Development of High-Protein Vegetable Creams by Using Single-Cell Ingredients from Some Microalgae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetable Cream Preparation
2.2. Vegetable Cream Characterization
2.2.1. Physicochemical Analysis
2.2.2. Rheological Analysis
2.2.3. Nutritional Labeling
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Evaluation
3.2. Rheological Properties
3.3. Principal Component Analysis
3.4. Nutritional Labeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GlobeNewsWire Soup Market Size to Hit USD 21 Billion by 2027; Augmenting. Available online: https://www.globenewswire.com/en/news-release/2021/05/13/2228849/0/en/Soup-Market-Size-to-Hit-USD-21-Billion-by-2027-Augmenting-Demand-for-Convenient-Healthy-Instant-Foods-to-Boost-Market-Growth-Says-Fortune-Business-Insights.html (accessed on 23 August 2021).
- Aschemann-Witzel, J.; Peschel, A.O. Consumer perception of plant-based proteins: The value of source transparency for alternative protein ingredients. Food Hydrocoll. 2019, 96, 20–28. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 1–31. [Google Scholar] [CrossRef]
- Fernández-López, J.; Botella-Martínez, C.; Vera, C.N.-R.d.; Sayas-Barberá, M.E.; Viuda-Martos, M.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. Plants 2020, 9, 1769. [Google Scholar] [CrossRef] [PubMed]
- Farzana, T.; Mohajan, S.; Saha, T.; Hossain, M.N.; Haque, M.Z. Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Sci. Nutr. 2017, 5, 911–920. [Google Scholar] [CrossRef] [PubMed]
- Van Gunst, A.; Roodenburg, A.J.C.; Steenhuis, I.H.M. Reformulation as an Integrated Approach of Four Disciplines: A Qualitative Study with Food Companies. Foods 2018, 7, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, C.; Detzel, P.; Petracca, F.; Dainelli, L.; Fattore, G. The impact of food reformulation on nutrient intakes and health, a systematic review of modelling studies. BMC Nutr. 2019, 5, 2. [Google Scholar] [CrossRef]
- Gressier, M.; Sassi, F.; Frost, G. Healthy Foods and Healthy Diets. How Government Policies Can Steer Food Reformulation. Nutrition 1992 2020, 12, 1992. [Google Scholar] [CrossRef]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. An international regulatory review of food health-related claims in functional food products labeling. J. Funct. Foods 2020, 68, 103896. [Google Scholar] [CrossRef]
- Mintel High Protein Claims Appeal to Germans of All Ages|Mintel.com. Available online: https://www.mintel.com/blog/food-market-news/high-protein-claims-appeal-to-germans-of-all-ages (accessed on 23 August 2021).
- European Parliament and of the Council Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 6 September 2021).
- Nethravathy, M.U.; Mehar, J.G.; Mudliar, S.N.; Shekh, A.Y. Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1882–1897. [Google Scholar] [CrossRef] [Green Version]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products with Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Ak, B.; Avşaroğlu, E.; Işık, O.; Özyurt, G.; Kafkas, E.; Etyemez, M.; Uslu, L. Nutritional and Physicochemical Characteristics of Bread Enriched with Microalgae Spirulina platensis. Int. J. Eng. Res. Appl. 2016, 6, 30–38. [Google Scholar]
- Özyurt, G.; Uslu, L.; Yuvka, I.; Gökdoğan, S.; Atci, G.; Ak, B.; Işik, O. Evaluation of the Cooking Quality Characteristics of Pasta Enriched with Spirulina Platensis. J. Food Qual. 2015, 38, 268–272. [Google Scholar] [CrossRef]
- Lucas, B.F.; da Rosa, A.P.C.; de Carvalho, L.F.; de Morais, M.G.; Santos, T.D.; Costa, J.A.V. Snack bars enriched with Spirulina for schoolchildren nutrition. Food Sci. Technol. 2019, 40, 10. [Google Scholar] [CrossRef] [Green Version]
