Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber
Abstract
:1. Introduction
2. Cereal Dietary Fiber Components and the Effects of Processing on Their Physicochemical Properties
2.1. Arabinoxylans
2.1.1. Milling and Fractionation
2.1.2. Baking Process
Refrigerated Doughs
2.1.3. Germination
2.1.4. Extrusion
2.1.5. Nixtamalization
2.2. Cellulose and Lignin
2.2.1. Milling and Fractionation
2.2.2. Baking Process
2.2.3. Extrusion
2.3. Beta-Glucan
2.3.1. Milling and Fractionation
2.3.2. Baking Process
2.3.3. Extrusion
2.3.4. Other Thermal Treatments and Processing of Aqueous β-Glucan
2.4. Fructans
2.4.1. Milling and Fractionation
2.4.2. Thermal Treatment and/or pH Changes
2.4.3. Baking Process
2.5. Resistant Starch
2.5.1. Milling and Fractionation
2.5.2. Thermal Treatment (Baking and Extrusion)
3. Challenges in Assessing Process-Induced Changes in DF Properties
4. Physiological Functionality of Cereal DF in Relation to Processing-Induced Changes
4.1. Cereal DF and Health
4.2. Effects of Cereal DF Characteristics on Postprandial Events
4.3. Effects of Cereal DF Characteristics on Colonic Fermentation
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luithui, Y.; Baghya Nisha, R.; Meera, M.S. Cereal By-Products as an Important Functional Ingredient: Effect of Processing. J. Food Sci. Technol. 2019, 56, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wu, H.; Sajid, A.; Li, Z. Whole Grain Cereals: The Potential Roles of Functional Components in Human Health. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef]
- Korczak, R.; Slavin, J.L. Definitions, Regulations, and New Frontiers for Dietary Fiber and Whole Grains. Nutr. Rev. 2020, 78, 6–12. [Google Scholar] [CrossRef]
- Miller, K.B. Review of Whole Grain and Dietary Fiber Recommendations and Intake Levels in Different Countries. Nutr. Rev. 2020, 78, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole Grain Consumption and Risk of Cardiovascular Disease, Cancer, and All Cause and Cause Specific Mortality: Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [Green Version]
- Evans, C.E.L.; Greenwood, D.C.; Threapleton, D.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.E.; Gale, C.P.; Burley, V.J. Effects of Dietary Fibre Type on Blood Pressure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials of Healthy Individuals. J. Hypertens. 2015, 33, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Murphy, N.; Norat, T.; Ferrari, P.; Jenab, M.; Bueno-de-Mesquita, B.; Skeie, G.; Dahm, C.C.; Overvad, K.; Olsen, A.; Tjønneland, A.; et al. Dietary Fibre Intake and Risks of Cancers of the Colon and Rectum in the European Prospective Investigation into Cancer and Nutrition (EPIC). PLoS ONE 2012, 7, e39361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasadi, N.V.; Joye, I.J. Dietary Fibre from Whole Grains and Their Benefits on Metabolic Health. Nutrients 2020, 12, 3045. [Google Scholar] [CrossRef]
- Augustin, L.S.A.; Aas, A.-M.; Astrup, A.; Atkinson, F.S.; Baer-Sinnott, S.; Barclay, A.W.; Brand-Miller, J.C.; Brighenti, F.; Bullo, M.; Buyken, A.E.; et al. Dietary Fibre Consensus from the International Carbohydrate Quality Consortium (ICQC). Nutrients 2020, 12, 2553. [Google Scholar] [CrossRef]
- Trowell, H. Definition of Dietary Fiber and Hypotheses That It Is a Protective Factor in Certain Diseases. Am. J. Clin. Nutr. 1976, 29, 417–427. [Google Scholar] [CrossRef]
- Poutanen, K.; Sozer, N.; Della Valle, G. How Can Technology Help to Deliver More of Grain in Cereal Foods for a Healthy Diet? J. Cereal Sci. 2014, 59, 327–336. [Google Scholar] [CrossRef]
