Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
- -
- Population: intact premolars or with 0/1/2 walls lost (i.e., intact premolars, or premolars without the involvement of any of the 4 walls, or premolars with either the mesial or distal wall lost, or premolars with both the mesial and distal walls lost);
- -
- Intervention: fracture strength test;
- -
- Comparison: no comparison group was defined;
- -
- Outcome: fracture strength, measured in Newton;
- -
- Studies: all ex vivo studies.
Exclusion Criteria
2.3. Information Sources
2.3.1. Electronic Search
- Fracture Strength Test AND (endodontics OR endodontically treated teeth).
- The search strategy was then adapted for the other databases.
2.3.2. Hand Search
2.4. Study Selection
2.5. Data Collection Process
2.6. Data Items
2.7. Summary Measures
2.8. Synthesis of Results and Additional Analyses
- Periodontal ligament simulation;
- Load inclination;
- Tip position;
- Thermocycling;
3. Results
3.1. Study Selection
3.2. Descriptive Analysis
3.3. Meta-Analysis
4. Discussion
4.1. Summary of Findings
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Eakle, W. Fracture Resistance of Teeth Restored with Class II Bonded Composite Resin. J. Dent. Res. 1986, 65, 149–153. [Google Scholar] [CrossRef]
- Krejci, I.; Dietschi, D. Marginal adaptation, retention and fracture resistance of adhesive composite restorations on devital teeth with and without posts. Oper Dent. 2003, 28, 127–135. [Google Scholar] [PubMed]
- Tang, W.; Wu, Y.; Smales, R. Identifyng and reducing risk for potential fractures in endodontically treated teeth. J. Endod. 2010, 36, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Tamse, A.; Zilburg, I.; Halpern, J. Vertical root fractures in adjacent maxillary premolars: An endodontic-prosthetic perplexity. Int. Endod. J. 1998, 31, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Reeh, E.S.; Messer, H.H.; Douglas, W.H. Reduction in tooth stiffness as a result of endodontic and restorative procedures. J. Endo. 1989, 15, 512–516. [Google Scholar] [CrossRef]
- Uzunoglu-Özyürek, E.; Eren, S.K.; Eraslan, O.; Belli, S. Critical evaluation of fracture of strength testing for endodontically treated teeth: A finite element analysis study. Restor. Dent. Endod. 2019, 44, e15. [Google Scholar] [CrossRef]
- Taha, N.A.; Palamara, J.E.; Messer, H.H. Fracture strength and fracture patterns of root filled teeth restored with direct resin restorations. J. Dent. 2011, 39, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.S. An investigation into the importance of the periodontal ligament and alveolar bone as supporting structures in finite element studies. J. Oral. Rehabil. 2001, 28, 425–432. [Google Scholar] [CrossRef]
- Soares, C.J.; Pizi, E.C.G.; Fonseca, R.B.; Martins, L.R.M. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz. Oral Res. 2005, 19, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Rossomando, K.J.; Wendt, S.L. Thermocycling and dwell times in microleakage evaluation for bonded restorations. Dent. Mater. 1995, 11, 47–51. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Gokturk, H.; Karaarslan, E.Ş.; Tekin, E.; Hologlu, B.; Sarikaya, I. The effect of the different restorations on fracture resistance of root-filled premolars. BMC. Oral Health 2018, 18, 196. [Google Scholar] [CrossRef]
