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Abstract: Among different therapeutic strategies proposed in the case of bone volume deficit, guided
bone regeneration (GBR) is a consolidated surgical procedure. The objective of this study is to
retrospectively evaluate the behavior of two bone grafts with different consistencies in the GBR
procedure by measuring the volumetric tissue changes 1 year after surgery. For this retrospective
analysis, 25 cases of GBR with simultaneous implant insertion were selected. A total of 13 were grafted
with a porcine cortico-cancellous bone mix (CCBM group), and 12 were grafted with a pre-hydrated
granulated cortico-cancellous bone mix of porcine origin blended with 20% TSV gel (Collagenated-
CCBM). A collagen membrane was fixed to cover the bone defect. A total of 42 implants were placed
with computer-guided surgery. Preoperative and 12-month postoperative digital impressions were
used to evaluate dimensional changes. Student’s t-test used for independent samples showed no
statistically significant differences between the integrated distance (p = 0.995) and mean distance
(p = 0.734). The mean integrated distance in the CCBM group was 41.80 (SD. 101.18) compared to
a mean of 42.04 (SD. 66.71) in the Collagenated-CCBM group. Given the limitations of this study,
in patients with peri-implant bone dehiscence, simple heterologous and collagenated heterologous
cortico-cancellous bone grafts are suitable for filling the bone defect to promote bone regeneration,
although further studies are needed.

Keywords: guided bone regeneration (GBR); bone grafts; volumetric tissue changes; implant insertion;
collagen membrane

1. Introduction

Implant therapy stands as a well-established solution for the rehabilitation of edentu-
lous areas, yet it poses a significant challenge for clinicians dealing with atrophic upper
and lower jaws. The selection of appropriate treatment options to replace a missing tooth is
intricately linked to the condition of the residual alveolar ridge [1]. Unfavorable situations,
such as inadequate alveolar ridge width (knife-edge ridge) or insufficient thickness and
height (flattened alveolar ridge), classified as class IV and V according to the Cawood
and Howell classification [2], present difficulties in achieving optimal implant placement.
In such scenarios, ensuring a correct position for implants and guaranteeing a favorable
long-term prognosis and aesthetic outcome become challenging, leading to the proposal of
various therapeutic strategies [3–5].
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One such strategy is guided bone regeneration (GBR), a surgical procedure utilizing a
membrane as a space maintainer to foster new bone formation [6]. Depending on the extent
of the bone defect, GBR can be performed simultaneously with implant placement or in
two separate surgical phases, with the first phase involving GBR surgery and the second
comprising implant surgery.

The rationale for employing membranes is grounded in ‘the principle of compartmen-
tal wound healing’ [7]. Acting as a barrier, the membrane prevents the colonization of the
wound by unwanted cells (epithelial cells), facilitating the proliferation of desired cells
capable of proper regeneration, which exhibit a slower turnover. Membranes play a pivotal
role in promoting bone regeneration by preventing epithelial migration and stabilizing the
blood clot in the bone defect [8].

The GBR technique has undergone refinement over the past two decades, resulting
in numerous strategies aimed at improving the efficacy and predictability of the surgical
procedure. Various generations of membranes have been developed, with selection criteria
based on their space-making ability, physical and mechanical properties, handling, and
biocompatibility [9,10].

While membranes actively contribute to promoting bone regeneration, they are not
the sole biomaterials employed in GBR techniques. Often, the peri-implant bone deficit is
addressed by applying bone grafts to enhance regeneration and prevent membrane collapse
onto the residual bone due to soft tissue pressure [11,12]. Autologous bone graft, currently
considered the gold standard, possesses excellent osteogenic, osteoinductive, and osteo-
conductive properties [13]. However, its limitations, including harvesting constraints, the
need for a second surgical site, prolonged surgical times, and increased post-operative dis-
comfort for the patient, necessitate the exploration of alternative options [14,15]. Moreover,
pure autologous bone grafts undergo resorption over time. To mitigate this phenomenon,
they can be combined with or substituted by other graft materials.