- Rosa-Sibakov, N.; Poutanen, K.; Micard, V. How Does Wheat Grain, Bran and Aleurone Structure Impact Their Nutritional and Technological Properties? Trends Food Sci. Technol. 2015, 41, 118–134. [Google Scholar] [CrossRef]
- Smith, C.; Van Haute, M.J.; Rose, D.J. Processing Has Differential Effects on Microbiota-Accessible Carbohydrates in Whole Grains during In Vitro Fermentation. Appl. Environ. Microbiol. 2020, 86, e01705-20. [Google Scholar] [CrossRef]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health Benefits of Whole Grain: Effects on Dietary Carbohydrate Quality, the Gut Microbiome, and Consequences of Processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef] [PubMed]
- Poutanen, K.S.; Fiszman, S.; Marsaux, C.F.M.; Pentikäinen, S.P.; Steinert, R.E.; Mela, D.J. Recommendations for Characterization and Reporting of Dietary Fibers in Nutrition Research. Am. J. Clin. Nutr. 2018, 108, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.E.; Tucker, K.L. Health Benefits of Cereal Fibre: A Review of Clinical Trials. Nutr. Res. Rev. 2011, 24, 118–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.-L.; Bacic, A.; Fincher, G.B. REVIEW: Variability in Fine Structures of Noncellulosic Cell Wall Polysaccharides from Cereal Grains: Potential Importance in Human Health and Nutrition. Cereal Chem. 2010, 87, 272–282. [Google Scholar] [CrossRef]
- Gebruers, K.; Dornez, E.; Boros, D.; Fraś, A.; Dynkowska, W.; Bedő, Z.; Rakszegi, M.; Delcour, J.A.; Courtin, C.M. Variation in the Content of Dietary Fiber and Components Thereof in Wheats in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9740–9749. [Google Scholar] [CrossRef]
- Haskå, L.; Nyman, M.; Andersson, R. Distribution and Characterisation of Fructan in Wheat Milling Fractions. J. Cereal Sci. 2008, 48, 768–774. [Google Scholar] [CrossRef]
- Rodehutscord, M.; Rückert, C.; Maurer, H.P.; Schenkel, H.; Schipprack, W.; Bach Knudsen, K.E.; Schollenberger, M.; Laux, M.; Eklund, M.; Siegert, W.; et al. Variation in Chemical Composition and Physical Characteristics of Cereal Grains from Different Genotypes. Arch. Anim. Nutr. 2016, 70, 87–107. [Google Scholar] [CrossRef]
- Verspreet, J.; Dornez, E.; Van den Ende, W.; Delcour, J.A.; Courtin, C.M. Cereal Grain Fructans: Structure, Variability and Potential Health Effects. Trends Food Sci. Technol. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Chinma, C.E.; Ramakrishnan, Y.; Ilowefah, M.; Hanis-Syazwani, M.; Muhammad, K. REVIEW: Properties of Cereal Brans: A Review. Cereal Chem. 2015, 92, 1–7. [Google Scholar] [CrossRef]
- Hemdane, S.; Jacobs, P.J.; Dornez, E.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roye, C.; Bulckaen, K.; De Bondt, Y.; Liberloo, I.; Van De Walle, D.; Dewettinck, K.; Courtin, C.M. Side-by-Side Comparison of Composition and Structural Properties of Wheat, Rye, Oat, and Maize Bran and Their Impact on in Vitro Fermentability. Cereal Chem. 2020, 97, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Devi, R.; Kapoor, R.; Grewal, S.; Kapoor, R. Biochemical Characterization of Oat (Avena sativa L.) Genotypes with High Nutritional Potential. LWT 2019, 110, 32–39. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Nyström, L.; Li, L.; Rakszegi, M.; Fraś, A.; Boros, D.; Gebruers, K.; Courtin, C.M.; et al. Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef]
- Jokinen, I. Variation in Dietary Fibre Content, Starch Quality and Pasting Properties of Oat Flours—Understanding the Effect of Oat Milling Process. Master’s Thesis, University of Helsinki, Helsinki, Finland, May 2020. [Google Scholar]
