Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach
Abstract
:1. Introduction
2. Results
2.1. Data Interpolation
2.2. Mineralization of the Induced Lesions
2.3. Segmentation Using the Joint Histogram
2.4. Quantification of the Mineralization
3. Discussion
4. Experimental Section
4.1. Ethical Aspects
4.2. Tissue Preparation
4.3. Micro Computed Tomography
4.4. Data Registration and Processing
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Featherstone, J.D. Dental caries: A dynamic process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Shore, R.C.; Kirkham, J.; Brookes, S.J.; Wood, S.R.; Robinson, C. Distribution of exogenous proteins in caries lesions in relation to the pattern of demineralisation. Caries Res. 2000, 34, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S. Root caries histopathology and chemistry. Am. J. Dent. 1994, 7, 261–265. [Google Scholar] [PubMed]
- de Marsillac, M.W.; de Sousa Vieira, R. Assesment of artificial caries lesions through scanning electron microscopy and cross-sectional microhardness test. Indinan J. Dent. Res. 2013, 24, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.R.; Kirkham, J.; Marsh, P.D.; Shore, R.C.; Naltress, B.; Robinson, C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dental Res. 2000, 79, 21–27. [Google Scholar] [CrossRef]
- Pugach, M.K.; Strother, J.; Darling, C.L.; Fried, D.; Gansky, S.A.; Marshall, S.J.; Marshall, G.W. Dentin caries zones: Mineral, structure, and properties. J. Dent. Res. 2009, 88, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Buchalla, W.; Imfeld, T.; Attin, T.; Swain, M.V.; Schmidlin, P.R. Relationship between nanohardness and mineral content of artificial carious enamel lesions. Caries Res. 2008, 42, 157–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowker, S.E.P.; Anderson, P.; Elliott, J.C. Real-time measurement of in vitro enamel demineralization in the vicinity of the restoration-tooth interface. J. Mater. Sci. Mater. Med. 1999, 10, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Yagi, N.; Ohta, T.; Matsuo, Y.; Terada, H.; Kamasaka, K.; To-O, K.; Kometani, T.; Kuriki, T. Evaluation of the distribution and orientation of remineralized enamel crystallites in subsurface lesions by X-ray diffraction. Caries Res. 2010, 44, 253–259. [Google Scholar] [CrossRef]
- Deyhle, H.; White, S.N.; Bunk, O.; Beckmann, F.; Müller, B. Nanostructure of the carious tooth enamel lesion. Acta Biomater. 2014, 10, 355–364. [Google Scholar] [PubMed]
- Yagi, N.; Ohta, T.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; To-O, K.; Kometani, T.; Kuriki, T. Evaluation of enamel crystallites in subsurface lesion by microbeam X-ray diffraction. J. Synchrotron Radiat. 2009, 16, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Märten, A.; Fratzl, P.; Paris, O.; Zaslansky, P. On the mineral in collagen of human crown dentine. Biomaterials 2010, 31, 5479–5490. [Google Scholar] [CrossRef] [PubMed]
- Deyhle, H.; Bunk, O.; Müller, B. Nanostructure of healthy and caries-affected human teeth. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Deyhle, H.; Weitkamp, T.; Lang, S.; Schulz, G.; Rack, A.; Zanette, I.; Müller, B. Comparison of propagation-based phase-contrast tomography approaches for the evaluation of dentin microstructure. Proc. SPIE 2012, 8506, 85060N–85061N. [Google Scholar]
- Kühl, S.; Deyhle, H.; Zimmerli, M.; Spagnoli, G.; Beckmann, F.; Müller, B.; Filippi, A. Cracks in dentin and enamel after cryo-preservation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2011, 113, e5–e10. [Google Scholar] [CrossRef] [PubMed]
- Swain, M.V.; Xue, J. State of the art of micro-CT applications in dental research. Int. J. Oral Sci. 2009, 1, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Holme, M.N.; Schulz, G.; Deyhle, H.; Weitkamp, T.; Beckmann, F.; Lobrinus, J.A.; Rikhtegar, F.; Kurtcuoglu, V.; Zanette, I.; Saxer, T.; et al. Complementary X-ray tomography techniques for histology-validated 3D imaging of soft and hard human tissues using plaque-containing blood vessels as examples. Nat. Protoc. 2014, 9, 1401–1415. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, F.; Herzen, J.; Haibel, A.; Müller, B.; Schreyer, A. High density resolution in synchrotron-radiation-based attenuation-contrast microtomography. Proc. SPIE 2008, 7078. [Google Scholar] [CrossRef]
- Dowker, S.E.P.; Elliott, J.C.; Davis, G.R.; Wilson, R.M.; Cloetens, P. Three-dimensional study of human dental fissure enamel by synchrotron X-ray microtomography. Eur. J. Oral Sci. 2006, 114, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Davis, G.R.; Evershed, A.N.Z.; Mills, D. Quantitative high contrast X-ray microtomography for dental research. J. Dent. 2013, 41, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Lo, E.C.; Zhi, Q.H.; Itthagarun, A. Comparing two quantitative methods for studying remineralization of artificial caries. J. Dent. Res. 2010, 38, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Sunnegardh-Grönberg, K.; VanDijken, J.W.V.; Funegard, U. Selection of dental materials and longevity of replaced restorations in Public Dental Health clinics in northern Sweden. J. Dent. 2009, 37, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef]
