Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives
Abstract
:1. Introduction
2. Research Criteria for Scientific Papers Selection
3. Composition and Strategies for the Recovery of Rice Bran Potential
3.1. Bioprocessing of Rice Bran: Solid-State Fermentation and Enzymatic Treatment
3.2. Thermal and Physical Treatments Applied to Rice Bran
4. Rice Bran Health-Promoting Properties
4.1. Hypolipidemic Properties of Rice Bran
4.2. Hypoglycaemic Properties of Rice Bran
4.3. Rice Bran Arabinoxylans: Immunomodulatory Properties
4.4. Other Health-Promoting Properties of Rice Bran
5. Rice Bran Application in Food Industry
Rice Bran as a Commercial Ingredient
6. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations: Statistical Databases (FAOSTAT) Production/Crops. Environ. Sci. Technol. 2019, 53, 11302–11312.
- Kahlon, T. Rice Bran. In Fiber Ingredients; Informa UK Limited: London, UK, 2009; pp. 305–321. [Google Scholar]
- Fritsch, C.; Stäbler, A.; Happel, A.; Márquez, M.A.C.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.; et al. Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
- Schieber, A. Side Streams of Plant Food Processing as a Source of Valuable Compounds: Selected Examples. Annu. Rev. Food Sci. Technol. 2017, 8, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Gul, K.; Yousuf, B.; Singh, A.K.; Singh, P.; Wani, A.A. Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioact. Carbohydr. Diet. Fibre 2015, 6, 24–30. [Google Scholar] [CrossRef]
- Gopinger, E.; Ziegler, V.; Catalan, A.A.D.S.; Krabbe, E.L.; Elias, M.C.; Xavier, E.G. Whole rice bran stabilization using a short chain organic acid mixture. J. Stored Prod. Res. 2015, 61, 108–113. [Google Scholar] [CrossRef]
- Ti, H.; Li, Q.; Zhang, R.; Zhang, M.-W.; Deng, Y.; Wei, Z.; Chi, J.; Zhang, Y. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chem. 2014, 159, 166–174. [Google Scholar] [CrossRef]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Huang, Y.-P.; Lai, H.-M. Bioactive compounds and antioxidative activity of colored rice bran. J. Food Drug Anal. 2016, 24, 564–574. [Google Scholar] [CrossRef] [Green Version]
- Chinma, C.E.; Ramakrishnan, Y.; Ilowefah, M.; Hanis-Syazwani, M.; Muhammad, K. REVIEW: Properties of Cereal Brans: A Review. Cereal Chem. J. 2015, 92, 1–7. [Google Scholar] [CrossRef]
- Ferreira, S.C.; Fernandez, A.M.; de Castillo-Bilbao, M.D. New functional ingredients from agroindustrial by-products for the development of healthy foods. In Encyclopedia of Food Security and Sustainability; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128126882. [Google Scholar]
- Razak, D.L.A.; Rashid, N.Y.A.; Jamaluddin, A.; Sharifudin, S.A.; Long, K. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus. Biocatal. Agric. Biotechnol. 2015, 4, 33–38. [Google Scholar] [CrossRef]
- Schmidt, C.G.; Gonçalves, L.M.; Prietto, L.; Hackbart, H.S.; Furlong, E.B. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chem. 2014, 146, 371–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.-T.; Kim, S.-M.; Lee, J.H.; Lim, S.-T. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chem. 2019, 272, 235–241. [Google Scholar] [CrossRef]