- Boukid, F.; Castellari, M. Food and Beverages Containing Algae and Derived Ingredients Launched in the Market from 2015 to 2019: A Front-of-Pack Labeling Perspective with a Special Focus on Spain. Foods 2021, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.C.; Fernandes, I.; Vasco, I.; Sousa, I.; Raymundo, A. Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods 2020, 9, 579. [Google Scholar] [CrossRef] [PubMed]
- European Parliament Council of the European Union. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union 2015, 327, 1–22. [Google Scholar]
- Matos, Â.P.; Feller, R.; Moecke, E.H.S.; de Oliveira, J.V.; Junior, A.F.; Derner, R.B.; Sant’Anna, E.S. Chemical Characterization of Six Microalgae with Potential Utility for Food Application. JAOCS J. Am. Oil Chem. Soc. 2016, 93, 963–972. [Google Scholar] [CrossRef]
- Sevgili, H.; Sezen, S.; Yılayaz, A.; Aktaş, Ö.; Pak, F.; Aasen, I.M.; Reitan, K.I.; Sandmann, M.; Rohn, S.; Turan, G.; et al. Apparent nutrient and fatty acid digestibilities of microbial raw materials for rainbow trout (Oncorhynchus mykiss) with comparison to conventional ingredients. Algal Res. 2019, 42, 101592. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Whitney, C.G.; MacPherson, M.J.; Bhatti, S.; Banskota, A.H.; Stefanova, R.; McGinn, P.J. Biochemical characterization of microalgal biomass from freshwater species isolated in Alberta, Canada for animal feed applications. Algal Res. 2015, 11, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.E.; Rieder, A. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii–Impact on dough rheology and bread quality. LWT 2021, 143, 111115. [Google Scholar] [CrossRef]
- Lafarga, T.; Mayre, E.; Echeverria, G.; Viñas, I.; Villaró, S.; Acién-Fernández, F.G.; Castellari, M.; Aguiló-Aguayo, I. Potential of the microalgae Nannochloropsis and Tetraselmis for being used as innovative ingredients in baked goods. LWT 2019, 115, 108439. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT-Food Sci. Technol. 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Matos, J.; Afonso, C.; Cardoso, C.; Serralheiro, M.L.; Bandarra, N.M. Yogurt Enriched with Isochrysis galbana: An Innovative Functional Food. Foods 2021, 10, 1458. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Res. 2020, 47, 101811. [Google Scholar] [CrossRef]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. LWT 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Batista, A.P.; Nunes, M.C.; Raymundo, A.; Gouveia, L.; Sousa, I.; Cordobés, F.; Guerrero, A.; Franco, J.M. Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocoll. 2011, 25, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Fradique, Ḿ.; Batista, A.P.; Nunes, M.C.; Gouveia, L.; Bandarra, N.M.; Raymundo, A. Incorporation of Chlorella vulgaris and Spirulina maxima biomass in pasta products. Part 1: Preparation and evaluation. J. Sci. Food Agric. 2010, 90, 1656–1664. [Google Scholar] [CrossRef]
- Verdú, S.; Pérez, A.J.; Barat, J.M.; Grau, R. Laser backscattering imaging as a control technique for fluid foods: Application to vegetable-based creams processing. J. Food Eng. 2019, 241, 58–66. [Google Scholar] [CrossRef]
- Diantom, A.; Curti, E.; Carini, E.; Vittadini, E. Effect of added ingredients on water status and physico-chemical properties of tomato sauce. Food Chem. 2017, 236, 101–108. [Google Scholar] [CrossRef]
- European Parliament and of the Council Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R1169 (accessed on 21 August 2020).