- Andersson, A.A.M.; Lampi, A.-M.; Nyström, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; et al. Phytochemical and Dietary Fiber Components in Barley Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9767–9776. [Google Scholar] [CrossRef]
- Vasanthan, T.; Gaosong, J.; Yeung, J.; Li, J. Dietary Fiber Profile of Barley Flour as Affected by Extrusion Cooking. Food Chem. 2002, 77, 35–40. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Wang, Q. Distribution and Molecular Characterization of β-Glucans from Hull-Less Barley Bran, Shorts and Flour. Int. J. Mol. Sci. 2011, 12, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Djurle, S.; Andersson, A.A.M.; Andersson, R. Milling and Extrusion of Six Barley Varieties, Effects on Dietary Fibre and Starch Content and Composition. J. Cereal Sci. 2016, 72, 146–152. [Google Scholar] [CrossRef]
- Nyström, L.; Lampi, A.-M.; Andersson, A.A.M.; Kamal-Eldin, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Li, L.; Ward, J.L.; Fraś, A.; et al. Phytochemicals and Dietary Fiber Components in Rye Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9758–9766. [Google Scholar] [CrossRef]
- Rakha, A.; Åman, P.; Andersson, R. Characterisation of Dietary Fibre Components in Rye Products. Food Chem. 2010, 119, 859–867. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Nygaard Laerke, H.; Bach Knudsen, K.-E.; Lampi, A.-M.; Piironen, V.; Adlercreutz, H.; Katina, K.; Poutanen, K.; Åman, P. Physical, Microscopic and Chemical Characterisation of Industrial Rye and Wheat Brans from the Nordic Countries. Food Nutr. Res. 2009, 53, 1912. [Google Scholar] [CrossRef] [Green Version]
- Dornez, E.; Holopainen, U.; Cuyvers, S.; Poutanen, K.; Delcour, J.A.; Courtin, C.M.; Nordlund, E. Study of Grain Cell Wall Structures by Microscopic Analysis with Four Different Staining Techniques. J. Cereal Sci. 2011, 54, 363–373. [Google Scholar] [CrossRef]
- Saulnier, L.; Guillon, F.; Chateigner-Boutin, A.-L. Cell Wall Deposition and Metabolism in Wheat Grain. J. Cereal Sci. 2012, 56, 91–108. [Google Scholar] [CrossRef]
- Langenaeken, N.A.; Ieven, P.; Hedlund, E.G.; Kyomugasho, C.; van de Walle, D.; Dewettinck, K.; Van Loey, A.M.; Roeffaers, M.B.J.; Courtin, C.M. Arabinoxylan, β-Glucan and Pectin in Barley and Malt Endosperm Cell Walls: A Microstructure Study Using CLSM and Cryo-SEM. Plant J. 2020, 103, 1477–1489. [Google Scholar] [CrossRef]
- Fincher, G.B.; Stone, B.A. Cell Walls and Their Components in Cereal Grain Technology. Adv. Cereal Sci. Technol. 1986, 8, 207–295. [Google Scholar]
- Izydorczyk, M.S.; Biliaderis, C.G. Cereal Arabinoxylans: Advances in Structure and Physicochemical Properties. Carbohydr. Polym. 1995, 28, 33–48. [Google Scholar] [CrossRef]
- Barron, C.; Surget, A.; Rouau, X. Relative Amounts of Tissues in Mature Wheat (Triticum aestivum L.) Grain and Their Carbohydrate and Phenolic Acid Composition. J. Cereal Sci. 2007, 45, 88–96. [Google Scholar] [CrossRef]
- Glitsø, L.V.; Bach Knudsen, K.E. Milling of Whole Grain Rye to Obtain Fractions with Different Dietary Fibre Characteristics. J. Cereal Sci. 1999, 29, 89–97. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-Glucans and Arabinoxylans: Molecular Structure, Physicochemical Properties, and Uses in Food Products—A Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Ordaz-Ortiz, J.J.; Saulnier, L. Structural Variability of Arabinoxylans from Wheat Flour. Comparison of Water-Extractable and Xylanase-Extractable Arabinoxylans. J. Cereal Sci. 2005, 42, 119–125. [Google Scholar] [CrossRef]