- Oliveira, M.D.S.; Feddern, V.; Kupski, L.; Cipolatti, E.P.; Badiale-Furlong, E.; de Souza-Soares, L.A. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour. Technol. 2011, 102, 8335–8338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, E.P.; Heuberger, A.L.; Weir, T.L.; Barnett, B.; Broeckling, C.D.; Prenni, J.E. Rice Bran Fermented with Saccharomyces boulardii Generates Novel Metabolite Profiles with Bioactivity. J. Agric. Food Chem. 2011, 59, 1862–1870. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, X.; Zhuang, X.; Han, W.; Guo, W.; Xiong, J.; Zhang, X. Rice bran polysaccharides and oligosaccharides modified by Grifola frondosa fermentation: Antioxidant activities and effects on the production of NO. Food Chem. 2017, 223, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Whitehurst, R.J.; van Oort, M. Enzymes in Food Technology, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 9781444309935. [Google Scholar]
- Parrado, J.; Miramontes, E.; Jover, M.; Gutiérrez, J.F.; de Teran, L.C.; Bautista, J. Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chem. 2006, 98, 742–748. [Google Scholar] [CrossRef]
- Poutanen, K. Enzymes: An important tool in the improvement of the quality of cereal foods. Trends Food Sci. Technol. 1997, 8, 300–306. [Google Scholar] [CrossRef]
- Prabhu, A.A.; Appukuttan, J.P. Enzymatic processing of pigmented and non-pigmented rice bran on changes in oryzanol, polyphenols and antioxidant activity. J. Food Sci. Technol. 2015, 52, 6538–6546. [Google Scholar] [CrossRef] [Green Version]
- Vallabha, V.S.; Indira, T.N.; Lakshmi, A.J.; Radha, C.; Tiku, P.K. Enzymatic process of rice bran: A stabilized functional food with nutraceuticals and nutrients. J. Food Sci. Technol. 2015, 52, 8252–8259. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, R.; Deng, Y.-Y.; Zhang, Y.; Xiao, J.; Huang, F.; Wen, W.; Zhang, M.-W. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Food Chem. 2017, 221, 636–643. [Google Scholar] [CrossRef]
- Dang, T.T.; Vasanthan, T. Modification of rice bran dietary fiber concentrates using enzyme and extrusion cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- Kim, D.; Han, G.D. High hydrostatic pressure treatment combined with enzymes increases the extractability and bioactivity of fermented rice bran. Innov. Food Sci. Emerg. Technol. 2012, 16, 191–197. [Google Scholar] [CrossRef]
- Wen, Y.; Niu, M.; Zhang, B.; Zhao, S.; Xiong, S. Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT 2017, 75, 344–351. [Google Scholar] [CrossRef]
- Alexandri, M.; López-Gómez, J.P.; Olszewska-Widdrat, A.; Venus, J. Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: The Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. Fermentation 2020, 6, 42. [Google Scholar] [CrossRef]
- Wanyo, P.; Meeso, N.; Siriamornpun, S. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014, 157, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Fadel, A.; Plunkett, A.; Ashworth, J.; Mahmoud, A.M.; Ranneh, Y.; el Mohtadi, M.; Li, W. The effect of extrusion screw-speed on the water extractability and molecular weight distribution of arabinoxylans from defatted rice bran. J. Food Sci. Technol. 2018, 55, 1201–1206. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Liu, W.; Wan, J.; Wang, W.; Wu, L.; Zuo, N.; Zhou, Y.; Yin, Z. Preparation, physicochemical and texture properties of texturized rice produce by Improved Extrusion Cooking Technology. J. Cereal Sci. 2011, 54, 473–480. [Google Scholar] [CrossRef]