- Moreira, J.B.; Lim, L.T.; Zavareze, E.d.R.; Dias, A.R.G.; Costa, J.A.V.; Morais, M.G.d. Antioxidant ultrafine fibers developed with microalga compounds using a free surface electrospinning. Food Hydrocoll. 2019, 93, 131–136. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Zhang, L.; Noort, M.W.J.; Schutyser, M.A.I.; García-Segovia, P.; Martínez-Monzó, J. Printability and Physicochemical Properties of Microalgae-Enriched 3D-Printed Snacks. Food Bioprocess Technol. 2020, 13, 2029–2042. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Espinosa, C.; Paredes, A.; Palma, J.; Jaime, C.; Vílchez, C.; Cerezal, P. Determining the Potential of Haematococcus pluvialis Oleoresin as a Rich Source of Antioxidants. Molecules 2019, 24, 4073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, N.; Fortin, T.J.; Span, R.; Gerber, M. Thermophysical properties of the marine microalgae Nannochloropsis salina. Fuel Process. Technol. 2016, 152, 390–398. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Martínez-Sánchez, I.; Savall, C.; García-Segovia, P.; Martínez-Monzó, J. Microalgae fortification of low-fat oil-in-water food emulsions: An evaluation of the physicochemical and rheological properties. J. Food Sci. Technol. 2021, 58, 3701–3711. [Google Scholar] [CrossRef]
- Bleakley, S.; Hayes, M. Functional and Bioactive Properties of Protein Extracts Generated from Spirulina platensis and Isochrysis galbana T-Iso. Appl. Sci. 2021, 11, 3964. [Google Scholar] [CrossRef]
- Batista, A.P.; Nunes, M.C.; Fradinho, P.; Gouveia, L.; Sousa, I.; Raymundo, A.; Franco, J.M. Novel foods with microalgal ingredients-Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J. Food Eng. 2012, 110, 182–189. [Google Scholar] [CrossRef]
- Nourmohammadi, N.; Soleimanian-Zad, S.; Shekarchizadeh, H. Effect of Spirulina (Arthrospira platensis) microencapsulated in alginate and whey protein concentrate addition on physicochemical and organoleptic properties of functional stirred yogurt. J. Sci. Food Agric. 2020, 100, 5260–5268. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Sousa, I.; Raymundo, A.; Bandarra, N.M. Microalgae in novel food products. In Food Chemistry Research Developments; Papadopoulos, K.N., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008; pp. 1–36. ISBN 978-1-60456-262-0. [Google Scholar]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef]
Code | Microalgae | Microalgae | Vegetables | Water | Oil | Salt |
---|---|---|---|---|---|---|
STD | Standard recipe | 0 | 67.6 | 29 | 2.9 | 0.5 |
SP1.5 | A. platensis 1.5% (w/w) | 1.01 | 66.59 | |||
CV1.5 | C. vulgaris 1.5% (w/w) | |||||
TC1.5 | T. chui 1.5% (w/w) | |||||
NO1.5 | N. oceanica 1.5% (w/w) | |||||
SP3 | A. platensis 3% (w/w) | 2.03 | 65.87 | |||
