Glycolysis and Automated Plaque Regrowth Method for Evaluation of Antimicrobial Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plaque Harvesting and Propagation
2.2. Glycolysis and Automated Plaque Regrowth (GAPR) Procedures
2.3. Glycolysis and Regrowth Calculations
2.4. Data Sets and Statistical Analyses
3. Results
3.1. Examples of Glycolysis and Regrowth Curves for CPC Solutions
3.2. Glycolysis and Regrowth Response from CPC Solutions
3.3. Glycolysis and Regrowth Response from NaF Solutions
3.4. Glycolysis and Regrowth Response from SnF2 Citrate Buffered Solutions
3.5. Glycolysis and Regrowth Response from Listerine® Mouthwashes
3.6. Glycolysis and Regrowth Response from ZnCl2 Solutions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2020; pp. 1–92. [Google Scholar]
- Sanz, M.; del Castillo, A.M.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F.; et al. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef] [PubMed]
- Marro, F.; De Smedt, S.; Rajasekharan, S.; Martens, L.; Bottenberg, P.; Jacquet, W. Associations between obesity, dental caries, erosive tooth wear and periodontal disease in adolescents: A case-control study. Eur. Arch. Paediatr. Dent. 2021, 22, 99–108. [Google Scholar] [CrossRef] [PubMed]
- López, R.; Smith, P.C.; Göstemeyer, G.; Schwendicke, F. Ageing, dental caries and periodontal diseases. J. Clin. Periodontol. 2017, 44 (Suppl. 18), S145–S152. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, M.; Urnezis, P.; Tian, M. Compressed mints and chewing gum containing magnolia bark extract are effective against bacteria responsible for oral malodor. J. Agric. Food Chem. 2007, 55, 9465–9469. [Google Scholar] [CrossRef]
- Greenberg, M.; Dodds, M.; Tian, M. Naturally occurring phenolic antibacterial compounds show effectiveness against oral bacteria by a quantitative structure–activity relationship study. J. Agric. Food Chem. 2008, 56, 11151–11156. [Google Scholar] [CrossRef]
- White, D.J.; Cox, E.R.; Liang, N.; Macksood, D.; Bacca, L. A new plaque glycolysis and regrowth method (PGRM) for the in vivo determination of antimicrobial dentifrice/rinse efficacy towards the inhibition of plaque growth and metabolism—Method development, validation and initial activity screens. J. Clin. Dent. 1995, 6, 59–70. [Google Scholar] [PubMed]
- Garcia-Godoy, F.; Kluwowska, M.A.; Zhang, Y.H.; Anastasia, M.K.; Cheng, R.; Gabbard, M.; Coggan, J.; White, D.J. Comparative bioavailability and antimicrobial activity of cetylpyridinium chloride mouthrinses in vitro and in vivo. Am J. Dent. 2014, 27, 185–190. [Google Scholar]
- Pearson, L.J.; Marth, E.H. Behavior of Listeria monocytogenes in the presence of methylxanthines—Caffeine and theobromine. J. Food Prot. 1990, 53, 47–50. [Google Scholar] [CrossRef]
- Mahdi, H.S.; Mahdi, L.K.; Saour, K.Y. Chemical characterization and antibacterial activity of black tea extract components. J. Fac. Med. Baghdad 2005, 47, 174–178. [Google Scholar]
- Lakshmi, A.; Vishnurekha, C.; Baghkomeh, P.N. Effect of theobromine in antimicrobial activity: An in vitro study. Dent. Res. J. 2019, 16, 76–80. [Google Scholar] [CrossRef]