- Oz, F.; Attar, N.U.R.A.Y.; Sungur, D. The influence of restorative material and glass fiber posts on fracture strength of endodontically treated premolars after extensive structure loss. Niger J. Clin. Pract. 2019, 22, 782–789. [Google Scholar] [CrossRef]
- Eapen, A.M.; Amirtharaj, L.V.; Sanjeev, K.; Mahalaxmi, S. Fracture Resistance of Endodontically Treated Teeth Restored with 2 Different Fiber-reinforced Composite and 2 Conventional Composite Resin Core Buildup Materials: An in Vitro Study. J. Endod. 2017, 43, 1499–1504. [Google Scholar] [CrossRef]
- Zogheib, C.; Sfeir, G.; Plotino, G.; Deus, G.; Daou, M.; Khalil, I. Impact of Minimal Root Canal Taper on the Fracture Resistance of Endodontically Treated Bicuspids. J. Int. Soc. Prev. Community Dent. 2018, 8, 179–183. [Google Scholar] [CrossRef]
- Hshad, M.E.; Dalkilic, E.E.; Ozturk, G.C.; Dogruer, I.; Koray, F. Influence of Different Restoration Techniques on Fracture Resistance of Root-filled Teeth: In Vitro Investigation. Oper. Dent. 2018, 43, 162–169. [Google Scholar] [CrossRef]
- Soares, P.V.; Santos-Filho, P.C.F.; Queiroz, E.C.; Araújo, T.C.; Campos, R.E.; Araújo, C.A.; Soares, C.J. Fracture resistance and stress distribution in endodontically treated maxillary premolars restored with composite resin. J. Prosthodont. 2008, 17, 114–119. [Google Scholar] [CrossRef]
- Sengun, A.; Cobankara, F.K.; Orucoglu, H. Effect of a new restoration technique on fracture resistance of endodontically treated teeth. Dent. Traumatol. 2008, 24, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, J.; Sene, F.; Pereira Ramos, R.; Benetti, A.R. Tooth structure and fracture strength of cavities. Braz. Dent. J. 2007, 18, 134–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angol, R.J.; Ghiggi, P.C.; Paranhos, M.P.; Borges, G.A.; Burnett, L.H., Jr.; Spohr, A.M. Influence of resin cements on cuspal deflection and fracture load of endodontically-treated teeth restored with composite inlays. Acta. Odontol. Scand. 2013, 71, 664–670. [Google Scholar]
- Taha, N.A.; Maghaireh, G.A.; Bagheri, R.; Holy, A.A. Fracture strength of root filled premolar teeth restored with silorane and methacrylate-based resin composite. J. Dent. 2015, 43, 735–741. [Google Scholar] [CrossRef]
- Spicciarelli, V.; Marruganti, C.; Di Matteo, C.; Martignoni, M.; Ounsi, H.; Doldo, T.; Grandini, S. Influence of single post, oval, and multi-post restorative techniques and amount of residual tooth substance on fracture strength of endodontically treated maxillary premolars. J. Oral. Sci. 2020, 63, 70–74. [Google Scholar] [CrossRef]
- Santos, M.J.M.C.; Bezerra, R.B. Fracture resistance of maxillary premolars restored with direct and indirect adhesive techniques: Randomized Controlled Trial. J. Can. Dent. Assoc. 2005, 71, 585. [Google Scholar]
- Plotino, G.; Grande, N.M.; Isufi, A.; Ioppolo, P.; Pedullà, E.; Bedini, R.; Gambarini, G.; Testarelli, L. Fracture Strength of Endodontically Treated Teeth with Different Access Cavity Designs. J. Endod. 2017, 43, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Harsha, M.S.; Praffulla, M.; Babu, M.R.; Leneena, G.; Krishna, T.S.; Divya, G. The Effect of Cavity Design on Fracture Resistance and Failure Pattern in Monolithic Zirconia Partial Coverage Restorations—an in vitro study. J. Clin. Diagn. Res. 2017, 11, ZC45. [Google Scholar] [CrossRef]