- Tziva, M.; Negro, S.; Kalfagianni, A.; Hekkert, M. Understanding the protein transition: The rise of plant-based meat substitutes. Environ. Innov. Soc. Transit. 2020, 35, 217–231. [Google Scholar] [CrossRef]
- Wang, J.; Suo, G.; de Wit, M.; Boom, R.M.; Schutyser, M.A. Dietary fibre enrichment from defatted rice bran by dry fractionation. J. Food Eng. 2016, 186, 50–57. [Google Scholar] [CrossRef]
- Spaggiari, M.; Righetti, L.; Folloni, S.; Ranieri, R.; Dall’Asta, C.; Galaverna, G. Impact of air classification, with and without micronisation, on the lipid component of rice bran (Oryza sativa L.): A focus on mono-, di- and triacylglycerols. Int. J. Food Sci. Technol. 2020, 55, 2832–2840. [Google Scholar] [CrossRef]
- Suman, M.; Silva, G.; Catellani, D.; Bersellini, U.; Caffarra, V.; Careri, M. Determination of food emulsifiers in commercial additives and food products by liquid chromatography/atmospheric-pressure chemical ionisation mass spectrometry. J. Chromatogr. A 2009, 1216, 3758–3766. [Google Scholar] [CrossRef]
- Silventoinen, P.; Rommi, K.; Holopainen-Mantila, U.; Poutanen, K.; Nordlund, E. Biochemical and Techno-Functional Properties of Protein- and Fibre-Rich Hybrid Ingredients Produced by Dry Fractionation from Rice Bran. Food Bioprocess Technol. 2019, 12, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.M.; Lin, S.L.; Ramaswamy, H.S.; Yu, Y.; Zhang, Q. Enhancement of Functional Properties of Rice Bran Proteins by High Pressure Treatment and Their Correlation with Surface Hydrophobicity. Food Bioprocess Technol. 2016, 10, 317–327. [Google Scholar] [CrossRef]
- Sharif, M.K.; Butt, M.S.; Anjum, F.M.; Khan, S.H. Rice Bran: A Novel Functional Ingredient. Crit. Rev. Food Sci. Nutr. 2014, 54, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.J.; Ollila, C.A.; Kumar, A.; Borresen, E.C.; Raina, K.; Agarwal, R.; Ryan, E.P. Chemopreventive Properties of Dietary Rice Bran: Current Status and Future Prospects. Adv. Nutr. 2012, 3, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohail, M.; Rakha, A.; Butt, M.S.; Iqbal, M.J.; Rashid, S. Rice bran nutraceutics: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2017, 57, 3771–3780. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.; Lee, K.-W.; Park, H.-Y. Rice bran constituents: Immunomodulatory and therapeutic activities. Food Funct. 2017, 8, 935–943. [Google Scholar] [CrossRef]
- Friedman, M. Rice Brans, Rice Bran Oils, and Rice Hulls: Composition, Food and Industrial Uses, and Bioactivities in Humans, Animals, and Cells. J. Agric. Food Chem. 2013, 61, 10626–10641. [Google Scholar] [CrossRef]
- General scientific guidance for stakeholders on health claim applications. EFSA J. 2016. [CrossRef]
- Cicero, A.F.G.; Gaddi, A. Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phyther. Res. 2001, 15, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Claro, C.; Parrado, J.; Herrera, M.D.; de Sotomayor, M.A. Rice bran enzymatic extract reduces atherosclerotic plaque development and steatosis in high-fat fed ApoE−/− mice. Nutrition 2017, 37, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Pulgarin, B.B.; de Sotomayor, M.A.; Herrera, M.D. Atherosclerosis-related inflammation and oxidative stress are improved by rice bran enzymatic extract. J. Funct. Foods 2016, 26, 610–621. [Google Scholar] [CrossRef]