- Demir, S.; Keskin, G.; Akal, N.; Zer, Y. Antimicrobial effect of natural kinds of toothpaste on oral pathogenic bacteria. J. Infect. Dev. Ctries 2021, 15, 1436–1442. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Kusakabe, S.; Toyama, M.; Takagaki, T.; Kitada, N.; Yamamoto, K.; Ikeda, M.; Ichimura, Y.; Burrow, M.F.; Hotta, M.; et al. Bacterial adhesion and antibacterial property of coating materials containing theobromine and S-PRG filler. Dent. Mat. J. 2023, 42, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, I.H.; Dame-Teixeira, N.; Do, T. The antimicrobial activity of theobromine against cariogenic microbes: An in vitro pilot study. BDJ Open 2024, 10, 8. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, 21 Code of Federal Regulations Part 356. Oral Health Care Drug Products for Over-the-Counter Human Use; Antigingivitis/Antiplaque Drug Products; Establishment of a Monograph. Fed. Reg. 2003, 68, 32232–32287. [Google Scholar]
- American Dental Association Council on Scientific Affairs. Acceptance Program Requirements: Chemotherapeutic Products for Control of Gingivitis; American Dental Association: Chicago, IL, USA, 2016; pp. 1–10. [Google Scholar]
- Baig, A.A.; Biesbrock, A.R.; St. John, S.J. Oral Care Compositions Comprising Hops Beta Acids and Metal Ions. U.S. Patent 11,690,792, 4 July 2023. [Google Scholar]
- Kozak, K.M.; Gibb, R.; Dunavent, J.; White, D.J. Efficacy of a high bioavailable cetylpyridinium chloride mouthrinse over a 24-hour period. Am. J. Dent. 2005, 18, 18–23. [Google Scholar]
- Chouhan, C.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Tinanoff, N. Progress regarding the use of stannous fluoride in clinical dentistry. J. Clin. Dent. 1995, 6, 37–40. [Google Scholar] [PubMed]
- Mankodi, S.; Bauroth, K.; Witt, J.J.; Bsoul, S.; He, T.; Gibb, R.; Dunavent, J.; Hamilton, A. A 6-month clinical trial to study the effects of a cetylpyridinium chloride mouthrinse on gingivitis and plaque. Am. J. Dent. 2005, 18, 9–14. [Google Scholar]
- García, V.; Rioboo, M.; Serrano, J.; O’Connor, A.; Herrera, D.; Sanz, M. Plaque inhibitory effect of a 0.05% cetyl-pyridinium chloride mouth-rinse in a 4-day non-brushing model. Int. J. Dent. Hygiene 2011, 9, 266–273. [Google Scholar] [CrossRef]
- Williams, M.I. The antibacterial and antiplaque effectiveness of mouthwashes containing cetylpyridinium chloride with and without alcohol in improving gingival health. J. Clin. Dent. 2011, 22, 179–182. [Google Scholar]
- Retamal-Valdes, B.; Soares, G.M.; Stewart, B.; Figueiredo, L.C.; Faveri, M.; Miller, S.; Zhang, Y.P.; Feres, M. Effectiveness of a pre-procedural mouthwash in reducing bacteria in dental aerosols: Randomized clinical trial. Braz. Oral Res. 2017, 31, e21. [Google Scholar] [CrossRef] [PubMed]
- Foerster, S.; Unemo, M.; Hathaway, L.J.; Low, N.; Althaus, C.L. Time-kill curve analysis and pharmacodynamic modelling for in vitro evaluation of antimicrobials against Neisseria gonorrhoeae. BMC Microbiol. 2016, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Tinanoff, N.; Weeks, D.B. Current status of SnF2 as an antiplaque agent. Pediatr. Dent. 1979, 1, 199–204. [Google Scholar] [PubMed]
- Domon-Tawaraya, H.; Nakajo, K.; Washio, J.; Ashizawa, T.; Ichino, T.; Sugawara, H.; Fukumoto, S.; Takahashi, N. Divalent cations enhance fluoride binding to Streptococcus mutans and Streptococcus sanguinis cells and subsequently inhibit bacterial acid production. Caries Res. 2013, 47, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Bibby, B.G.; Van Kesteren, M. The effect of fluorine on mouth bacteria. J. Dent. Res. 1940, 19, 391–402. [Google Scholar] [CrossRef]