- Monga, P.; Sharma, V.; Kumar, S. Comparison of fracture resistance of endodontically treated teeth using different coronal restorative materials: An in vitro study. J. Conserv. Dent. 2009, 12, 154–159. [Google Scholar] [PubMed] [Green Version]
- Kemaloglu, H.; Kaval, M.E.; Turkun, M.; Kurt, S.M. Effect of novel restoration techniques on the fracture resistance of teeth treated endodontically: An in vitro study. Dent. Mater. J. 2015, 34, 618–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashyakhy, M.; Jabali, A.; Karale, R.; Parthiban, G.; Sajeev, S.; Bhandi, S. Comparative evaluation of fracture toughness and marginal adaptation of two restorative materials in non-endodontically and endodontically treated teeth: An in vitro study. Niger. J. Clin. Pract. 2020, 23, 349–354. [Google Scholar] [PubMed]
- de V Habekost, L.; Camacho, G.B.; Pinto, M.B.; Demarco, F.F. Fracture resistance of premolars restored with partial ceramic restorations and submitted to two different loading stresses. Oper. Dent. 2006, 31, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.V.; Santos-Filho, P.C.; Martins, L.R.; Soares, C.J. Influence of restorative technique on the biomechanical behavior of endodontically treated maxillary premolars. Part I: Fracture resistance and fracture mode. J. Prosthet. Dent. 2008, 99, 30–37. [Google Scholar] [CrossRef]
- Desai, P.D.; Das, U.K. Comparison of fracture resistance of teeth restored with ceramic inlay and resin composite: An in vitro study. Indian J. Dent. Res. 2011, 22, 877. [Google Scholar] [CrossRef]
- Karzoun, W.; Abdulkarim, A.; Samran, A.; Kern, M. Fracture strength of endodontically treated maxillary premolars supported by a horizontal glass fiber post: An in vitro study. J. Endod. 2015, 41, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Taha, N.A.; Palamara, J.E.; Messer, H.H. Fracture strength and fracture patterns of root-filled teeth restored with direct resin composite restorations under static and fatigue loading. Oper. Dent. 2014, 39, 181–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skupien, J.A.; Kreulen, C.; Opdam, N.; Bronkhorst, E.; Pereira-Cenci, T.; Huysmans, M.C. Effect of Remaining Cavity Wall, Cervical Dentin, and Post on Fracture Resistance of Endodontically Treated, Composite Restored Premolars. Int. J. Prostodont. 2016, 29, 154–156. [Google Scholar] [CrossRef] [Green Version]
- Shahrbaf, S.; Mirzakiuchaki, B.; Oskoui, S.S.; Kahnamoui, M.A. The effect of marginal ridge thickness on the fracture resistance of endodontically-treated, composite restored maxillary premolars. Open Dent. 2007, 32, 285–290. [Google Scholar] [CrossRef]
- Gürel, M.A.; Helvacioğlu Kivanç, B.; Ekıcı, A.; Alaçam, T. Fracture Resistance of Premolars Restored Either with Short Fiber or Polyethylene Woven Fiber-Reinforced Composite. J. Esthet. Restor. Dent. 2016, 28, 412–418. [Google Scholar] [CrossRef]
- Jantarat, J.; Palamara, J.E.; Messer, H.H. An investigation of cuspal deformation and delayed recovery after occlusal loading. J. Dent. 2001, 29, 363–370. [Google Scholar] [CrossRef]
- Ausiello, P.; Apicella, A.; Davidson, C.L. Effect of adhesive layer properties on stress distribution in composite restoration—a 3D finite element analysis. Dent. Mater. 2002, 18, 295–303. [Google Scholar] [CrossRef]
