. Stem cell therapies for periodontal tissue regeneration: A meta-analysis of clinical trials. J. Oral. Biol. Craniofacial Res. 2023, 13, 589–597. [Google Scholar] [CrossRef]
- Koidou, V.P.; Hagi-Pavli, E.; Nibali, L.; Donos, N. Elucidating the Molecular Healing of Intrabony Defects Following Non-Surgical Periodontal Therapy: A Pilot Study. J. Periodontal Res. 2024, 59, 53–62. [Google Scholar] [CrossRef]
- Koidou, V.P.; Hagi-Pavli, E.; Cross, S.; Nibali, L.; Donos, N. Molecular Profiling of Intrabony Defects’ Gingival Crevicular Fluid. J. Periodontal Res. 2022, 57, 152–161. [Google Scholar] [CrossRef]
- Baima, G.; Iaderosa, G.; Corana, M.; Romano, F.; Citterio, F.; Giacomino, A.; Berta, G.N.; Aimetti, M. Macro and Trace Elements Signature of Periodontitis in Saliva: A Systematic Review with Quality Assessment of Ionomics Studies. J. Periodontal Res. 2022, 57, 30–40. [Google Scholar] [CrossRef]
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef] [PubMed]
(Periodontal defect OR periodontal lesion OR periodontal osseous defect OR intraosseous defect OR intra-osseous defect OR intrabony defect OR infra-bony defect OR angular defect OR bony defect OR osseous defect OR crater) |
AND |
(stem cells OR stem OR stem cell therapy OR cell therapy OR MSC OR mesenchymal stem cells OR human cord stem cells OR BMMSC OR bone marrow mesenchymal stem cells OR pluripotent stem cells OR embryonic stem cells OR ESC OR cell technology OR oral stem cells OR stem cell-delivery therapeutics OR induced pluripotent stem cells OR iPSC OR adipose-derived stem cells OR dental stem cells OR pulp stem cells OR periodontal ligament stem cells OR PDLSC OR progenitor cells OR apical papilla stem cells OR dental follicle stem cells OR human exfoliated deciduous tooth cells) |
AND |
(clinical trial OR case report OR prospective study OR longitudinal study OR cohort study OR RCT OR randomized clinical trial) |
AND |
(GTR OR guided tissue regeneration OR periodontal regeneration) |
Study | MSC Type | Defect Inclusion Criteria | Group Characteristics | Number of Patients | Number of Defects | Primary Outcomes | |||
---|---|---|---|---|---|---|---|---|---|
Test | Control | Test | Control | Test | Control | ||||
Apatzidou et al., 2021 [55] | Autologous alveolar bone marrow mesenchymal stem cells (ABMMSCSs) | Infrabony defect (5 1-wall defects in the control groups; 3 2-wall defects in the test group and 3 in the control groups; 6 3-wall defects in the test group and 10 in the control groups) | ABMMSCs + autologous fibrin/platelet lysate (aFPL) + collagen scaffold + MIST | Group B: autologous fibrin/platelet lysate (aFPL) + collagen scaffold + MIST Group C: MIST | 9 | 10 + 8 | 9 | Group B: 10 Group C: 8 | CAL; PPD; GR; BDD; BC-BD |
Sanchez et al., 2020 [57] | Autologous periodontal ligament-derived mesenchymal stem cells (PDLSCs) | Infrabony defect (3 1-wall defects in the test group; 7 2-wall defects in the test group and 10 in the control group) | PDLSCs + bone xenograft | Bone xenograft | 10 | 10 | 10 | 10 | CAL; PPD; GR |
Abdal-Wahab et al., 2020 [54] | Autologous gingival-associated mesenchymal stem cells (GMSCs) | Infrabony defect (7 2-wall defects in the test group and 6 in the control group; 3 3-wall defects in the test group and 4 in the control group) | GMSC + (beta-tricalcium phosphate (β-TCP) + collagen membrane | Beta-tricalcium phosphate (β-TCP) + collagen membrane | 10 | 10 | 10 | 10 | CAL; PPD |
Hernández-Monjaraz et al., 2020 [52] | Autologous dental pulp stem cells (DPSCs) | Infrabony defects | DPSCs + collagen scaffold | Collagen scaffold | 11 | 10 | 11 | 10 | PPD |
Ferrarotti et al., 2018 [56] | Autologous dental pulp stem cells (DPSCs) | Infrabony defect (7 1-wall defects in the test group and 5 in the control group; 4 2-wall defects in the test group and 5 in the control group; 4 3-wall defects in the test group and 4 in the control group) | DPSCs + MIST + collagen sponge | MIST + collagen sponge | 15 | 14 | 15 | 14 | CAL; PPD; GR; BC-BD |
Shalini and Vandana 2018 [53] | Autologous periodontal ligament-derived mesenchymal stem cells (PDLSCs) | Infrabony defects | OFD + PDLSCs | OFD | 14 | 14 | 14 | 14 | CAL, PPD |
Chen et al., 2016 [19] | Autologous periodontal ligament-derived mesenchymal stem cells (PDLSCs) | Infrabony defect (Defect characteristics not mentioned) | PDLSCs + GTR + Bio-oss | GTR + Bio-oss | 20 | 21 | CAL; PPD; GR; BDD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campagna, A.; Baima, G.; Romano, F.; Amoroso, F.; Mussano, F.; Oteri, G.; Aimetti, M.; Peditto, M. Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Dent. J. 2024, 12, 145. https://doi.org/10.3390/dj12050145
Campagna A, Baima G, Romano F, Amoroso F, Mussano F, Oteri G, Aimetti M, Peditto M. Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Dentistry Journal. 2024; 12(5):145. https://doi.org/10.3390/dj12050145
Chicago/Turabian StyleCampagna, Alessandro, Giacomo Baima, Federica Romano, Federico Amoroso, Federico Mussano, Giacomo Oteri, Mario Aimetti, and Matteo Peditto. 2024. "Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies" Dentistry Journal 12, no. 5: 145. https://doi.org/10.3390/dj12050145
APA StyleCampagna, A., Baima, G., Romano, F., Amoroso, F., Mussano, F., Oteri, G., Aimetti, M., & Peditto, M. (2024). Orally Derived Stem Cell-Based Therapy in Periodontal Regeneration: A Systematic Review and Meta-Analysis of Randomized Clinical Studies. Dentistry Journal, 12(5), 145. https://doi.org/10.3390/dj12050145