- Luoma, H.; Tuompo, H. The relationship between sugar metabolism and potassium translocation by caries-inducing streptococci and the inhibitory role of fluoride. Archs. Oral Biol. 1975, 20, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, I.R. Effects of fluoride on enzymatic regulation of bacterial carbohydrate metabolism. Caries Res. 1977, 11 (Suppl. 1), 262–291. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.R.; Handler, S.F.; Horton, I.M.; Streckfuss, J.L.; Dreizen, S. Effect of sodium fluoride on the viability and growth of Streptococcus mutans. J. Dent. Res. 1980, 59, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Bowden, G.H.W.; Odlum, O.; Nolette, N.; Hamilton, I.R. Microbial populations growing in the presence of fluoride at low pH isolated from dental plaque of children living in an area with fluoridated water. Infect. Immun. 1982, 36, 247–254. [Google Scholar] [CrossRef]
- Archila, L.; Bartizek, R.D.; Winston, J.L.; Biesbrock, A.R.; McClanahan, S.F.; He, T. Stannous fluoride/sodium hexametaphosphate dentifrice and sodium fluoride/triclosan/copolymer dentifrice for the control of gingivitis: A 6-month randomized clinical study. J. Periodontol. 2004, 75, 1592–1599. [Google Scholar] [CrossRef]
- Ota, K.; Kikuchi, S.; Beierle, J.W. Stannous fluoride and its effects on oral microbial adhesive properties in vitro. Pediatr. Dent. 1989, 11, 21–25. [Google Scholar]
- Beiraghi, S.; Rosen, S.; Beck, F. The effect of stannous and sodium fluoride on coronal caries, root caries and bone loss in rice rats. Archs. Oral Biol. 1990, 35, 79–80. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Shrikrishna, S.B.; Suman, E.; Shenoy, R.; Rao, A. Effect of fluoride varnish and chlorhexidine-thymol varnish on mutans streptococci levels in human dental plaque: A double-blinded randomized controlled trial. Int. J. Paediatr. Dent. 2014, 24, 399–408. [Google Scholar] [CrossRef]
- Pocha, S.R.; Jumar, D.K.; Dhanya, M.; Sudhakar, K. Effects of sodium fluoride solution, chlorhexidine gel and fluoride varnish on the microbiology of dental plaque—A randomized controlled trial. J. Indian Assoc. Public Health Dent. 2018, 16, 109–115. [Google Scholar] [CrossRef]
- Brêtas, S.M.; Macari, S.; Elias, A.M.; Ito, I.Y.; Matsumoto, M.A.N. Effect of 0.4% stannous fluoride gel on Streptococci mutans in relation to elastomeric rings and steel ligatures in orthodontic patients. J. Orthod. Dentofacial Orthop. 2004, 127, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.P.; Pappas, I.; Makwana, E.; Begum-Gafur, R.; Utgikar, N.; Alsina, M.A.; Fitzgerald, M.; Trivedi, H.M.; Gaillard, J.-F.; Masters, J.G.; et al. Solving the problem with stannous fluoride. J. Am. Dent. Assoc. 2019, 150 (Suppl. 4), S5–S13. [Google Scholar] [CrossRef]
- Šeruga, M.; Metikoš-Huković, M. Passivation of tin in citrate buffer solutions. J. Electroanal. Chem. 1992, 334, 223–240. [Google Scholar] [CrossRef]
- Xue, C.; Wang, Z.; Wang, S.; Zhang, X.; Chen, L.; Mu, Y.; Bai, F. The vital role of citrate buffer in acetone-butanol-ethanol (ABE) fermentation using corn stover and high-efficient product recovery by vapor stripping-vapor permeation (VSVP) process. Biotechnol. Biofuels 2016, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.C.; Araujo, M.W.B.; Wu, M.M.; Qaqish, J.; Charles, C.H. Superiority of an essential oil mouthrinse when compared with a 0.05% cetylpyridinium chloride containing mouthrinse: A six-month study. Int. Dent. J. 2010, 60, 175–180. [Google Scholar]
