Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Recruitment
2.2. In Vivo Sample Collection
2.3. In Vitro Harvesting of AEP Samples
2.4. In Vitro Experiments
2.5. Statistical Analysis
3. Results
3.1. Film and AEP from GORD Symptoms Group (GDS)
3.2. Film and AEP from GD and NGD Groups
3.3. Salivary Film Samples
3.4. AEP Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzalaf, M.A.; Hannas, A.R.; Kato, M.T. Saliva and dental erosion. J. Appl. Oral. Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Loomans, B.; Opdam, N.; Attin, T.; Bartlett, D.; Edelhoff, D.; Frankenberger, R.; Benic, G.; Ramseyer, S.; Wetselaar, P.; Sterenborg, B.; et al. Severe tooth wear: European consensus statement on management guidelines. J. Adhes. Dent. 2017, 19, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalifa, K.S. The prevalence of tooth wear in an adult population from the eastern province of Saudi Arabia. Clin. Cosmet. Investig. Dent. 2020, 12, 525–531. [Google Scholar] [PubMed]
- Jordão, H.W.; Coleman, H.G.; Kunzmann, A.T.; McKenna, G. The association between erosive toothwear and gastro-oesophageal reflux-related symptoms and disease: A systematic review and meta-analysis. J. Dent. 2020, 95, 103284. [Google Scholar] [PubMed]
- Chatzidimitriou, K.; Papaioannou, W.; Seremidi, K.; Bougioukas, K.; Haidich, A.B. Prevalence and association of gastroesophageal reflux disease and dental erosion: An overview of reviews. J. Dent. 2023, 133, 104520. [Google Scholar] [PubMed]
- Nijakowski, K.; Jankowski, J.; Gruszczyński, D.; Surdacka, A. Eating disorders and dental erosion: A systematic review. J. Clin. Med. 2023, 12, 6161. [Google Scholar] [CrossRef]
- Loke, C.; Lee, J.; Sander, S.; Mei, L.; Farella, M. Factors affecting intra-oral pH—A review. J. Oral Rehabil. 2016, 43, 778–785. [Google Scholar]
- Dipalma, G.; Inchingolo, F.; Patano, A.; Guglielmo, M.; Palumbo, I.; Campanelli, M.; Inchingolo, A.D.; Malcangi, G.; Palermo, A.; Tartaglia, F.C.; et al. Dental erosion and the role of saliva: A systematic review. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 10651–10660. [Google Scholar]
- Siqueira, W.L.; Custodio, W.; McDonald, E.E. New Insights into the Composition and Functions of the Acquired Enamel Pellicle. J. Dent. Res. 2012, 91, 1110–1118. [Google Scholar] [CrossRef]
- Carvalho, T.S.; Araújo, T.T.; Ventura, T.M.O.; Dionizio, A.; Câmara, J.V.F.; Moraes, S.M.; Pela, V.T.; Martini, T.; Leme, J.C.; Derbotolli, A.L.B.; et al. Acquired pellicle protein-based engineering protects against erosive demineralization. J. Dent. 2020, 102, 103478. [Google Scholar]
- Vukosavljevic, D.; Custodio, W.; Buzalaf, M.A.; Hara, A.T.; Siqueira, W.L. Acquired pellicle as a modulator for dental erosion. Arch. Oral Biol. 2014, 59, 631–638. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. The pellicle and erosion. Monogr. Oral. Sci. 2014, 25, 206–214. [Google Scholar]
- Hannig, M.; Joiner, A. The structure, function and properties of the acquired pellicle. Monogr. Oral Sci. 2006, 19, 29–64. [Google Scholar]