- Dervilly, G.; Saulnier, L.; Roger, P.; Thibault, J.-F. Isolation of Homogeneous Fractions from Wheat Water-Soluble Arabinoxylans. Influence of the Structure on Their Macromolecular Characteristics. J. Agric. Food Chem. 2000, 48, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Maes, C.; Delcour, J.A. Alkaline Hydrogen Peroxide Extraction of Wheat Bran Non-Starch Polysaccharides. J. Cereal Sci. 2001, 34, 29–35. [Google Scholar] [CrossRef]
- Smith, M.M.; Hartley, R.D. Occurrence and Nature of Ferulic Acid Substitution of Cell-Wall Polysaccharides in Graminaceous Plants. Carbohydr. Res. 1983, 118, 65–80. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-Making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Delcour, J.; Hoseney, R. Principles of Cereal Science and Technology, 3rd ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Satake, S.; Takeshi, I.; Yoshihiro, T. Vertical Pearling Machines and Apparatus for Preliminary Treatment Prior to Flour Milling Using Such Pearling Machines. U.S. Patent No. 5,390,589, 21 February 1995. [Google Scholar]
- Tkac, J.J. Process for Removing Bran Layers from Wheat Kernels. U.S. Patent No. 5,082,680, 21 January 1992. [Google Scholar]
- Van Donkelaar, L.H.G.; Noordman, T.R.; Boom, R.M.; van der Goot, A.-J. Pearling Barley to Alter the Composition of the Raw Material before Brewing. J. Food Eng. 2015, 150, 44–49. [Google Scholar] [CrossRef]
- De Brier, N.; Hemdane, S.; Dornez, E.; Gomand, S.V.; Delcour, J.A.; Courtin, C.M. Structure, Chemical Composition and Enzymatic Activities of Pearlings and Bran Obtained from Pearled Wheat (Triticum aestivum L.) by Roller Milling. J. Cereal Sci. 2015, 62, 66–72. [Google Scholar] [CrossRef]
- Wang, J.; Smits, E.; Boom, R.M.; Schutyser, M.A.I. Arabinoxylans Concentrates from Wheat Bran by Electrostatic Separation. J. Food Eng. 2015, 155, 29–36. [Google Scholar] [CrossRef]
- Zhang, L.; van Boven, A.; Mulder, J.; Grandia, J.; Chen, X.D.; Boom, R.M.; Schutyser, M.A.I. Arabinoxylans-Enriched Fractions: From Dry Fractionation of Wheat Bran to the Investigation on Bread Baking Performance. J. Cereal Sci. 2019, 87, 1–8. [Google Scholar] [CrossRef]
- Jacobs, P.; Hemdane, S.; Dornez, E.; Delcour, J.; Courtin, C. Study of Hydration Properties of Wheat Bran as a Function of Particle Size. Food Chem. 2015, 179, 296–304. [Google Scholar] [CrossRef] [PubMed]
- De Bondt, Y.; Liberloo, I.; Roye, C.; Windhab, E.J.; Lamothe, L.; King, R.; Courtin, C.M. The Effect of Wet Milling and Cryogenic Milling on the Structure and Physicochemical Properties of Wheat Bran. Foods 2020, 9, 1755. [Google Scholar] [CrossRef] [PubMed]
- Van Craeyveld, V.; Holopainen, U.; Selinheimo, E.; Poutanen, K.; Delcour, J.A.; Courtin, C.M. Extensive Dry Ball Milling of Wheat and Rye Bran Leads to in Situ Production of Arabinoxylan Oligosaccharides through Nanoscale Fragmentation. J. Agric. Food Chem. 2009, 57, 8467–8473. [Google Scholar] [CrossRef] [PubMed]
- Cleemput, G.; Booij, C.; Hessing, M.; Gruppen, H.; Delcour, J.A. Solubilisation and Changes in Molecular Weight Distribution of Arabinoxylans and Protein in Wheat Flours During Bread-Making, and the Effects of Endogenous Arabinoxylan Hydrolysing Enzymes. J. Cereal Sci. 1997, 26, 55–66. [Google Scholar] [CrossRef]
- Leys, S.; Pauly, A.; Delcour, J.A.; Courtin, C.M. Modification of the Secondary Binding Site of Xylanases Illustrates the Impact of Substrate Selectivity on Bread Making. J. Agric. Food Chem. 2016, 64, 5400–5409. [Google Scholar] [CrossRef]