- Hannig, M.; Hannig, C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010, 5, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Hannig, M.; Hannig, C. Nanotechnology and its role in caries therapy. Adv. Dent. Res. 2012, 24, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Firth, A.; Aggeli, A.; Burke, J.L.; Yang, X.; Kirkham, J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine 2006, 1, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Brunton, P.A.; Davies, R.P.W.; Burke, J.L.; Smith, A.; Aggeli, A.; Brookes, S.J.; Kirkham, J. Treatment of early caries lesions using biomimetic self-assembling peptides—A clinical safety trial. Br. Dent. J. 2013, 215, E6. [Google Scholar] [CrossRef] [PubMed]
- Kirkham, J.; Firth, A.; Vernals, D.; Boden, N.; Robinson, C.; Shore, R.C.; Brookes, S.J.; Aggeli, A. Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res. 2007, 86, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Ramani, S.; Thevenaz, P.; Unser, M. Regularized interpolation for noisy images. IEEE Trans. Med. Imaging 2010, 29, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Stalder, A.; Ilgenstein, B.; Chicerova, N.; Deyhle, H.; Beckmann, F.; Müller, B. Combined use of micro computed tomography and histology to evaluate the regenerative capacity of bone grafting materials. Int. J. Mater. Res. 2014, 105, 679–691. [Google Scholar] [CrossRef]
- Schulz, G.; Waschkies, C.; Pfeiffer, F.; Zanette, I.; Weitkamp, T.; David, C.; Muller, B. Multimodal imaging of human cerebellum—Merging X-ray phase microtomography, magnetic resonance microscopy and histology. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Dowker, S.E.P.; Elliott, J.C.; Davis, G.R.; Wassif, H.S. Longitudinal study of the three-dimensional development of subsurface enamel lesions during in vitro demineralisation. Caries Res. 2003, 37, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Dowker, S.E.P.; Elliott, J.C.; Davis, G.R.; Wilson, R.M.; Cloetens, P. Synchrotron X-Ray microtomographic investigation of mineral concentrations at micrometre scale in sound and carious enamel. Caries Res. 2004, 38, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Deyhle, H.; Lang, S.; Schulz, G.; Bormann, T.; Fierz, F.; Hieber, S. Three-dimensional registration of tomography data for quantification in biomaterials science. Int. J. Mater. Res. 2012, 103, 242–249. [Google Scholar] [CrossRef]
- Jorgensen, S.M.; Eaker, D.R.; Vercnocke, A.J.; Ritman, E.L. Reproducibility of global and local reconstruction of three-dimensional micro-computed tomography of iliac crest biopsies. IEEE Trans. Med. Imaging 2008, 27, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Dziadowiec, I.; Beckmann, F.; Schulz, G.; Deyhle, H.; Müller, B. Characterization of a human tooth with carious lesions using conventional and synchrotron radiation-based micro computed tomography. Proc. SPIE 2014, 9212, 92120W. [Google Scholar]
- Robinson, C.; Kirkham, J.; Baverstock, A.C.; Shore, R.C. A flexible and rapid pH cycling procedure for investigations into the remineralisation and demineralisation behaviour of human enamel. Caries Res. 1992, 26, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Andronache, A.; von Siebenthal, M.; Székely, G.; Cattin, P. Non-rigid registration of multi-modal images using both mutual information and cross-correlation. Med. Image Anal. 2008, 12, 3–15. [Google Scholar] [CrossRef]
- Fierz, F.C.; Beckmann, F.; Huser, M.; Irsen, S.H.; Leukers, B.; Witte, F.; Degistirici, Ö.; Andronache, A.; Thie, M.; Müller, B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 2008, 29, 3799–3806. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.S.; Ackerman, M.J.; Lorensen, W.E.; Schroeder, W.; Chalana, V.; Aylward, S.; Metaxas, D.; Whitaker, R. Engineering and Algorithm Design for an Image Processing API: A Technical Report on ITK—The Insight Toolkit, Proceedings of Medicine Meets Virtual Reality, Amsterdam, The Netherlands, January 2002; Westwood, J., Ed.; IOS Press Amsterdam: Amsterdam, The Netherlands, 2002; pp. 586–592.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deyhle, H.; Dziadowiec, I.; Kind, L.; Thalmann, P.; Schulz, G.; Müller, B. Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach. Dent. J. 2015, 3, 111-122. https://doi.org/10.3390/dj3040111
Deyhle H, Dziadowiec I, Kind L, Thalmann P, Schulz G, Müller B. Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach. Dentistry Journal. 2015; 3(4):111-122. https://doi.org/10.3390/dj3040111
Chicago/Turabian StyleDeyhle, Hans, Iwona Dziadowiec, Lucy Kind, Peter Thalmann, Georg Schulz, and Bert Müller. 2015. "Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach" Dentistry Journal 3, no. 4: 111-122. https://doi.org/10.3390/dj3040111
APA StyleDeyhle, H., Dziadowiec, I., Kind, L., Thalmann, P., Schulz, G., & Müller, B. (2015). Mineralization of Early Stage Carious Lesions In Vitro—A Quantitative Approach. Dentistry Journal, 3(4), 111-122. https://doi.org/10.3390/dj3040111