Antibacterial Ability of Sodium Hypochlorite Activated with PUI vs. XPF File against Bacteria Growth on Enterococcus faecalis Mature Biofilm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Selection and Preparation
2.2. Inoculum Preparation
2.3. Specimen Inoculation
2.4. Specimen Disinfection Treatment
2.5. Dentin Extraction from the Root Canal and Bacteria Quantification
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, P.; Shen, Y.; Lin, J.; Haapasalo, M. In Vitro Efficacy of XP-endo Finisher with 2 Different Protocols on Biofilm Removal from Apical Root Canals. J. Endod. 2017, 43, 321–325. [Google Scholar] [CrossRef]
- Waltimo, T.; Trope, M.; Haapasalo, M.; Ørstavik, D. Clinical Efficacy of Treatment Procedures in Endodontic Infection Control and One Year Follow-Up of Periapical Healing. J. Endod. 2005, 31, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Sjögren, U.; Figdor, D.; Persson, S.; Sundqvist, G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int. Endod. J. 1997, 30, 297–306. [Google Scholar] [CrossRef]
- Sundqvist, G.; Figdor, D.; Persson, S.; Sjögren, U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998, 85, 86–93. [Google Scholar] [CrossRef]
- Wu, M.-K.; Dummer, P.M.H.; Wesselink, P.R. Consequences of and strategies to deal with residual post-treatment root canal infection. Int. Endod. J. 2006, 39, 343–356. [Google Scholar] [CrossRef]
- Chugal, N.M.; Clive, J.M.; Spångberg, L.S. Endodontic infection: Some biologic and treatment factors associated with outcome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2003, 96, 81–90. [Google Scholar] [CrossRef]
- Peters, O.A. Current Challenges and Concepts in the Preparation of Root Canal Systems: A Review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Mandel, E.; Machtou, P.; Friedman, S. Scanning electron microscope observation of canal cleanliness. J. Endod. 1990, 16, 279–283. [Google Scholar] [CrossRef]
- Vertucci, F.J. Root canal anatomy of the human permanent teeth. Oral Surg. Oral Med. Oral Pathol. 1984, 58, 589–599. [Google Scholar] [CrossRef]
- Huang, R.; Li, M.; Gregory, R.L. Bacterial interactions in dental biofilm. Virulence 2011, 2, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Distel, J.W.; Hatton, J.F.; Gillespie, M.J. Biofilm Formation in Medicated Root Canals. J. Endod. 2002, 28, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Gregorio, C.; Estevez, R.; Cisneros, R.; Paranjpe, A.; Cohenca, N. Efficacy of Different Irrigation and Activation Systems on the Penetration of Sodium Hypochlorite into Simulated Lateral Canals and up to Working Length: An In Vitro Study. J. Endod. 2010, 36, 1216–1221. [Google Scholar] [CrossRef]
- Macedo, R.; Verhaagen, B.; Rivas, D.F.; Versluis, M.; Wesselink, P.; van der Sluis, L. Cavitation Measurement during Sonic and Ultrasonic Activated Irrigation. J. Endod. 2014, 40, 580–583. [Google Scholar] [CrossRef]
- De-Deus, G.; Belladonna, F.G.; Zuolo, A.D.S.; Perez, R.; Carvalho, M.S.; Souza, E.M.; Lopes, R.T.; Silva, E. Micro-CT comparison of XP-endo Finisher and passive ultrasonic irrigation as final irrigation protocols on the removal of accumulated hard-tissue debris from oval shaped-canals. Clin. Oral Investig. 2019, 23, 3087–3093. [Google Scholar] [CrossRef]
- Uygun, A.D.; Gündoğdu, E.C.; Arslan, H.; Ersoy, I.; Dds, A.D.U. Efficacy of XP-endo finisher and TRUShape 3D conforming file compared to conventional and ultrasonic irrigation in removing calcium hydroxide. Aust. Endod. J. 2017, 43, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Turkaydin, D.; Demir, E.; Basturk, F.B.; Övecoglu, H.S. Efficacy of XP-Endo Finisher in the Removal of Triple Antibiotic Paste from Immature Root Canals. J. Endod. 2017, 43, 1528–1531. [Google Scholar] [CrossRef]
- Gomes-Filho, J.E.; Aurélio, K.G.; Costa, M.M.T.D.M.; Bernabé, P.F.E. Comparison of the biocompatibility of different root canal irrigants. J. Appl. Oral Sci. 2008, 16, 137–144. [Google Scholar] [CrossRef]
- SA, F.D. The XP Endo Finisher File Brochure; La Chaux-de-Fonds, Switzerland, 2016. Available online: https://www.fkg.ch/xpendo/resources (accessed on 10 April 2021).