- Dornez, E.; Gebruers, K.; Cuyvers, S.; Delcour, J.A.; Courtin, C.M. Impact of Wheat Flour-Associated Endoxylanases on Arabinoxylan in Dough after Mixing and Resting. J. Agric. Food Chem. 2007, 55, 7149–7155. [Google Scholar] [CrossRef]
- Rouau, X.; El-Hayek, M.-L.; Moreau, D. Effect of an Enzyme Preparation Containing Pentosanases on the Bread-Making Quality of Flours in Relation to Changes in Pentosan Properties. J. Cereal Sci. 1994, 19, 259–272. [Google Scholar] [CrossRef]
- Rouau, X.; Moreau, D. Modification of Some Physicochemical Properties of Wheat Flour Pentosans by an Enzyme Complex Recommended for Baking. Cereal Chem. 1993, 70, 626–632. [Google Scholar]
- Maat, J.; Verbakel, M.; Stam, J.; Santos da Silva, M.J.; Bosse, M.; Egmond, M.R.; Hagemans, M.L.D.; Van Gorcom, R.F.M.; Hessing, J.G.M.; Van den Hondel, C.A.M.J.J.; et al. Xylanases and their application in bakery. In Xylans and Xylanases; Elsevier Science Publishers: Amsterdam, The Netherlands, 1992; pp. 349–360. [Google Scholar]
- Leys, S.; De Bondt, Y.; Bosmans, G.; Courtin, C.M. Assessing the Impact of Xylanase Activity on the Water Distribution in Wheat Dough: A 1H NMR Study. Food Chem. 2020, 325, 126828. [Google Scholar] [CrossRef] [PubMed]
- Goesaert, H.; Brijs, K.; Veraverbeke, W.S.; Courtin, C.M.; Gebruers, K.; Delcour, J.A. Wheat Flour Constituents: How They Impact Bread Quality, and How to Impact Their Functionality. Trends Food Sci. Technol. 2005, 16, 12–30. [Google Scholar] [CrossRef]
- Gan, Z.; Ellis, P.R.; Schofield, J.D. Gas Cell Stabilisation and Gas Retention in Wheat Bread Dough. J. Cereal Sci. 1995, 21, 215–230. [Google Scholar] [CrossRef]
- Hoseney, R.C. Functional Properties of Pentosans in Baked Foods. Food Technol. 1984, 38, 114–117. [Google Scholar]
- Courtin, C.M.; Gelders, G.G.; Delcour, J.A. Use of Two Endoxylanases with Different Substrate Selectivity for Understanding Arabinoxylan Functionality in Wheat Flour Breadmaking. Cereal Chem. 2001, 78, 564–571. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Courtin, C.M.; Verbeke, K.; de Wiele, T.V.; Verstraete, W.; Delcour, J.A. Prebiotic and Other Health-Related Effects of Cereal-Derived Arabinoxylans, Arabinoxylan-Oligosaccharides, and Xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 2011, 51, 178–194. [Google Scholar] [CrossRef]
- Damen, B.; Cloetens, L.; Broekaert, W.F.; François, I.; Lescroart, O.; Trogh, I.; Arnaut, F.; Welling, G.W.; Wijffels, J.; Delcour, J.A.; et al. Consumption of Breads Containing in Situ-Produced Arabinoxylan Oligosaccharides Alters Gastrointestinal Effects in Healthy Volunteers. J. Nutr. 2012, 142, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Andersson, R.; Fransson, G.; Tietjen, M.; Åman, P. Content and Molecular-Weight Distribution of Dietary Fiber Components in Whole-Grain Rye Flour and Bread. J. Agric. Food Chem. 2009, 57, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Lappi, J.; Selinheimo, E.; Schwab, U.; Katina, K.; Lehtinen, P.; Mykkänen, H.; Kolehmainen, M.; Poutanen, K. Sourdough Fermentation of Wholemeal Wheat Bread Increases Solubility of Arabinoxylan and Protein and Decreases Postprandial Glucose and Insulin Responses. J. Cereal Sci. 2010, 51, 152–158. [Google Scholar] [CrossRef]
- Coda, R.; Rizzello, C.G.; Curiel, J.A.; Poutanen, K.; Katina, K. Effect of Bioprocessing and Particle Size on the Nutritional Properties of Wheat Bran Fractions. Innov. Food Sci. Emerg. Technol. 2014, 25, 19–27. [Google Scholar] [CrossRef]
- Katina, K.; Juvonen, R.; Laitila, A.; Flander, L.; Nordlund, E.; Kariluoto, S.; Piironen, V.; Poutanen, K. Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chem. 2012, 89, 126–134. [Google Scholar] [CrossRef]