To overcome these limitations, heterologous bone grafts are frequently employed,
either alone or combined with autologous grafts, showing favorable results in bone aug-
mentation procedures. Research efforts have been directed toward bone graft substitutes,
including allografts, xenografts, and synthetic (alloplastic) grafts [16–18].

Bovine, porcine, and equine xenografts are widely utilized due to their similar mor-
phology to human bone, high osteoconductive ability, and biocompatibility [19]. This
category also includes collagenated heterologous bone grafts enriched with collagen to
enhance osteoconductivity and act as a scaffold for bone formation [20,21]. Notably, bioma-
terials with collagen molecules embedded into bone granules have demonstrated physic-
ochemical properties similar to native human bone, proving effective in various surgical
procedures [22–26]. In this study, a recent heterologous bone substitute with collagen
molecules embedded into bone granules (OsteoBiol® GTO®) was considered.

The primary objective of this study is to retrospectively evaluate the success of the GBR
horizontal technique in treating vestibular Class 1 dehiscence (Tinti et al. Classification [27])
using two different bone graft substitutes. In the first group, we used cortico-cancellous
heterologous bone graft in association with a collagen membrane. In the second group,
we used collagenated heterologous cortico-cancellous bone graft in association with a
collagen membrane.

2. Material and Methods

This retrospective analysis included 25 subjects consecutively treated between Septem-
ber 2020 and November 2022 in a private dental practice in Rome. One surgeon (L.C.)
performed all the surgical procedures.

Patients requiring implant placement in the lower and upper jaw with simultaneous
horizontal bone augmentation for treating vestibular Class 1 dehiscence, according to Tinti
et al.’s [27] classification, were included in the study. General inclusion and exclusion
criteria are listed in Table 1.
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Table 1. General inclusion and exclusion criteria.

General Inclusion Criteria General Exclusion Criteria

Male or female ≥ 18 years old Smoker > 10 cig per day, cigar equivalents or
tobacco chewers

Patients willing to participate and to attend
the planned follow-up visits

History of leukocyte dysfunction
and deficiencies

History of neoplastic disease requiring the use
of radiation or chemotherapy

History of renal failure

Alcoholism or any drug abuse

Physical handicaps that would interfere with
the ability to perform adequate oral hygiene

Patients were divided into two groups according to the graft material used:

- CCBM group: Guided bone regeneration performed with porcine cortico-cancellous
bone mix (OsteoBiol® Apatos® Mix, Tecnoss®, Giaveno, Italy) and a collagen mem-
brane (OsteoBiol® Evolution, Tecnoss®, Giaveno, Italy)—APATOS Group (13 patients).

- Collagenated-CCBM: Guided bone regeneration performed with a pre-hydrated gran-
ulated cortico-cancellous bone mix of porcine origin blended with 20% TSV gel, which
is a mixture of heterologous type I and type III collagen gel with polyunsaturated
fatty acids and a biocompatible synthetic copolymer diluted in aqueous solution.
(OsteoBiol® GTO®) and a collagen membrane (OsteoBiol® Evolution)—GTO Group
(12 patients).

All patients were treated in accordance with the World Medical Association’s Declara-
tion of Helsinki and Good Clinical Practice Guidelines. The local Ethics Committee of the
University of Genoa (CERA protocol no. 2023.83) approved the conduct of the study. After
ethical approval, all patients signed an informed consent allowing for the use of their data
for scientific purposes. Patient data were anonymized.

2.1. Preoperative Procedure

Before surgery, all patients underwent a clinical assessment and CBCT evaluation. A
professional oral hygiene session and an intraoral digital scan were performed. All patients
received personalized instructions for home oral hygiene.

Digital scanning (CS 3600 intraoral scanner, Carestream, Rochester, NY 14608, USA)
and 3D radiographic scanning (CS 8100 Cone Beam, Carestream, Rochester, NY 14608, US)
were performed. Then, DICOM and STL files were matched and used to plan the surgery
virtually (RealGUIDE, 3diemme, Cantù, CO, Italy).

Following the planning, a surgical guide was produced to achieve a correct implant
placement.

The preoperative digital scan was used as reference data for volumetric analysis.