- Martini, T.; Câmara, J.V.F.; Dionizio, A.; Ventura, T.M.O.; Cassiano, L.D.P.S.; e Silva, C.M.D.S.; Taira, E.A.; Araujo, T.T.; Santos, L.A.; Ferrari, C.R.; et al. Proteomic analysis of stimulated saliva in gastroesophageal reflux disease patients with and without erosive tooth wear: Observational study. J. Dent. 2023, 139, 104724. [Google Scholar]
- Wang, Y.J.; Lang, X.Q.; Wu, D.; He, Y.Q.; Lan, C.H.; Wang, B.; Zou, D.W.; Wu, J.M.; Zhao, Y.B.; Dettmar, P.W.; et al. Salivary pepsin as an intrinsic marker for diagnosis of sub-types of gastroesophageal reflux disease and gastroesophageal reflux disease-related disorders. J. Neurogastroenterol. Motil. 2020, 26, 74. [Google Scholar] [CrossRef]
- Cheaib, Z.; Lussi, A. Impact of acquired enamel pellicle modification on initial dental erosion. Caries Res. 2011, 45, 107–112. [Google Scholar]
- Mutahar, M.; Carpenter, G.; Bartlett, D.; German, M.; Moazzez, R. The presence of acquired enamel pellicle changes acid-induced erosion from dissolution to a softening process. Sci. Rep. 2017, 7, 10920. [Google Scholar]
- Schestakow, A.; Echterhoff, B.; Hannig, M. Erosion protective properties of the enamel pellicle in-situ: Enamel pellicle and erosion. J. Dent. 2024, 147, 105103. [Google Scholar] [CrossRef]
- Carlen, A.; Börjesson, A.C.; Nikdel, K.; Olsson, J. Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res. 1998, 32, 447–455. [Google Scholar] [CrossRef]
- Taira, E.A.; Ferrari, C.R.; Carvalho, G.; Ventura, T.M.O.; Martini, T.; Dionizio, A.S.; Araújo, T.T.; Crusca, E.; Marchetto, R.; Buzalaf, M.A.R. Rinsing with statherin-derived peptide alters the proteome of the acquired enamel pellicle. Caries Res. 2021, 55, 333–340. [Google Scholar] [CrossRef]
- Moazzez, R.V.; Austin, R.S.; Rojas-Serrano, M.; Carpenter, G.; Cotroneo, E.; Proctor, G.; Zaidel, L.; Bartlett, D.W. Comparison of the Possible Protective Effect of the Salivary Pellicle of Individuals with and without Erosion. Caries Res. 2014, 48, 57–62. [Google Scholar] [CrossRef]
- Mutahar, M.; O’Toole, S.; Carpenter, G.; Bartlett, D.; Andiappan, M.; Moazzez, R. Reduced statherin in acquired enamel pellicle on eroded teeth compared to healthy teeth in the same subjects: An in-vivo study. PLoS ONE 2017, 12, e0183660. [Google Scholar] [CrossRef]
- Schlueter, N.; Hardt, M.; Klimek, J.; Ganss, C. Influence of the digestive enzymes trypsin and pepsin in vitro on the progression of erosion in dentine. Arch. Oral Biol. 2010, 55, 294–299. [Google Scholar] [CrossRef]
- Scaramucci, T.; Carvalho, J.C.; Hara, A.T.; Zero, D.T. Causes of dental erosion: Intrinsic factors. Dent. Eros. Its Clin. Manag. 2015, 104, 35–67. [Google Scholar]
- Sifrim, D.; Zerbib, F. Diagnosis and management of patients with reflux symptoms refractory to proton pump inhibitors. Gut 2012, 61, 1340–1354. [Google Scholar] [CrossRef]
- Schellack, N.S.; Schellack, G.S.; Meyer, J.M.; Malan, L.M.; Labuschagne, Q.L.; Nxumalo, N.N.; Kupa, K.K. Gastro-oesophageal reflux disease: A pharmacist’s perspective for 2020. SA Pharm. J. 2020, 87, 31–37. [Google Scholar]
- Milani, D.C.; Venturini, A.P.; Callegari-Jacques, S.M.; Fornari, F. Gastro-oesophageal reflux disease and dental erosions in adults: Influence of acidified food intake and impact on quality of life. Eur. J. Gastroenterol. Hepatol. 2016, 28, 797–801. [Google Scholar] [CrossRef]