- Perez-Ternero, C.; Herrera, M.D.; Laufs, U.; de Sotomayor, M.A.; Werner, C. Food supplementation with rice bran enzymatic extract prevents vascular apoptosis and atherogenesis in ApoE−/− mice. Eur. J. Nutr. 2015, 56, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Revilla, E.; María, C.S.; Miramontes, E.; Bautista, J.; García-Martínez, A.; Cremades, O.; Cert, R.; Parrado, J.; Torres, M.E.R. Nutraceutical composition, antioxidant activity and hypocholesterolemic effect of a water-soluble enzymatic extract from rice bran. Food Res. Int. 2009, 42, 387–393. [Google Scholar] [CrossRef]
- Wilson, T.A.; Ausman, L.M.; Lawton, C.W.; Hegsted, D.M.; Nicolosi, R.J. Comparative Cholesterol Lowering Properties of Vegetable Oils: Beyond Fatty Acids. J. Am. Coll. Nutr. 2000, 19, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Ausman, L.M.; Rong, N.; Nicolosi, R.J. Hypocholesterolemic effect of physically refined rice bran oil: Studies of cholesterol metabolism and early atherosclerosis in hypercholesterolemic hamsters. J. Nutr. Biochem. 2005, 16, 521–529. [Google Scholar] [CrossRef]
- Ha, T.-Y.; Han, S.; Kim, S.-R.; Kim, I.-H.; Lee, H.-Y.; Kim, H.-K. Bioactive components in rice bran oil improve lipid profiles in rats fed a high-cholesterol diet. Nutr. Res. 2005, 25, 597–606. [Google Scholar] [CrossRef]
- Accinni, R.; Rosina, M.; Bamonti, F.; Della-Noce, C.; Tonini, A.; Bernacchi, F.; Campolo, J.; Caruso, R.; Novembrino, C.; Ghersi, L.; et al. Effects of combined dietary supplementation on oxidative and inflammatory status in dyslipidemic subjects. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 121–127. [Google Scholar] [CrossRef]
- Son, M.J.; Rico, C.W.; Nam, S.H.; Kang, M.Y. Effect of Oryzanol and Ferulic Acid on the Glucose Metabolism of Mice Fed with a High-Fat Diet. J. Food Sci. 2010, 76, H7–H10. [Google Scholar] [CrossRef]
- Ghatak, S.B.; Panchal, S.S. Anti-diabetic activity of oryzanol and its relationship with the anti-oxidant property. Int. J. Diabetes Dev. Ctries. 2012, 32, 185–192. [Google Scholar] [CrossRef]
- Qureshi, A.A.; Sami, S.A.; Khan, F.A. Effects of stabilized rice bran, its soluble and fiber fractions on blood glucose levels and serum lipid parameters in humans with diabetes mellitus Types I and II. J. Nutr. Biochem. 2002, 13, 175–187. [Google Scholar] [CrossRef]
- Martínez-Montera, C.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A.; Barroso, C.G. Analysis of Low Molecular Weight Carbohydrates in Food and Beverages: A Review. Chromatographia 2004, 59, 15–30. [Google Scholar] [CrossRef]
- Zhang, S.; Li, W.; Smith, C.J.; Musa, H. Cereal-Derived Arabinoxylans as Biological Response Modifiers: Extraction, Molecular Features, and Immune-Stimulating Properties. Crit. Rev. Food Sci. Nutr. 2015, 55, 1035–1052. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bai, J.; Fan, M.; Li, T.; Li, Y.; Qian, H.; Wang, L.; Zhang, H.; Qi, X.; Rao, Z. Cereal-derived arabinoxylans: Structural features and structure–activity correlations. Trends Food Sci. Technol. 2020, 96, 157–165. [Google Scholar] [CrossRef]
- Slack, J. Molecular Biology of the Cell. In Principles of Tissue Engineering; Elsevier BV: Amsterdam, The Netherlands, 2014; pp. 127–145. [Google Scholar]