2.2. Surgical Procedure

The surgery was performed under local anesthesia (mepivacaine with adrenaline
1:100,000). A full-thickness flap was elevated, and a surgical guide was inserted. The
planned implant site preparation was performed in the exact site indicated by the surgical
guide using a specific drill sequence according to the manufacturer’s instructions. After
implant placement (Multineo CS, Alphabio, Israel), the bone defect was measured with
a PCP15 periodontal probe, and the regenerative site was decorticated to increase blood
supply. An OsteoBiol® Evolution membrane, fixed with titanium osteosynthesis screws,
was used to cover the defects. The site was then filled either with a graft material consisting
of pre-hydrated collagenated heterologous cortico-cancellous bone (OsteoBiol® GTO®)
using an applicator syringe (Collagenated-CCBM group) or with a graft material consisting
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of cortico-cancellous bone (OsteoBiol® Apatos®) mixed with the patient’s blood in a sterile
dappen (CCBM group). The graft material was placed to overfill the defect between the
bone and the membrane and was carefully condensed at each stage.

Finally, the mucosa was sutured using a coronally advanced flap technique with
modified mattress sutures with 6.0 PGLA (Monofast, Medipac, Athens, Greece) to achieve
first-intention healing.

2.3. Postoperative Procedure

Antibiotic therapy was prescribed with 1 g of amoxicillin every 8 h for 4 days from
the evening before surgery; postoperative pain management was achieved with 600 mg of
Ibuprofen orally every 12 h for 3 days and with cold application for the first 2 days [28].
Rinses with 0.12% chlorhexidine gluconate were prescribed for 14 days. Sutures were
removed after 14 days. Postoperative CBCT scans have not been performed.

2.4. Prosthetic Procedure

Three months after surgery, the implants were uncovered through a minimal midcre-
stal incision, and a healing abutment was placed. After an additional 4 weeks, all implants
were functionally loaded with screw-retained zirconia crowns. Twelve months after surgery,
a postoperative intraoral scan was performed in order to assess the volumetrical changes
in comparison with the preoperative intraoral scan.

The Ethics Committee did not authorize the implementation of a postoperative CBCT,
and consequently, no postoperative CBCT was performed. In addition, the Ethics Commit-
tee has approved the use of a 12-month postoperative scan to indirectly assess volumetric
changes with a 1-year follow-up period by the analysis of the superimposition of preopera-
tive intraoral scan and 1-year postoperative intraoral scan.

2.5. Volumetric Outcomes

The present clinical study used three-dimensional computer-aided design (CAD)
analysis software to measure the hard and soft tissue response after bone regeneration
surgery (GOM Inspect, GOM GmbH, Braunschweig, Germany).

A preoperative and postoperative intraoral scan was performed for each patient using
an intraoral scanner (CS 3600 Carestream, Rochester, NY, USA).

The preoperative model was imported into the GOM Inspect 2018 software as a
nominal CAD value, and the postoperative model was imported as a current mesh value,
as Seidel et al. [29] reported.

As suggested by Schmitt et al. [30], to obtain a correct superimposition of the models,
they were first superimposed using 3-point superimposition (association of three promi-
nent structures of the actual value to the corresponding structures in the mesh value)
and then aligned using the “local best-fit function” (association of individual structures
within the scan, e.g., the occlusal plane of adjacent teeth). This allowed the models to be
accurately superimposed.

For each regenerated site, a region of interest (ROI) was individually selected on the
vestibular portion of the gingival tissue, not exceeding the mucogingival line.

A surface comparison analysis was performed using the GOM Inspect software to
calculate the volumetric results in each ROI (region of interest), as reported by Schmitt
et al. [30]. The surface comparison analysis provides the surface deviation between the
preoperative (CAD value) and the postoperative scan (actual value). In principle, the
surface comparison calculates a deviation of the actual value (mesh) from the nominal
value (CAD) for each point.

From a geometric point of view, a surface comparison analysis is geometrically identi-
cal to the mesh surface (Figure 1).
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Figure 1. Surface comparison analysis.

The colored parts describe the difference between the nominal data (the preoperative
scan) and the actual data (the postoperative scan). From a clinical point of view, the surface
comparison analysis represents the variation between the preoperative and the postopera-
tive scans. Therefore, it can be considered tissue gain or loss after regenerative procedures.