- Yang, H.S.; Lang, L.A.; Molina, A.; Felton, D.A. The effects of dowel design and load direction on dowel-and-core restoration. J. Prosthet. Dent. 2001, 85, 558–567. [Google Scholar] [CrossRef]
- Sabery, E.A.; Pirhaji, A.; Zabetiyan, F. Effect of Endodontic Access Cavity Design and Thermocycling on Fracture strengt of Endodontically treated teeth. Clinical, Cosmetic and Investigational Dentistry. Clin. Cosmet. 2020, 12, 149–156. [Google Scholar]
Authors | Years | Teeth | N | PDL | Thermocycling | Load Inclination | Tip Application |
---|---|---|---|---|---|---|---|
Gokturk | 2018 | Upper | 55 | + | + | 90° | Buccal/Lingual cusp |
Oz | 2019 | Upper | 80 | + | + | 90° | Occlusal surface |
Eapen | 2017 | Upper | 60 | - | -- | 90° | Occlusal inclines of the Buccal and Lingual cusps |
Harsha | 2017 | Upper 1 st | 40 | - | + | 30° | On the Center of the Buccal cusp |
Desai | 2011 | Upper1 st | 30 | - | + | 90° | Center occlusal surface |
Kemaloglu | 2015 | Lower | 48 | + | - | 90° | B and L cusps simultaneously |
Zogheib | 2018 | Upper | 60 | + | - | 90° | Central fossa |
Karzoun | 2015 | Upper | 60 | + | - | 90° | / |
Taha | 2014 | Upper | 48 | - | - | 45° | / |
Hshad | 2018 | Lower | 48 | - | - | 90° | Interdental surface of the buccal cusp |
Angol | 2013 | Upper | 10 | - | - | 90° | Simultaneous contact B and P cuspal inclines |
Taha | 2011 | Upper | 80 | - | - | 45° | Palatal incline of Buccal cusp |
Taha | 2015 | Upper | 77 | - | - | 45° | Palatal incline of Buccal cusp |
Mashyakhy | 2020 | / | 52 | + | + | 90° | Center occlusal surface |
Spicciarelli | 2020 | Upper 1st (1 root) | 165 | - | - | 90° | 2 mm from apex of Palatal cusp in the direction of Central fossa |
Monga | 2009 | Upper | 80 | - | - | 90° | Occlusal inclines of the buccal and lingual cusps |
Soares | 2008 | / | 50 | + | - | 45° | Buccal and lingual cusps |
Sengun | 2008 | Lower | 80 | + | - | 45° | Central fossa with lingual orientation |
Soares | 2008 | Upper (1 root) | 50 | + | - | 90° | Center occlusal surface |
Shahrbaf | 2007 | Upper | 60 | - | + | 45° | Palatal cusp |
Coelho | 2005 | Upper | 90 | - | - | 90° | Buccal and Lingual inclined cuspal planes, not restoration |
Mondelli | 2007 | Upper 1st | 40 | - | - | 90° | Contacted both cusps simultaneously |
Skupien | 2016 | Upper (1 root) | 30 | - | + | 45° | Torward buccal cusp |
Plotino | 2017 | Upper 1st | 20 | - | - | 30° | Central fossa |
Gurel | 2016 | Upper (1 root) | 80 | - | - | 30° | Central fissure of the occlusal surface |
Heterogeneity summary: PDL simulation (Binary; 0 = −PDL; +PDL) Number of studies: 17 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 11 | 741.34 | 0.000 | 91,125.915 | 98.52 | 67.39 |
1 | 4 | 1409.95 | 0.000 | 4.16e+05 | 99.72 | 352.49 |
Overall | 16 | 396.53 | 0.000 | 5.38e+05 | 99.98 | 908.80 |
Test of group differences: Q_b = chi2 (1) = 0.75 | Prob > Q_b = 0.386 | |||||
Heterogeneity summary: Load inclination (Binary; 0 = 30/45°; 1 = 90°) Number of studies: 17 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 7 | 2118.47 | 0.000 | 3.08e+05 | 99.67 | 302.64 |
1 | 8 | 243.53 | 0.000 | 52,820.161 | 96.71 | 30.44 |
Overall | 16 | 14,540.83 | 0.000 | 5.38e+05 | 97.73 | 908.80 |
Test of group differences: Q_b = chi2 (1) = 2.77 | Prob > Q_b = 0.096 | |||||
Heterogeneity summary: Tip Position (Binary; 0 = either buccal or lingual; 1 = central fossa or both cusps) Number of studies: 17 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 4 | 51.73 | 0.000 | 26,365.250 | 92.27 | 12.93 |