- Messia, M.C.; Reale, A.; Maiuro, L.; Candigliota, T.; Sorrentino, E.; Marconi, E. Effects of Pre-Fermented Wheat Bran on Dough and Bread Characteristics. J. Cereal Sci. 2016, 69, 138–144. [Google Scholar] [CrossRef]
- Hartikainen, K.; Poutanen, K.; Katina, K. Influence of Bioprocessed Wheat Bran on the Physical and Chemical Properties of Dough and on Wheat Bread Texture. Cereal Chem. 2014, 91, 115–123. [Google Scholar] [CrossRef]
- Gys, W.; Courtin, C.M.; Delcour, J.A. Refrigerated Dough Syruping in Relation to the Arabinoxylan Population. J. Agric. Food Chem. 2003, 51, 4119–4125. [Google Scholar] [CrossRef] [PubMed]
- Courtin, C.M.; Gys, W.; Gebruers, K.; Delcour, J.A. Evidence for the Involvement of Arabinoxylan and Xylanases in Refrigerated Dough Syruping. J. Agric. Food Chem. 2005, 53, 7623–7629. [Google Scholar] [CrossRef] [PubMed]
- Courtin, C.M.; Gys, W.; Delcour, J.A. Arabinoxylans and Endoxylanases in Refrigerated Dough Syruping. J. Sci. Food Agric. 2006, 86, 1587–1595. [Google Scholar] [CrossRef]
- Gys, W.; Gebruers, K.; Sørensen, J.F.; Courtin, C.M.; Delcour, J.A. Debranning of Wheat Prior to Milling Reduces Xylanase but Not Xylanase Inhibitor Activities in Wholemeal and Flour. J. Cereal Sci. 2004, 39, 363–369. [Google Scholar] [CrossRef]
- Gys, W.; Courtin, C.M.; Delcour, J.A. Reduction of Xylanase Activity in Flour by Debranning Retards Syruping in Refrigerated Doughs. J. Cereal Sci. 2004, 39, 371–377. [Google Scholar] [CrossRef]
- Atwell, W.A. Method for Reducing Syruping in Refrigerated Doughs. U.S. Patent No. 5,792,499, 11 August 1998. [Google Scholar]
- Patil, S.B.; Khan, K. Germinated Brown Rice as a Value Added Rice Product: A Review. J. Food Sci. Technol. 2011, 48, 661–667. [Google Scholar] [CrossRef] [Green Version]
- Rao, R.S.P.; Muralikrishna, G. Structural Characteristics of Water-Soluble Feruloyl Arabinoxylans from Rice (Oryza sativa) and Ragi (Finger millet, Eleusine coracana): Variations upon Malting. Food Chem. 2007, 104, 1160–1170. [Google Scholar] [CrossRef]
- Singkhornart, S.; Edou-ondo, S.; Ryu, G.-H. Influence of Germination and Extrusion with CO2 Injection on Physicochemical Properties of Wheat Extrudates. Food Chem. 2014, 143, 122–131. [Google Scholar] [CrossRef]
- De Backer, E.; Gebruers, K.; Van den Ende, W.; Courtin, C.M.; Delcour, J.A. Post-Translational Processing of β-d-Xylanases and Changes in Extractability of Arabinoxylans during Wheat Germination. Plant Physiol. Biochem. 2010, 48, 90–97. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Jonsäll, A.; Andersson, J.; Fredriksson, H. Effect of Different Extrusion Parameters on Dietary Fiber in Wheat Bran and Rye Bran. J. Food Sci. 2017, 82, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Demuth, T.; Betschart, J.; Nyström, L. Structural Modifications to Water-Soluble Wheat Bran Arabinoxylan through Milling and Extrusion. Carbohydr. Polym. 2020, 240, 116328. [Google Scholar] [CrossRef] [PubMed]
- Fadel, A.; Mahmoud, A.M.; Ashworth, J.J.; Li, W.; Ng, Y.L.; Plunkett, A. Health-Related Effects and Improving Extractability of Cereal Arabinoxylans. Int. J. Biol. Macromol. 2018, 109, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roye, C.; Henrion, M.; Chanvrier, H.; De Roeck, K.; De Bondt, Y.; Liberloo, I.; King, R.; Courtin, C.M. Extrusion-Cooking Modifies Physicochemical and Nutrition-Related Properties of Wheat Bran. Foods 2020, 9, 738. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.; Vasanthan, T. Modification of Rice Bran Dietary Fiber Concentrates Using Enzyme and Extrusion Cooking. Food Hydrocoll. 2019, 89, 773–782. [Google Scholar] [CrossRef]