It is possible to calculate the area of the deviation between the nominal value (CAD—pre-
operative scan) and the actual value (mesh—postoperative scan) in a specific ROI by
performing the integral calculation (area under the curve). The calculation is performed
on all surfaces in 3D inside the ROI. The following schematic sketch is shown in 2D and
describes the calculation of the deviation area inside an ROI. (Figure 2).
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The area of the deviation is calculated with the following formula, and it is called
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Integrated Distance = ∑
(

di x si
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The integrated distance describes the volume increase in mm3 in the buccal part of
the augmented region; consequently, it was the primary outcome of this study. Secondary
outcomes were calculated to investigate the extent of the difference between the pre- and
postoperative scans.

• Mean distance (MeanD) in mm in the augmented region. The mean distance describes
the arithmetic mean deviation (mm) of all surface comparison points from preoperative
and postoperative scans. It describes the medium extent of the regenerated area in
each augmented region.

• Maximum distance (MaxD) in mm in the augmented region. The maximum dis-
tance describes the maximum deviation (mm) of the surface comparison between the
preoperative and the postoperative scans. It describes the maximum extent of the
regenerated area in each augmented region.

• Minimum distance (MinD) in mm in the augmented region. The minimum distance
describes the minimum deviation of the surface comparison between the preoperative
and postoperative scans. It describes the minimum extent of the regenerated area in
each augmented region.

2.6. Statistical Analysis

The clinical characteristics of patients were examined between the CCBM group and
the Collagenated-CCBM group to account for heterogeneity between groups using Fisher’s
exact test. The Shapiro–Wilk test was used to examine the normal distribution of variables
for all linear variables.

While a non-normal distribution was observed for most of the outcomes, the integrated
distance and mean distance followed a normal distribution (Shapiro–Wilk p-value 0.220
and 0.207, respectively). In this context, Student’s independent samples t-test was used
to examine the mean differences between the CCBM group and Collagenated-CCBM. A
two-way ANOVA test was performed to determine whether the primary outcome, such
as the integrated distance, was influenced by both the type of treatment group and the
anatomical subsite (upper versus lower maxilla). Based on previous considerations, the
Mann–Whitney test was used to examine the mean differences between groups for non-
parametric variables.

3. Results

For this retrospective study, 25 patients were analyzed; 13 were included in the CCBM
group and 12 were included in the Collagenated-CCBM group. A total of 42 implants were
placed simultaneously with the GBR, and no implants were lost before or after loading.
The mean age did not differ between the two groups (p-value = 0.698), nor did the patients
differ in clinical characteristics. Fisher’s exact test showed no statistically significant p-
values when taking into account sex (p-value = 0.226), treatment in the upper or lower
maxilla (p-value = 0.695), and tooth area, such as incisor–canine versus premolar–molar
area (p-value = 0.999) (Table 2).

Table 2. Fisher’s exact test for heterogeneity for groups showing no differences between sex (p = 0.226),
lower or upper jaw (p = 0.695), and teeth area (p = 0.999).

Variables CCBM Group Collagenated-CCBM Group p-Value

Sex
Male 7 3

0.226
Female 6 9

Jaw
Lower 8 6

0.695
Upper 5 6

Teeth area
Incisor–canine 3 2

0.999
Premolar–molar 10 10
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Student’s t-test for independent samples showed no statistically significant differences
between the integrated and mean distance (Table 3). Patients in the CCBM group had a
mean integrated distance of 41.80 (SD. 101.18) versus a mean of 42.04 (SD. 66.71) in the
Collagenated-CCBM group (Table 3).

Table 3. Integrated distance and mean distance in CCBM group and Collagenated-CCBM groups.
Student’s t-test for independent samples showed no statistically significant differences for integrated
distance (p = 0.995) and mean distance (p = 0.734).