CV3 | C. vulgaris 3% (w/w) | |||||
TC3 | T. chui 3% (w/w) | |||||
NO3 | N. oceanica 3% (w/w) |
Microalgae Species (S) | Level of Addition (LA) | S × LA | ||||
---|---|---|---|---|---|---|
SS% | Significance | SS% | Significance | SS% | Significance | |
Physicochemical properties | ||||||
L* | 55.53 | *** | 37.64 | *** | 6.82 | *** |
a* | 98.11 | *** | 1.28 | *** | 0.61 | *** |
b* | 70.66 | *** | 23.72 | *** | 5.62 | *** |
ΔE | 56.11 | *** | 33.84 | *** | 10.05 | *** |
Moisture content | 8.95 | *** | 90.31 | *** | 0.74 | ns |
aw | 69.16 | ** | 1.00 | ns | 29.84 | ns |
pH | 91.96 | *** | 2.71 | *** | 5.33 | *** |
Syneresis | 45.95 | *** | 32.12 | *** | 21.93 | *** |
°Brix | 11.96 | * | 82.67 | *** | 5.37 | ns |
Rheological properties | ||||||
Bostwick consistency (cm) | 80.05 | *** | 15.80 | ns | 4.15 | ns |
Consistency coefficient (K) | 85.56 | ** | 0.03 | ns | 14.41 | ns |
Flow behavior index (n) | 89.00 | * | 2.35 | ns | 8.65 | ns |
L* | a* | b* | ΔE | Moisture Content (%, g H20/100 g Sample) | aw | |
---|---|---|---|---|---|---|
STD | 44.84 ± 0.80 g | −2.05 ± 0.12 d | 22.96 ± 0.13 g | 0.00 ± 0.00 a | 87.51 ± 0.30 e | 0.990 ± 0.001 b |
SP1.5 | 40.44 ± 0.12 c | 0.57 ± 0.07 f | 21.91 ± 0.42 c | 5.24 ± 0.06 d | 86.66 ± 0.16 cd | 0.990 ± 0.002 ab |
SP3 | 37.15 ± 0.32 a | 1.17 ± 0.14 g | 18.66 ± 0.33 bc | 9.39 ± 0.13 f | 85.58 ± 0.39 ab | 0.991 ± 0.001 b |
CV1.5 | 43.74 ± 0.99 f | −2.19 ± 0.08 c | 23.83 ± 0.90 h | 1.74 ± 0.74 b | 86.77 ± 0.16 d | 0.991 ± 0.001 b |
CV3 | 42.95 ± 0.37 e | −2.20 ± 0.05 e | 23.43 ± 0.43 gh | 1.99 ± 0.45 b | 85.77 ± 0.04 b | 0.991 ± 0.001 b |
TC1.5 | 41.64 ± 0.34 d | −2.63 ± 0.13 a | 20.72 ± 0.34 e | 3.97 ± 0.29 c | 86.68 ± 0.13 cd | 0.990 ± 0.002 ab |
TC3 | 38.11 ± 0.20 b | −2.32 ± 0.08 b | 17.37 ± 0.37 b | 8.76 ± 0.16 e | 85.82 ± 0.21 b | 0.988 ± 0.001 a |
NO1.5 | 41.50 ± 0.28 d | −2.20 ± 0.03 c | 19.32 ± 0.48 d | 4.96 ± 0.38 d | 86.42 ± 0.24 c | 0.992 ± 0.002 b |
NO3 | 37.57 ± 0.71 ab | −1.86 ± 0.11 e | 16.20 ± 0.44 a | 9.96 ± 0.33 g | 85.33 ± 0.37 a | 0.990 ± 0.001 b |
pH | Syneresis (g Supernatant per 100 g Cream) | Brix | Bostwick Consistency (cm) | Consistency Coefficient (K, Pa sn) | Flow Behavior Index (n) | |
STD | 5.88 ± 0.03 a | 66.29 ± 1.75 d | 4.43 ± 0.393 a | 7.67 ± 0.24 a | 8.52 ± 1.66 bc | 0.218 ± 0.019 ab |
SP1.5 | 5.87 ± 0.02 a | 64.63 ± 0.90 c | 4.37 ± 0.225 a | 7.92 ± 0.41 ab | 8.36 ± 1.78 bc | 0.217 ± 0.021 ab |
SP3 | 5.86 ± 0.03 a | 62.49 ± 0.43 b | 5.15 ± 0.084 d | 8.10 ± 1.08 abc | 9.49 ± 1.35 bc | 0.210 ± 0.027 a |
CV1.5 | 5.86 ± 0.03 a | 65.44 ± 1.06 cd | 4.57 ± 0.234 a | 8.65 ± 0.50 bcde | 7.74 ± 1.57 ab | 0.229 ± 0.018 abc |
CV3 | 5.86 ± 0.02 a | 62.39 ± 1.18 b | 4.97 ± 0.052 cd | 9.08 ± 0.33 de | 7.16 ± 1.36 ab | 0.239 ± 0.022 bc |