- Ooi, S.L.; McMullen, D.; Golombick, T.; Nut, D.; Pak, S.C. Evidence-Based Review of BioBran/MGN-3 Arabinoxylan Compound as a Complementary Therapy for Conventional Cancer Treatment. Integr. Cancer Ther. 2017, 17, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M.; Matsuura, M. Augmentation of Macrophage Phagocytosis by Modified Arabinoxylan Rice Bran (MGN-3/Biobran). Int. J. Immunopathol. Pharmacol. 2004, 17, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneum, M.; Gollapudi, S. Modified arabinoxylan rice bran (MGN-3/Biobran) enhances yeast-induced apoptosis in human breast cancer cells in vitro. Anticancer Res. 2005, 25, 859–870. [Google Scholar] [PubMed]
- Elsaid, A.F.; Shaheen, M.; Ghoneum, M. Biobran/MGN-3, an arabinoxylan rice bran, enhances NK cell activity in geriatric subjects: A randomized, double-blind, placebo-controlled clinical trial. Exp. Ther. Med. 2018, 15, 2313–2320. [Google Scholar] [CrossRef] [Green Version]
- Ghoneum, M.; Abedi, S. Enhancement of natural killer cell activity of aged mice by modified arabinoxylan rice bran (MGN-3/Biobran). J. Pharm. Pharmacol. 2004, 56, 1581–1588. [Google Scholar] [CrossRef]
- Ghoneum, M.; Matsuura, M.; Gollapudp, S. Modified Arabinoxylan Rice Bran (Mgn-3/Biobran) Enhances Intracellular Killing of Microbes by Human Phagocytic Cellsin Vitro. Int. J. Immunopathol. Pharmacol. 2008, 21, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoneum, M.; El-Din, N.K.B.; Ali, D.A.; El-Dein, M.A. Modified arabinoxylan from rice bran, MGN-3/biobran, sensitizes metastatic breast cancer cells to paclitaxel in vitro. Anticancer Res. 2014, 34, 81–87. [Google Scholar] [PubMed]
- Gollapudi, S.; Ghoneum, M. MGN-3/Biobran, modified arabinoxylan from rice bran, sensitizes human breast cancer cells to chemotherapeutic agent, daunorubicin. Cancer Detect. Prev. 2008, 32, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-S.; Lee, J.-K.; Lee, M.-G.; Lee, S.; Jeong, H.-Y.; Kang, H. Splenic T cell and intestinal IgA responses after supplementation of soluble arabinoxylan-enriched wheat bran in mice. J. Funct. Foods 2017, 28, 246–253. [Google Scholar] [CrossRef]
- Fadel, A.; Mahmoud, A.M.; Ashworth, J.J.; Li, W.; Ng, Y.L.; Plunkett, A. Health-related effects and improving extractability of cereal arabinoxylans. Int. J. Biol. Macromol. 2018, 109, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, H.; Medhat, E.; Shaheen, M.; Zekri, A.-R.N.; Darwish, T.; Ghoneum, M. Arabinoxylan rice bran (Biobran) suppresses the viremia level in patients with chronic HCV infection: A randomized trial. Int. J. Immunopathol. Pharmacol. 2016, 29, 647–653. [Google Scholar] [CrossRef]
- Zheng, S.; Sanada, H.; Dohi, H.; Hirai, S.; Egashira, Y. Suppressive Effect of Modified Arabinoxylan from Rice Bran (MGN-3) onD-Galactosamine-Induced IL-18 Expression and Hepatitis in Rats. Biosci. Biotechnol. Biochem. 2012, 76, 942–946. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Sugita, S.; Hirai, S.; Egashira, Y. Protective effect of low molecular fraction of MGN-3, a modified arabinoxylan from rice bran, on acute liver injury by inhibition of NF-κB and JNK/MAPK expression. Int. Immunopharmacol. 2012, 14, 764–769. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Zhang, X.; Chen, Z. Purification and identification of a novel heteropolysaccharide RBPS2a with anti-complementary activity from defatted rice bran. Food Chem. 2008, 110, 150–155. [Google Scholar] [CrossRef]