- Martini, T.; Rios, D.; Cassiano, L.P.S.; Silva, C.M.S.; Taira, E.A.; Ventura, T.M.S.; Pereira, H.A.B.S.; Magalhães, A.C.; Carvalho, T.S.; Baumann, T.; et al. Proteomics of acquired pellicle in gastroesophageal reflux disease patients with or without erosive tooth wear. J. Dent. 2019, 81, 64–69. [Google Scholar] [CrossRef]
- Carpenter, G.; Cotroneo, E.; Moazzez, R.; Rojas-Serrano, M.; Donaldson, N.; Austin, R.; Zaidel, L.; Bartlett, D.; Proctor, G. Composition of enamel pellicle from dental erosion patients. Caries Res. 2014, 48, 361–367. [Google Scholar] [CrossRef]
- Piangprach, T.; Hengtrakool, C.; Kukiattrakoon, B.; Kedjarune-Leggat, U. The effect of salivary factors on dental erosion in various age groups and tooth surfaces. J. Am. Dent. Assoc. 2009, 140, 1137–1143. [Google Scholar] [CrossRef]
- Hussain, M.T.; Forbes, N.; Perrie, Y. Comparative analysis of protein quantification methods for the rapid determination of protein loading in liposomal formulations. Pharmaceutics 2019, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- Brady, P.N.; Macnaughtan, M.A. Evaluation of colorimetric assays for analyzing reductively methylated proteins: Biases and mechanistic insights. Anal. Biochem. 2015, 491, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, S.H.; Baumann, T.; Lussi, A.; Meyer-Lueckel, H.; Scaramucci, T.; Carvalho, T.S. Salivary pellicle modification with polyphenol-rich teas and natural extracts to improve protection against dental erosion. J. Dent. 2021, 105, 103567. [Google Scholar]
- Hannig, M. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin. Oral Investig. 1999, 3, 88–95. [Google Scholar] [PubMed]
- Svendsen, I.E.; Arnebrant, T.; Lindh, L. Validation of mechanically-assisted sodium dodecyl-sulphate elution as a technique to remove pellicle protein components from human enamel. Biofouling 2008, 24, 227–233. [Google Scholar]
- Moazzez, R.; Bartlett, D.; Anggiansah, A. Dental erosion, gastro-oesophageal reflux disease and saliva: How are they related? J. Dent. 2004, 32, 489–494. [Google Scholar]
- Filipi, K.; Halackova, Z.; Filipi, V. Oral health status, salivary factors and microbial analysis in patients with active gastro-oesophageal reflux disease. Int. Dent. J. 2011, 61, 231–237. [Google Scholar]
- Skoczylas, T.; Yandrapu, H.; Poplawski, C.; Asadi, M.; Wallner, G.; Sarosiek, J. Salivary bicarbonate as a major factor in the prevention of upper esophageal mucosal injury in gastroesophageal reflux disease. Dig. Dis. Sci. 2014, 59, 2411–2416. [Google Scholar]
- Holbrook, W.P.; Furuholm, J.; Gudmundsson, K.; Theodórs, A.; Meurman, J.H. Gastric reflux is a significant causative factor of tooth erosion. J. Dent. Res. 2009, 88, 422–426. [Google Scholar]
- Menezes, M.A.; Herbella, F.A.M. Pathophysiology of Gastroesophageal Reflux Disease. World J. Surg. 2017, 41, 1666–1671. [Google Scholar] [CrossRef]
- Jarvinen, V.K.; Rytomaa, I.I.; Heinonen, O.P. Risk factors in dental erosion. J. Dent. Res. 1991, 70, 942–947. [Google Scholar] [CrossRef] [PubMed]
- Hara, A.T.; Lussi, A.; Zero, D.T. Biological factors. Monogr. Oral Sci. 2006, 20, 88–99. [Google Scholar] [PubMed]