- Charles, C.A.; Amini, P.; Gallob, J.; Shang, H.; McGuire, J.A.; Costa, R. Antiplaque and antigingivitis efficacy of an alcohol-free essential-oil containing mouthrinse: A 2-week clinical trial. Am. J. Dent. 2012, 25, 195–198. [Google Scholar]
- Goutham, B.S.; Manchanda, K.; Sarkar, A.D.; Prakash, R.; Jha, K.; Mohammed, S. Efficacy of two commercially available oral rinses—Chlorhexidine and Listerine on plaque and gingivitis—A comparative study. J. Int. Oral Health 2013, 5, 56–61. [Google Scholar] [PubMed]
- Raju, R.; Divya, A.; Rajendran, G.; John, J.R. Analogous assay between green tea mouthwash, listerine mouthwash and chlorhexidine mouthwash in plaque reduction, on orthodontic patients: A randomized cross-over study. Int. J. Community Med. Public Health 2017, 4, 1429–1435. [Google Scholar] [CrossRef]
- Gill, S.; Kapoor, D.; Singh, J.; Nanda, T. Comparison of antiplaque efficacy of commercially available HiOra (herbal) mouthwash with a Listerine mouthwash: A clinical study. J. Periodontal Implant Dent. 2017, 9, 53–57. [Google Scholar] [CrossRef]
- Miller, M.D. Micro-Organisms of the Human Mouth; S.S. White Dental Mfg. Co.: Philadelphia, PA, USA, 1890; pp. 225–249. [Google Scholar]
- Lawrence, J.J. (Ed.) The Medical Brief; Times Printing House: St. Louis, MO, USA, 1879; Advertisements, p. 25. [Google Scholar]
- Makita, Y.; Obana, N.; Fujiwara, S.-I.; Wang, P.-L. Inhibitory effects of zinc chloride and citric acid on release of volatile compounds. J. Hard Tiss. Biol. 2013, 22, 325–328. [Google Scholar] [CrossRef]
- Kim, J.-S.; Park, J.-W.; Kim, D.-J.; Kim, Y.-K.; Lee, J.-Y. Direct effect of chlorine dioxide, zinc chloride and chlorhexidine solution on the gaseous volatile sulfur compounds. Acta Odontol. Scand. 2014, 72, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, V.; Fathima, L.; Bharathwaj; Mohan, R.; Manipal, S.; Prabu, D. Systematic review on effectiveness of zinc chloride in the treatment of halitosis. Indian J. Public Health Res. Dev. 2020, 11, 518–523. [Google Scholar]
- Sheng, J.; Nguyen, P.T.M.; Marquis, R.E. Multi-target antimicrobial actions of zinc against oral anaerobes. Arch. Oral Biol. 2005, 50, 747–757. [Google Scholar] [CrossRef]
- Nandlal, B.; Sreenivasan, P.K.; Shashikumar, P.; Devishree, G.; Shivamallu, A.B. A randomized clinical study to examine the oral hygiene efficacy of a novel herbal toothpaste with zinc over a 6-month period. Int. J. Dent. Hygiene 2021, 19, 440–449. [Google Scholar] [CrossRef]
- Thrane, P.S.; Young, A.; Jonski, G.; Rölla, G. A new mouthrinse combining zinc and chlorhexidine in low concentration provides superior efficacy against halitosis compared to existing formulations: A double-blind clinical study. J. Clin. Dent. 2007, 18, 82–86. [Google Scholar]
- Murata, T.; Fujiyama, Y.; Rahardjo, A.; Obana, N.; Miyazaki, H. Effect of 0.1% zinc chloride mouthwash on oral malodor. J. Dent. Health 2002, 52, 190–195. [Google Scholar]
- Lewis, C.L.; Craig, C.C.; Senecal, A.G. Mass and density measurements of live and dead gram-negative and gram-positive bacterial populations. Appl. Environ. Microbiol. 2014, 80, 3622–3631. [Google Scholar] [CrossRef] [PubMed]
- National Advertising Review Board (NARB) Panel #153. Report on the Appeal of the National Advertising Division Fnal Decision Regarding Advertising for Eclipse Gum. New York, NY, USA, 23 September 2009. Available online: https://bbbprograms.org/OnlineArchive (accessed on 14 May 2024).