- Alves, F.R.; Andrade-Junior, C.V.; Marceliano-Alves, M.F.; Pérez, A.R.; Rôças, I.N.; Versiani, M.A.; Sousa-Neto, M.D.; Provenzano, J.C.; Siqueira, J.F. Adjunctive Steps for Disinfection of the Mandibular Molar Root Canal System: A Correlative Bacteriologic, Micro–Computed Tomography, and Cryopulverization Approach. J. Endod. 2016, 42, 1667–1672. [Google Scholar] [CrossRef]
- Van Der Sluis, L.W.M.; Versluis, M.; Wu, M.K.; Wesselink, P.R. Passive ultrasonic irrigation of the root canal: A review of the literature. Int. Endod. J. 2007, 40, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Asahi, Y.; Miura, J.; Tsuda, T.; Kuwabata, S.; Tsunashima, K.; Noiri, Y.; Sakata, T.; Ebisu, S.; Hayashi, M. Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express 2015, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, J.F.; Alves, F.R.; Almeida, B.M.; de Oliveira, J.C.M.; Rôças, I.N. Ability of Chemomechanical Preparation with Either Rotary Instruments or Self-adjusting File to Disinfect Oval-shaped Root Canals. J. Endod. 2010, 36, 1860–1865. [Google Scholar] [CrossRef] [PubMed]
- Radcliffe, C.E.; Potouridou, L.; Qureshi, R.; Habahbeh, N.; Qualtrough, A.; Worthington, H.; Drucker, D.B. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. Int. Endod. J. 2004, 37, 438–446. [Google Scholar] [CrossRef]
- Duque, J.A.; Duarte, M.A.H.; Canali, L.C.F.; Zancan, R.F.; Vivan, R.R.; Bernardes, R.A.; Bramante, C. Comparative Effectiveness of New Mechanical Irrigant Agitating Devices for Debris Removal from the Canal and Isthmus of Mesial Roots of Mandibular Molars. J. Endod. 2017, 43, 326–331. [Google Scholar] [CrossRef]
- van der Sluis, L.W.; Vogels, M.P.; Verhaagen, B.; Macedo, R.; Wesselink, P.R. Study on the Influence of Refreshment/Activation Cycles and Irrigants on Mechanical Cleaning Efficiency During Ultrasonic Activation of the Irrigant. J. Endod. 2010, 36, 737–740. [Google Scholar] [CrossRef]
- Macedo, R.G.; Verhaagen, B.; Wesselink, P.R.; Versluis, M.; Van Der Sluis, L.W.M. Influence of refreshment/activation cycles and temperature rise on the reaction rate of sodium hypochlorite with bovine dentine during ultrasonic activated irrigation. Int. Endod. J. 2014, 47, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, D.P.; Dds, N.M.G.; Tomazinho, F.S.F.; Marques-Da-Silva, B.; Gonzaga, C.C.; Filho, F.B.; Plotino, G. Influence of activation mode and preheating on intracanal irrigant temperature. Aust. Endod. J. 2019, 45, 373–377. [Google Scholar] [CrossRef]
- Sasanakul, P.; Ampornaramveth, R.S.; Chivatxaranukul, P. Influence of Adjuncts to Irrigation in the Disinfection of Large Root Canals. J. Endod. 2019, 45, 332–337. [Google Scholar] [CrossRef]
- Sirtes, G.; Waltimo, T.; Schaetzle, M.; Zehnder, M. The Effects of Temperature on Sodium Hypochlorite Short-Term Stability, Pulp Dissolution Capacity, and Antimicrobial Efficacy. J. Endod. 2005, 31, 669–671. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Yanes, J.; Provenzano, J.C.; Marceliano-Alves, M.F.; Gazzaneo, I.; Pérez, A.R.; Gonçalves, L.S.; Siqueira, J.F. Distribution of sodium hypochlorite throughout the mesial root canal system of mandib-ular molars after adjunctive irrigant activation procedures: A micro-computed tomographic study. Clin. Oral Investig. 2020, 24, 907–914. [Google Scholar] [CrossRef]