- Ingelbrecht, J.A.; Verwimp, T.; Grobet, P.J.; Delcour, J.A. Behavior of Triticum durum Desf. Arabinoxylans and Arabinogalactan Peptides during Industrial Pasta Processing. J. Agric. Food Chem. 2001, 49, 1783–1789. [Google Scholar] [CrossRef]
- Comino, P.; Collins, H.; Lahnstein, J.; Gidley, M.J. Effects of Diverse Food Processing Conditions on the Structure and Solubility of Wheat, Barley and Rye Endosperm Dietary Fibre. J. Food Eng. 2016, 169, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Chanliaud, E.; Saulnier, L.; Thibault, J.-F. Alkaline Extraction and Characterisation of Heteroxylans from Maize Bran. J. Cereal Sci. 1995, 21, 195–203. [Google Scholar] [CrossRef]
- González, R.; Reguera, E.; Mendoza, L.; Figueroa, J.M.; Sánchez-Sinencio, F. Physicochemical Changes in the Hull of Corn Grains during Their Alkaline Cooking. J. Agric. Food Chem. 2004, 52, 3831–3837. [Google Scholar] [CrossRef]
- Saulnier, L.; Mestres, C.; Doublier, J.-L.; Roger, P.; Thibault, J.-F. Studies of Polysaccharides Solubilized During Alkaline Cooking of Maize Kernels. J. Cereal Sci. 1993, 17, 267–276. [Google Scholar] [CrossRef]
- Ayala-Soto, F.E.; Serna-Saldívar, S.O.; García-Lara, S.; Pérez-Carrillo, E. Hydroxycinnamic Acids, Sugar Composition and Antioxidant Capacity of Arabinoxylans Extracted from Different Maize Fiber Sources. Food Hydrocoll. 2014, 35, 471–475. [Google Scholar] [CrossRef]
- Rose, D.J.; Patterson, J.A.; Hamaker, B.R. Structural Differences among Alkali-Soluble Arabinoxylans from Maize (Zea mays), Rice (Oryza sativa), and Wheat (Triticum aestivum) Brans Influence Human Fecal Fermentation Profiles. J. Agric. Food Chem. 2010, 58, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.P.; Fishman, M.L.; Chau, H.K.; Johnston, D.B.; Hicks, K.B. Molecular Characteristics of Corn Fiber Gum and Their Influence on CFG Emulsifying Properties. Cereal Chem. 2007, 84, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Singkhornart, S.; Lee, S.G.; Ryu, G.H. Influence of Twin-Screw Extrusion on Soluble Arabinoxylans and Corn Fiber Gum from Corn Fiber. J. Sci. Food Agric. 2013, 93, 3046–3054. [Google Scholar] [CrossRef] [PubMed]
- Platt-Lucero, L.C.; Ramírez-Wong, B.; Torres-Chávez, P.I.; López-Cervantes, J.; Sánchez-Machado, D.I.; Carvajal-Millan, E.; Martínez-Bustos, F.; Quintero-Ramos, A.; Morales-Rosas, I. Effect of Xylanase on Extruded Nixtamalized Corn Flour and Tortilla: Physicochemical and Rheological Characteristics. J. Food Process Eng. 2013, 36, 179–186. [Google Scholar] [CrossRef]
- Cyran, M.R. Chapter 38—Dietary Fiber Arabinoxylans in Processed Rye: Milling- and Breadmaking-Induced Changes. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 319–328. ISBN 978-0-12-404699-3. [Google Scholar]
- Nordlund, E.; Katina, K.; Aura, A.-M.; Poutanen, K. Changes in Bran Structure by Bioprocessing with Enzymes and Yeast Modifies the in Vitro Digestibility and Fermentability of Bran Protein and Dietary Fibre Complex. J. Cereal Sci. 2013, 58, 200–208. [Google Scholar] [CrossRef]
- Rieder, A.; Holtekjølen, A.K.; Sahlstrøm, S.; Moldestad, A. Effect of Barley and Oat Flour Types and Sourdoughs on Dough Rheology and Bread Quality of Composite Wheat Bread. J. Cereal Sci. 2012, 55, 44–52. [Google Scholar] [CrossRef]
- Holtzapple, M.T. Lignin. In Encyclopedia of Food Sciences and Nutrition; Cabellero, B., Ed.; Academic Press: London, UK, 2003; pp. 3535–3542. [Google Scholar]
- Glitsø, L.V.; Gruppen, H.; Schols, H.A.; Højsgaard, S.; Sandström, B.; Knudsen, K.E.B. Degradation of Rye Arabinoxylans in the Large Intestine of Pigs. J. Sci. Food Agric. 1999, 79, 961–969. [Google Scholar] [CrossRef]