Treatment | Glycolysis (% pH) * | Acid Inhibition (%) ** | Plaque Regrowth (% OD) *** |
---|---|---|---|
0.1% CPC | −0.4 (0.2) a | 98.8 | −0.9 (1.6) A |
0.07% CPC | −1.1 (0.1) b | 96.5 | 14.9 (1.7) B |
0.05% CPC | −11.8 (0.1) c | 61.3 | 14.6 (3.8) B |
0.03% CPC | −22.5 (0.1) d | 26.2 | 55.3 (2.0) C |
0.01% CPC | −28.4 (0.3) e | 6.6 | 81.7 (1.9) D |
0.001% CPC | −30.4 (0.0) f | 0.0 | 79.0 (1.2) D |
Treatment | Glycolysis (% pH) * | Acid Inhibition (%) ** | Plaque Regrowth (% OD) *** |
---|---|---|---|
0.1% CPC | −2.2 (0.0) a | 93.1 | −7.0 (5.4) B |
22,500 ppm F | −12.3 (0.4) b | 60.8 | −20.8 (2.1) A |
5000 ppm F | −20.1 (0.0) c | 36.2 | 2.4 (1.5) B |
1000 ppm F | −26.6 (0.1) d | 15.5 | 100.7 (0.7) C |
100 ppm F | −30.0 (0.0) e | 4.8 | 161.0 (5.7) E |
1 ppm F | −30.3 (0.1) e | 3.8 | 160.3 (3.9) E |
0.1 ppm F | −30.1 (0.1) e | 4.6 | 160.6 (1.6) E |
0.001% CPC | −31.5 (0.0) f | 0.0 | 113.1 (2.2) D |
Treatment | Glycolysis (% pH) * | Acid Inhibition (%) ** | Plaque Regrowth (% OD) *** |
---|---|---|---|
CB3.8 + 0.4% SnF2 | −7.0 (0.4) a | 72.4 | 26.1 (1.7) A |
CB3.8 | −11.7 (0.1) b | 53.7 | 88.4 (2.5) B |
CB6 + 0.4% SnF2 | −18.8 (0.1) c | 25.4 | 91.0 (3.9) B |
CB6 | −25.2 (0.2) d | 0.0 | 145.7 (4.5) C |
Treatment | Glycolysis (% pH) * | Acid Inhibition (%) ** | Plaque Regrowth (% OD) *** |
---|---|---|---|
Listerine® A | −11.6 (0.2) a | 66.7 | −34.7 (4.2) A |
Listerine® B | −23.1 (0.1) b | 33.8 | −2.9 (0.4) B |
0.001% CPC or MO 1 | −34.8 (0.1) c | 0.0 | 80.5 (6.7) C |
Treatment | Glycolysis (% pH) * | Acid Inhibition (%) ** | Plaque Regrowth (% OD) *** |
---|---|---|---|
0.1% CPC | −4.4 (0.0) a | 86.4 | 4.1 (1.0) A |
0.2% ZnCl2 | −22.2 (0.0) b | 31.4 | 15.0 (4.6) A |
0.08% ZnCl2 | −25.3 (0.2) c | 21.8 | 33.7 (4.5) B |
0.001% CPC | −32.4 (0.1) d | 0.0 | 70.4 (0.1) C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karlinsey, R.L.; Karlinsey, T.R. Glycolysis and Automated Plaque Regrowth Method for Evaluation of Antimicrobial Performance. Dent. J. 2024, 12, 146. https://doi.org/10.3390/dj12050146
Karlinsey RL, Karlinsey TR. Glycolysis and Automated Plaque Regrowth Method for Evaluation of Antimicrobial Performance. Dentistry Journal. 2024; 12(5):146. https://doi.org/10.3390/dj12050146
Chicago/Turabian StyleKarlinsey, Robert L., and Tamara R. Karlinsey. 2024. "Glycolysis and Automated Plaque Regrowth Method for Evaluation of Antimicrobial Performance" Dentistry Journal 12, no. 5: 146. https://doi.org/10.3390/dj12050146
APA StyleKarlinsey, R. L., & Karlinsey, T. R. (2024). Glycolysis and Automated Plaque Regrowth Method for Evaluation of Antimicrobial Performance. Dentistry Journal, 12(5), 146. https://doi.org/10.3390/dj12050146