- Justo, M.; Claro, C.; Vila, E.; Herrera, M.; Rodríguez-Rodríguez, R. Microvascular disorders in obese Zucker rats are restored by a rice bran diet. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 524–531. [Google Scholar] [CrossRef]
- Perez-Ternero, C.; Macià, A.; de Sotomayor, M.A.; Parrado, J.; Motilva, M.J.; Herrera, M.-D. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct. 2017, 8, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Horie, Y.; Nemoto, H.; Itoh, M.; Kosaka, H.; Morita, K. Fermented Brown Rice Extract Causes Apoptotic Death of Human Acute Lymphoblastic Leukemia Cells via Death Receptor Pathway. Appl. Biochem. Biotechnol. 2016, 178, 1599–1611. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Yu, K.W.; Kang, D.H.; Suh, H.J. Anti-stress and anti-fatigue effect of fermented rice bran. Phytother. Res. 2002, 16, 700–702. [Google Scholar] [CrossRef]
- Duansak, N.; Piyabhan, P.; Srisawat, U.; Naowaboot, J.; Lerdvuthisopon, N.; Schmid-Schönbein, G. The Effect of Rice Bran Extract on Arterial Blood Pressure, Hepatic Steatosis, and Inflammation in Mice Fed with a High-Fat Diet. J. Nutr. Metab. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, M.; Dong, L.; Jia, X.; Liu, L.; Ma, Y.; Huang, F.; Zhang, R. Phytochemical Profile, Bioactivity, and Prebiotic Potential of Bound Phenolics Released from Rice Bran Dietary Fiber during in Vitro Gastrointestinal Digestion and Colonic Fermentation. J. Agric. Food Chem. 2019, 67, 12796–12805. [Google Scholar] [CrossRef]
- Capellini, M.C.; Giacomini, V.; Cuevas, M.S.; Rodrigues, C.E. Rice bran oil extraction using alcoholic solvents: Physicochemical characterization of oil and protein fraction functionality. Ind. Crop. Prod. 2017, 104, 133–143. [Google Scholar] [CrossRef]
- Lv, S.-W.; He, L.-Y.; Sun, L.-H. Effect of different stabilisation treatments on preparation and functional properties of rice bran proteins. Czech J. Food Sci. 2018, 36, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Capellini, M.C.; Novais, J.S.; Monteiro, R.F.; Veiga, B.Q.; Osiro, D.; Rodrigues, C.E.D.C. Thermal, structural and functional properties of rice bran defatted with alcoholic solvents. J. Cereal Sci. 2020, 95, 103067. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Strappe, P.; Zhou, Z.; Blanchard, C. Impact on the nutritional attributes of rice bran following various stabilization procedures. Crit. Rev. Food Sci. Nutr. 2018, 59, 2458–2466. [Google Scholar] [CrossRef]
- Sairam, S.; Krishna, A.G.G.; Urooj, A. Physico-chemical characteristics of defatted rice bran and its utilization in a bakery product. J. Food Sci. Technol. 2011, 48, 478–483. [Google Scholar] [CrossRef] [Green Version]
- Al-Okbi, S.Y.; Hussein, A.M.; Hamed, I.M.; Mohamed, D.A.; Helal, A.M. Chemical, Rheological, Sensorial and Functional Properties of Gelatinized Corn- Rice Bran Flour Composite Corn Flakes and Tortilla Chips. J. Food Process. Preserv. 2012, 38, 83–89. [Google Scholar] [CrossRef]
- Mohan, J. Development and Acceptability of Fibre Enriched Ready Mixes. Int. J. Pure Appl. Sci. Technol. 2012, 9, 74–83. [Google Scholar]
- Shaheen, M.; Ahmad, I.; Anjum, F.M. Effect of processed rice bran supplementation on the quality of chapaties. Thai J. Agric. Sci. 2012, 45, 241–247. [Google Scholar]
- Charunuch, C.; Limsangouan, N.; Prasert, W.; Butsuwan, P. Optimization of Extrusion Conditions for Functional Ready-to-Eat Breakfast Cereal. Food Sci. Technol. Res. 2011, 17, 415–422. [Google Scholar] [CrossRef] [Green Version]