- Hjortsjo, C.; Jonski, G.; Young, A.; Saxegaard, E. Effect of acidic fluoride treatments on early enamel erosion lesions—A comparison of calcium and profilometric analyses. Arch. Oral Biol. 2010, 55, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.J.; Wang, X.M.; Cui, F.Z.; Ge, J.; Yan, J.X. The enamel softening and loss during early erosion studied by AFM, SEM and nanoindentation. Biomed. Mater. 2009, 4, 015020. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.S.; Lussi, A. Acidic beverages and foods associated with dental erosion and erosive tooth wear. Impact Nutr. Diet Oral Health 2020, 28, 91–98. [Google Scholar]
- Bartlett, D.W.; Coward, P.Y. Comparison of the erosive potential of gastric juice and a carbonated drink in vitro. J. Oral Rehabil. 2001, 28, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.W.; Yong, J.T.; Carpenter, G.; Bartlett, D.; Moazzez, R.; O’Toole, S. Differences in the Natural Enamel Surface and Acquired Enamel Pellicle following Exposure to Citric or Hydrochloric Acid. Caries Res. 2020, 54, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Zimmerman, J.N.; Custodio, W.; Xiao, Y.; Basiri, T.; Hatibovic-Kofman, S.; Siqueira, W.L. Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS ONE 2013, 8, e67919. [Google Scholar] [CrossRef]
- Ventura, T.; Cassiano, L.P.S.; Souza, E.S.C.M.; Taira, E.A.; Leite, A.L.; Rios, D.; Buzalaf, M.A.R. The proteomic profile of the acquired enamel pellicle according to its location in the dental arches. Arch. Oral Biol. 2017, 79, 20–29. [Google Scholar] [CrossRef]
Sample Type | Total Protein Concentration (mg/mL) Mean (SD) |
---|---|
Eroded film (EF) (n = 39) | 2.33 (0.94) |
Uneroded film (UF) (n = 39) | 2.62 (1.59) |
Eroded pellicle (EP) (n = 39) | 2.74 (0.97) |
Uneroded pellicle (UP) (n = 39) | 2.80 (1.32) |
Salivary Film Samples | Total Protein Concentration (mg/mL) | AEP Samples | Total Protein Concentration (mg/mL) |
---|---|---|---|
NGD-EF (n = 19) | 2.63 (0.84) | NGD-EP (n = 19) | 3.27 (1.01)a |
NGD-UF (n = 19) | 2.97 (2.0) | NGD-UP (n = 19) | 3.33 (1.57)b |
GD-EF (n = 20) | 1.97 (0.92) | GD-EP (n = 20) | 2.17 (0.49)a |
GD-UF (n = 20) | 2.22 (0.81) | GD-UP (n = 20) | 2.24 (0.66)b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, R.; Mutahar, M.; Bartlett, D.; Jafari, J.; Moazzez, R. Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD). Dent. J. 2024, 12, 235. https://doi.org/10.3390/dj12080235
Alharthi R, Mutahar M, Bartlett D, Jafari J, Moazzez R. Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD). Dentistry Journal. 2024; 12(8):235. https://doi.org/10.3390/dj12080235
Chicago/Turabian StyleAlharthi, Rasha, Mahdi Mutahar, David Bartlett, Jafar Jafari, and Rebecca Moazzez. 2024. "Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD)" Dentistry Journal 12, no. 8: 235. https://doi.org/10.3390/dj12080235
APA StyleAlharthi, R., Mutahar, M., Bartlett, D., Jafari, J., & Moazzez, R. (2024). Salivary Proteins in Human Acquired Enamel Pellicle (AEP) on Eroded and Uneroded Teeth in Patients with Gastro-Oesophageal Reflux Disease (GORD). Dentistry Journal, 12(8), 235. https://doi.org/10.3390/dj12080235