Group Sample Mean (mm3 for
ID, mm for MD)

Std. Deviation Standard Error
of the Mean p-Value

Integrated distance
(ID)

CCBM 13 41.8077 101.18147 28.06269
0.995

Collagenated-CCBM 12 42.0433 66.71674 19.25946

Mean distance
(MD)

CCBM 13 0.8400 1.05029 0.29130
0.734

Collagenated-CCBM 12 0.6958 1.04677 0.30218

When considering treatment groups and anatomical subsites, the simple primary effect
analysis confirmed the previous results, showing that the different treatment groups did
not affect the mean integrated distance (p-value = 0.685), nor did the different anatomical
subsites (p-value = 0.294) (Table 4).

Table 4. Mean integrated distance in lower maxilla and upper maxilla for both groups (CCBM and
Collagenated-CCBM). The two-way ANOVA test showed that the different treatment groups (CCBM
or Collagenated-CCBM) did not affect the mean integrated distance (p = 0.685) nor the anatomical
subsite (p = 0.294).

Maxilla_Mandible Group

Mean Integrated
Distance (mm3) Standard Error

95% Confidence Interval

Lower Limit Upper Limit

Lower maxilla
CCBM 84.560 27.631 27.098 142.022

Collagenated-CCBM 20.568 31.906 −45.783 86.919

Upper maxilla
CCBM −26.596 34.951 −99.280 46.088

Collagenated-CCBM 63.518 31.906 −2.833 129.869

The combined effect in the two-way ANOVA revealed a strong interaction between
the type of treatment performed in either the upper or lower maxilla (two-way ANOVA p-
value = 0.024). The integrated distance mean in the upper maxilla was reduced in the CCBM
group compared to the CCBM treatment in the lower maxilla and the Collagenated-CCBM
treatment in the upper maxilla (Figure 3).

Student’s t-test for independent samples showed no statistically significant differences
between the integrated and mean distance (Table 2).

Similarly, the maximum and minimum distance means did not differ between the
CCBM and Collagenated-CCBM groups (Mann–Whitney p-values 0.406 and 0.852, re-
spectively). Similar results were obtained when looking at the area of the valid distance
(p-value = 0.110). However, the distance standard deviation and the integrated abs distance
differed significantly between groups (p-values 0.019 and 0.022, respectively). The mean
distance standard deviation was 2.34 (SD 0.34) in the CCBM group and 1.18 (SD 0.23) in the
Collagenated-CCBM. A higher mean value was also found for the integrated abs distance in
the CCBM group (114.84, SD 19.9) than in the Collagenated-CCBM group (75.35, SD 13.2).
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4. Discussion

The presence of collagen in biomaterials, particularly highlighted in our study with
OsteoBiol® GTO®, has been consistently associated with positive outcomes. Collagen is
crucial in platelet aggregation, neovascularization, bone marrow stem cell differentiation,
and osteogenic cell recruitment [31–34].

The bone grafts utilized in this study have been previously evaluated in various surgical
applications, such as sinus lift and alveolar ridge preservation, by other authors [31–35].
For instance, Comuzzi and colleagues reported lower graft shrinkage for collagenated
biomaterials with a diameter of up to 300 microns in crestal access sinus lift compared to
those with a diameter exceeding 500 microns, such as OsteoBiol® GTO® [36,37]. Barone
et al. demonstrated superior dimensional changes in porcine cortical bone after tooth
extraction, with a notable decrease in volume shrinkage for sockets grafted with OsteoBiol®

mp3®, a pre-hydrated collagenated cortical cancellous bone mix [38,39].
This kind of bone substitute was prepared with a low-temperature production process

that does not denature collagen molecules and leaves them embedded into xenogenic
bone granules [23]. Bone turnover and volumetric changes are attributed to osteoclasts
and osteoblasts that require O2 and nutrients to carry out this process. Nutrients and
gases are provided by blood vessels or capillaries, and VEGF was demonstrated to be a
master gene for angiogenesis [40,41]. In 2016, Rombouts and collaborators proved that
collagenated graft granules, but not anorganic bovine bone (ABB), significantly enhanced
VEGF secretion in human periodontal ligament (PDL) cells. The higher amount of VEGF
secreted led to a significantly higher proliferation of endothelial cells and capillaries with
larger diameters [37].