- Gomes, B.P.F.A.; Ferraz, C.C.R.; E., V.M.; Berber, V.B.; Teixeira, F.B.; Souza-Filho, F.J. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int. Endod. J. 2001, 34, 424–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siqueira, J.F.; Batista, M.M.; Fraga, R.C.; de Uzeda, M. Antibacterial effects of endodontic irrigants on black-pigmented Gram-negative anaerobes and facultative bacteria. J. Endod. 1998, 24, 414–416. [Google Scholar] [CrossRef]
- Alves, F.R.; Almeida, B.M.; Neves, M.A.; Rôças, I.N.; Siqueira, J.F. Time-dependent Antibacterial Effects of the Self-Adjusting File Used with Two Sodium Hypochlorite Concentrations. J. Endod. 2011, 37, 1451–1455. [Google Scholar] [CrossRef] [PubMed]
- Gazzaneo, I.; Vieira, G.C.; Pérez, A.R.; Alves, F.R.; Gonçalves, L.; Mdala, I.; Siqueira, J.F.; Rôças, I.N. Root Canal Disinfection by Single- and Multiple-instrument Systems: Effects of Sodium Hypochlorite Volume, Concentration, and Retention Time. J. Endod. 2019, 45, 736–741. [Google Scholar] [CrossRef]
- Căpută, P.E.; Retsas, A.; Kuijk, L.; de Paz, L.E.C.; Boutsioukis, C. Ultrasonic Irrigant Activation during Root Canal Treatment: A Systematic Review. J. Endod. 2019, 45, 31–44.e13. [Google Scholar] [CrossRef]
- De Hemptinne, F.; Slaus, G.; Vandendael, M.; Jacquet, W.; De Moor, R.J.; Bottenberg, P. In Vivo Intracanal Temperature Evolution during Endodontic Treatment after the Injection of Room Temperature or Preheated Sodium Hypochlorite. J. Endod. 2015, 41, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
Group | n | After Treatment (CFU/mLxmg) | SD | SE | Percentage Reduction | p Value |
---|---|---|---|---|---|---|
Positive Control | 10 | 4.82 | 0.67 | 0.18 | ||
PUI 2.5% NaOCl (RT) | 10 | 2.65 | 1.76 | 0.58 | 99.31 | 2.12 × 10−3 |
PUI 5.25% NaOCl (RT) | 10 | 0 | 0 | 0 | 100 | 3.00 × 10−6 |
XPF 2.5% NaOCl (RT) | 10 | 4.05 | 0.81 | 0.25 | 82.80 | 3.58 × 10−2 |
XPF 5.25% NaOCl (RT) | 10 | 2.98 | 0.18 | 0.37 | 98.54 | 1.17 × 10−3 |
XPF 5.25% NaOCl (BT) | 10 | 0.40 | 0.97 | 0.30 | 99.99 | 4.39 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herce-Ros, N.; Álvarez-Sagües, A.; Álvarez-Losa, L.; Nistal-Villan, E.; Amador, U.; Presa, J.; Azabal, M. Antibacterial Ability of Sodium Hypochlorite Activated with PUI vs. XPF File against Bacteria Growth on Enterococcus faecalis Mature Biofilm. Dent. J. 2021, 9, 67. https://doi.org/10.3390/dj9060067
Herce-Ros N, Álvarez-Sagües A, Álvarez-Losa L, Nistal-Villan E, Amador U, Presa J, Azabal M. Antibacterial Ability of Sodium Hypochlorite Activated with PUI vs. XPF File against Bacteria Growth on Enterococcus faecalis Mature Biofilm. Dentistry Journal. 2021; 9(6):67. https://doi.org/10.3390/dj9060067
Chicago/Turabian StyleHerce-Ros, Nerea, Alejandro Álvarez-Sagües, Laura Álvarez-Losa, Estanislao Nistal-Villan, Ulises Amador, Jesús Presa, and Magdalena Azabal. 2021. "Antibacterial Ability of Sodium Hypochlorite Activated with PUI vs. XPF File against Bacteria Growth on Enterococcus faecalis Mature Biofilm" Dentistry Journal 9, no. 6: 67. https://doi.org/10.3390/dj9060067
APA StyleHerce-Ros, N., Álvarez-Sagües, A., Álvarez-Losa, L., Nistal-Villan, E., Amador, U., Presa, J., & Azabal, M. (2021). Antibacterial Ability of Sodium Hypochlorite Activated with PUI vs. XPF File against Bacteria Growth on Enterococcus faecalis Mature Biofilm. Dentistry Journal, 9(6), 67. https://doi.org/10.3390/dj9060067