1 | 10 | 14,471.58 | 0.000 | 6.30e+05 | 99.93 | 1447.16 |
Overall | 9 | 14,526.82 | 0.000 | 5.53+05 | 99.90 | 968.45 |
Test of group differences: Q_b = chi2 (1) = 0.58 | Prob > Q_b = 0.447 | |||||
Heterogeneity summary: Thermocycling (Binary; 0 = −Therm; +Therm) Number of studies: 17 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 11 | 14,351.13 | 0.000 | 5.93e+05 | 73.46 | 3.77 |
1 | 4 | 88.66 | 0.000 | 58,364.924 | 98.98 | 97.81 |
Overall | 16 | 14,540.83 | 0.000 | 5.38e+05 | 97.73 | 44.06 |
Test of group differences: Q_b = chi2 (1) = 0.09 | Prob > Q_b = 0.766 |
Heterogeneity summary: Load inclination (Binary; 0 = 30/45°; 1 = 90°) Number of studies: 10 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 5 | 18.84 | 0.002 | 21,296.981 | 73.46 | 3.77 |
1 | 3 | 293.42 | 0.000 | 35,790.506 | 98.98 | 97.81 |
Overall | 9 | 396.53 | 0.000 | 41,939.649 | 97.73 | 44.06 |
Test of group differences: Q_b = chi2 (1) = 8.97 | Prob > Q_b = 0.003 |
Heterogeneity summary: Load inclination (Binary; 0 = 30/45°; 1 = 90°) Number of studies: 6 | ||||||
Group | df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 0 | 0.00 | - | 0.000 | - | - |
1 | 4 | 378.35 | 0.000 | 84,712.462 | 98.94 | 94.59 |
Overall | 5 | 378.41 | 0.000 | 74,292.555 | 98.68 | 75.68 |
Test of group differences: Q_b = chi2 (1) = 2.94 | Prob > Q_b = 0.086 | |||||
Heterogeneity summary: Thermocycling (Binary; 0 = −Therm; +Therm) Number of studies: 6 | ||||||
Group | Df | Q | P > Q | Tau2 | %I2 | H2 |
0 | 4 | 129.88 | 0.000 | 28,884.187 | 73.46 | 3.77 |
1 | 0 | 0.00 | - | 0.000 | 98.98 | 97.81 |
Overall | 5 | 14,540.83 | 0.000 | 74,292.555 | 97.73 | 44.06 |
Test of group differences: Q_b = chi2 (1) = 50.83 | Prob > Q_b = 0.000 |
Meta es | Coef. | Std. Err. | z | P > z | [95% Conf.Interval] |
---|---|---|---|---|---|
Tip diameter | 108.9722 | 109.2411 | 2.24 | 0.025 | 13.43596 204.5084 |
cons | 92.22167 | 251.3299 | 0.37 | 0.714 | −400.3759 584.8193 |
Test of group differences: Q_res = chi2 (13) = 396.23 | Prob > Q_res = 0.0000 | ||||
Tip diameter | 54.2533 | 21.42337 | 2.53 | 0.011 | 12.26426 96.24234 |
cons | 272.2454 | 114.956 | 2.37 | 0.018 | 46.93586 497.555 |
Test of group differences: Q_res = chi2 (13) = 9033.13 | Prob > Q_res = 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaeta, C.; Marruganti, C.; Mignosa, E.; Franciosi, G.; Ferrari, E.; Grandini, S. Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis. Dent. J. 2021, 9, 146. https://doi.org/10.3390/dj9120146
Gaeta C, Marruganti C, Mignosa E, Franciosi G, Ferrari E, Grandini S. Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis. Dentistry Journal. 2021; 9(12):146. https://doi.org/10.3390/dj9120146
Chicago/Turabian StyleGaeta, Carlo, Crystal Marruganti, Emanuele Mignosa, Giovanni Franciosi, Edoardo Ferrari, and Simone Grandini. 2021. "Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis" Dentistry Journal 9, no. 12: 146. https://doi.org/10.3390/dj9120146
APA StyleGaeta, C., Marruganti, C., Mignosa, E., Franciosi, G., Ferrari, E., & Grandini, S. (2021). Influence of Methodological Variables on Fracture Strength Tests Results of Premolars with Different Number of Residual Walls. A Systematic Review with Meta-Analysis. Dentistry Journal, 9(12), 146. https://doi.org/10.3390/dj9120146