- Alfaro, L.; Zhang, J.; Chouljenko, A.; Scott, R.; Xu, Z.; Bankston, D.; Bechtel, P.J.; Sathivel, S. Development and characterization of emulsions containing purple rice bran and brown rice oils. J. Food Process. Preserv. 2016, 41, e13149. [Google Scholar] [CrossRef]
- Zang, X.; Yue, C.; Wang, Y.; Shao, M.-L.; Yu, G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019, 85, 168–174. [Google Scholar] [CrossRef]
- Zaky, A.A.; El-Aty, A.M.A.; Ma, A.; Jia, Y. An overview on antioxidant peptides from rice bran proteins: Extraction, identification, and applications. Crit. Rev. Food Sci. Nutr. 2020, 1–13. [Google Scholar] [CrossRef]
- Ono, H.; Nishio, S.; Tsurii, J.; Kawamoto, T.; Sonomoto, K.; Nakayama, J. Monitoring of the microbiota profile in nukadoko, a naturally fermented rice bran bed for pickling vegetables. J. Biosci. Bioeng. 2014, 118, 520–525. [Google Scholar] [CrossRef]
- Sharif, M.K.; Butt, M.S.; Anjum, F.M.; Nawaz, H. Preparation of Fiber and Mineral Enriched Defatted Rice Bran Supplemented Cookies. Pak. J. Nutr. 2009, 8, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Ajmal, M.; Butt, M.; Sharif, K.; Nasir, M.; Nadeem, M. Preparation of Fiber and Mineral Enriched Pan Bread by Using Defatted Rice Bran. Int. J. Food Prop. 2006, 9, 623–636. [Google Scholar] [CrossRef]
Compound | mg/100 g | References |
Carbohydrates | 33–42 | [7,8,9,10,11,12] |
Proteins | 11–16 | |
Fats | 12–20 | |
Saturated fats | 15–20 | |
Unsaturated fats | 75–80 | |
Dietary fibres (DF) | 15–30 | |
Insoluble DF | 13–26 | |
Soluble DF | 1–2.25 | |
Ash | 8–12 | |
Bioactive Compounds | mg/g | |
Phenolic acids * | 800–1243 | |
Tocopherols | 0.35–0.77 | |
γ-oryzanol | 0.56–1.08 |
Bioprocessing | Effects | References |
---|---|---|
Solid state fermentation (SSF) |
| [13,14,15] |
| [16] | |
| [18,19] | |
Enzymatic treatment (En) |
| [23,24] |
SSF assisted by En |
| [25] |
Treatment Used | Outcomes | References |
---|---|---|
Hot-air and FIR |
| [30] |
Extrusion |
| [31,32] |
Extrusion plus enzyme |
| [26] |
Particle size reduction (dry fractionation and micronization) |
| [34,35,37] |
High Hydrostatic Pressure (HHP) |
| [27,38] |
Functional Property | Outcome | References |
---|---|---|
Water absorption capacity |
| [19,37,38,83,84] |
Oil binding capacity |
| |
Jellification |
| |
Emulsion stability |
| |
Foaming stabilization |
| |
Protein solubility |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spaggiari, M.; Dall’Asta, C.; Galaverna, G.; del Castillo Bilbao, M.D. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods 2021, 10, 85. https://doi.org/10.3390/foods10010085
Spaggiari M, Dall’Asta C, Galaverna G, del Castillo Bilbao MD. Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods. 2021; 10(1):85. https://doi.org/10.3390/foods10010085
Chicago/Turabian StyleSpaggiari, Marco, Chiara Dall’Asta, Gianni Galaverna, and María Dolores del Castillo Bilbao. 2021. "Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives" Foods 10, no. 1: 85. https://doi.org/10.3390/foods10010085
APA StyleSpaggiari, M., Dall’Asta, C., Galaverna, G., & del Castillo Bilbao, M. D. (2021). Rice Bran By-Product: From Valorization Strategies to Nutritional Perspectives. Foods, 10(1), 85. https://doi.org/10.3390/foods10010085