Furthermore, mesenchymal stem cells (MSCs) play a fundamental role in bone regen-
eration [39]. When comparing collagenated graft materials to ABB, Jeanneau demonstrated
that the former significantly increased the secretion of the protein C5a from injured human
PDL cells, its interaction with the C5a receptor (C5aR) placed on the cell surface of MSCs,
its subsequent phosphorylation, and the consequent migration of MSCs towards injured
human PDL cells.

Finally, collagenated biomaterials were reported to promote human periodontal liga-
ment stem cell (PDLSC) osteogenic differentiation, as witnessed by the fact that collagen
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type I secreted and calcium deposited by PDLSCs seeded onto OsteoBiol® Sp-Block and
placed into an osteogenic growth medium were higher than the control group (osteogenic
growth medium only) [42].

Additional information was provided by Di Tinco et al. The mentioned study investi-
gated the osteogenic differentiation, stem cell properties, and inflammatory properties of
neural crest-derived stem cells isolated from human dental pulp (hDPSCs) to differently
composed collagenated grafts than traditional, non-collagenated, heterologous grafts [43].
The authors, in fact, report that both groups of biomaterials did not affect the stemness
potential of hDPSCs nor induce any immune response. However, when analyzing the os-
teogenic differentiation of hDPSCs, it was found that differentiated hDPSCs (diff-hDPSCs)-
exposed collagenated grafts showed a high ALP activity, with the higher presented by
OsteoBiol® GTO®. Conversely, non-collagenated graft-treated diff-hDPSCs showed a lower
ALP activity than diff-hDPSCs alone. The authors of the study conclude that OsteoBiol®

GTO® and OsteoBiol® Gen-Os® are preferable from a clinical standpoint because they exert
both a mechanical function and an osteogenic-promoting function.

This study pioneers the use of these materials in lateral bone augmentation, resulting
in increased bone volume 12 months post-surgery.

The volumetric changes in hard and soft tissues were meticulously assessed by super-
imposing preoperatively and postoperatively. STL files are a widely accepted method in
the literature for studying dimensional changes without using invasive procedures [44–46].

The use of heterologous bone as an alternative to autologous bone increased bone
volume and avoided the need for a second surgical site for bone harvesting, minimizing
surgical complications and reducing patient morbidity. No intraoperative or postoperative
complications were reported, affirming the safety and efficacy of the GBR procedure. The
resorbable collagen membrane further contributed to less invasive GBR surgical procedures,
aligning with the findings from other studies [47,48].

After 12 months of functional loading, the survival rate was 100%, and all implants
had adequate osseointegration. This underscores the predictability and safety of GBR with
the simultaneous implant approach. However, it is noteworthy that our results differ from
the implant survival rates reported by Danlos et al., who recorded rates of 87% to 95%. This
disparity may indicate the need for further investigation into the comparative effectiveness
of one-stage versus two-stage GBR techniques [49].

The integration of computer-guided surgery proved instrumental in eliminating intra-
operative complications and enabled the precise assessment of required bone augmentation
through planning software. Additionally, the utilization of OsteoBiol® GTO®, a collagen-
based sticky bone graft substitute, facilitated the efficient filling of bone defects, reducing
surgical times.

While this study contributes valuable insights, certain limitations must be acknowl-
edged. These include the small sample size, a relatively short follow-up period, the absence
of histological data, and a lack of postoperative three-dimensional radiographic evaluations.
The data from surface scanning may be influenced by inflammatory states, leading to the
thickening of the oral mucosa, thus potentially providing volumetric data that are not repre-
sentative of the volume of newly formed bone. On the other hand, the procedure described
by Schmitt et al. [30] significantly reduces this possibility and the corresponding alteration
of data. However, for intellectual honesty, the authors have considered it appropriate to
mention this possibility. Prospective studies and randomized controlled clinical trials are
warranted to provide more in-depth analyses of the behavior of these materials in GBR
procedures and to establish their long-term efficacy and safety.

5. Conclusions

Beyond the limitations of the present study, GBR with OsteoBiol® Apatos® Mix and
OsteoBiol® GTO® produced horizontal bone ridge augmentation with simultaneous im-
plant placement. Despite the differences in consistency, both bone graft substitutes were
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found to be effective and suitable for filling the peri-implant bone dehiscence and promot-
ing new bone formation.
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