TC1.5 | 6.01 ± 0.01 b | 64.39 ± 0.93 c | 4.58 ± 0.293 ab | 8.38 ± 0.81 abcd | 7.70 ± 1.61 ab | 0.227 ± 0.022 abc |
TC3 | 6.05 ± 0.02 c | 65.11 ± 0.19 c | 5.22 ± 0.117 d | 8.55 ± 0.43 bcde | 7.34 ± 0.93 ab | 0.230 ± 0.015 abc |
NO1.5 | 6.04 ± 0.03 c | 63.16 ± 0.55 b | 4.35 ± 0.176 a | 8.70 ± 0.49 cde | 6.77 ± 1.17 ab | 0.238 ± 0.022 bc |
NO3 | 6.16 ± 0.04 d | 60.40 ± 0.37 a | 4.83 ± 0.151 bc | 9.28 ± 0.41 e | 6.44 ± 0.47 a | 0.245 ± 0.013 c |
STD | SP1.5 | SP3 | CV1.5 | CV3 | TC1.5 | TC3 | NO1.5 | NO3 | ||
---|---|---|---|---|---|---|---|---|---|---|
Energy | kcal/100 g | 57.02 | 60.44 | 63.88 | 60.24 | 63.46 | 59.93 | 62.83 | 59.77 | 62.52 |
Fat | g/100 g | 3.08 | 3.17 | 3.22 | 3.15 | 3.21 | 3.16 | 3.23 | 3.23 | 3.37 |
Of which saturated | g/100 g | 0.36 | 0.39 | 0.42 | 0.39 | 0.41 | 0.44 | 0.52 | 0.51 | 0.66 |
Of which unsaturated | g/100 g | 2.72 | 2.78 | 2.8 | 2.76 | 2.8 | 2.72 | 2.71 | 2.72 | 2.71 |
Carbohydrates | g/100 g | 3.75 | 3.91 | 4.05 | 4.08 | 4.81 | 3.85 | 3.95 | 3.87 | 3.98 |
Of which sugars | g/100 g | 1.24 | 1.25 | 1.27 | 1.27 | 1.29 | 1.27 | 1.29 | 1.23 | 1.21 |
Protein | g/100 g | 2.5 | 3.04 | 3.59 | 2.72 | 2.95 | 2.92 | 3.34 | 2.81 | 3.13 |
Protein | g/100 g, N × 6.25 | 2.79 | 3.33 | 3.45 | 2.66 | 2.55 | 2.95 | 3.6 | 2.98 | 2.79 |
Salt | g/100 g | 0.55 | 0.55 | 0.56 | 0.55 | 0.55 | 0.56 | 0.58 | 0.63 | 0.71 |
Fiber | g/100 g | 2.19 | 2.19 | 2.19 | 2.36 | 2.53 | 2.27 | 2.35 | 2.3 | 2.42 |
Protein contribution to the energy value | % kcal | 17.51% 1 | 20.12%2 | 22.46% 2 | 18.10% 1 | 18.62% 1 | 19.47% 1 | 21.26% 2 | 18.82% 1 | 20.02% 2 |
Fiber–energy ratio | g/100 kcal | 3.85 | 3.63 | 3.43 | 3.92 | 3.99 | 3.8 | 3.75 | 3.86 | 3.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukid, F.; Comaposada, J.; Ribas-Agustí, A.; Castellari, M. Development of High-Protein Vegetable Creams by Using Single-Cell Ingredients from Some Microalgae Species. Foods 2021, 10, 2550. https://doi.org/10.3390/foods10112550
Boukid F, Comaposada J, Ribas-Agustí A, Castellari M. Development of High-Protein Vegetable Creams by Using Single-Cell Ingredients from Some Microalgae Species. Foods. 2021; 10(11):2550. https://doi.org/10.3390/foods10112550
Chicago/Turabian StyleBoukid, Fatma, Josep Comaposada, Albert Ribas-Agustí, and Massimo Castellari. 2021. "Development of High-Protein Vegetable Creams by Using Single-Cell Ingredients from Some Microalgae Species" Foods 10, no. 11: 2550. https://doi.org/10.3390/foods10112550
APA StyleBoukid, F., Comaposada, J., Ribas-Agustí, A., & Castellari, M. (2021). Development of High-Protein Vegetable Creams by Using Single-Cell Ingredients from Some Microalgae Species. Foods, 10(11), 2550. https://doi.org/10.3390/foods10112550