- Hemery, Y.; Rouau, X.; Lullien-Pellerin, V.; Barron, C.; Abecassis, J. Dry Processes to Develop Wheat Fractions and Products with Enhanced Nutritional Quality. J. Cereal Sci. 2007, 46, 327–347. [Google Scholar] [CrossRef]
- Niemi, P. Enzymatic Fractionation of Brewer’s Spent Grain and Bioconversion of Lignin-Rich Fractions in a Colon Model in Vitro. Ph.D. Thesis, Aalto University, Espoo, Finland, 2016. [Google Scholar]
- Hell, J.; Donaldson, L.; Michlmayr, H.; Kraler, M.; Kneifel, W.; Potthast, A.; Rosenau, T.; Böhmdorfer, S. Effect of Pretreatment on Arabinoxylan Distribution in Wheat Bran. Carbohydr. Polym. 2015, 121, 18–26. [Google Scholar] [CrossRef]
- Reis, S.F.; Coelho, E.; Coimbra, M.A.; Abu-Ghannam, N. Improved Efficiency of Brewer’s Spent Grain Arabinoxylans by Ultrasound-Assisted Extraction. Ultrason. Sonochem. 2015, 24, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Smith, C.; Li, W. Extraction and Modification Technology of Arabinoxylans from Cereal By-Products: A Critical Review. Food Res. Int. 2014, 65, 423–436. [Google Scholar] [CrossRef]
- Bagdi, A.; Szabó, F.; Gere, A.; Kókai, Z.; Sipos, L.; Tömösközi, S. Effect of Aleurone-Rich Flour on Composition, Cooking, Textural, and Sensory Properties of Pasta. LWT-Food Sci. Technol. 2014, 59, 996–1002. [Google Scholar] [CrossRef]
- Boskov Hansen, H.; Andreasen, M.; Nielsen, M.; Larsen, L.; Knudsen, B.K.; Meyer, A.; Christensen, L.; Hansen, Å. Changes in Dietary Fibre, Phenolic Acids and Activity of Endogenous Enzymes during Rye Bread-Making. Eur. Food Res. Technol. 2002, 214, 33–42. [Google Scholar] [CrossRef]
- Laurikainen, T.; Härkönen, H.; Autio, K.; Poutanen, K. Effects of Enzymes in Fibre-Enriched Baking. J. Sci. Food Agric. 1998, 76, 239–249. [Google Scholar] [CrossRef]
- Lambo, A.M.; Öste, R.; Nyman, M.E.G.-L. Dietary Fibre in Fermented Oat and Barley β-Glucan Rich Concentrates. Food Chem. 2005, 89, 283–293. [Google Scholar] [CrossRef]
- Dust, J.M.; Gajda, A.M.; Flickinger, E.A.; Burkhalter, T.M.; Merchen, N.R.; Fahey, G.C. Extrusion Conditions Affect Chemical Composition and in Vitro Digestion of Select Food Ingredients. J. Agric. Food Chem. 2004, 52, 2989–2996. [Google Scholar] [CrossRef]
- Wood, P.J. Oat β-Glucan: Properties and Function. In Oats, 2nd ed.; Webster, F.H., Wood, P.J., Eds.; AACC International Press; AACC International: St. Paul, MN, USA, 2011; pp. 219–254. ISBN 978-1-891127-64-9. [Google Scholar]
- Knuckles, B.E.; Chiu, M.M.; Betschart, A.A. Beta-Gluten-Enriched Fractions from Laboratory-Scale Dry Milling and Sieving of Barley and Oats. Cereal Chem. 1992, 69, 198–202. [Google Scholar]
- Yoon, S.H.; Berglund, P.; Fastnaught, C. Evaluation of Selected Barley Cultivars and Their Fractions for β-Glucan Enrichment and Viscosity. Cereal Chem. 1995, 72, 187–190. [Google Scholar]
- Izydorczyk, M.; Miller, S.; Beattie, A. Milling Food Barley: Production of Functional Fractions Enriched with β-Glucans and Other Dietary Fiber Components. Cereal Foods World 2014, 59, 277–285. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Åman, P. Air Classification of Barley Flours. Cereal Chem. 2000, 77, 463–467. [Google Scholar] [CrossRef]
- Wu, Y.V.; Stringfellow, A.C.; Inglett, G.E. Protein- and Beta-Glucan Enriched Fractions from High-Protein, High Beta-Glucan Barleys by Sieving and Air Classification. Cereal Chem. 1994, 71, 220–223. [Google Scholar]
- Knuckles, B.E.; Chiu, M.-C.M. β-Glucan Enrichment of Barley Fractions by Air Classification and Sieving. J. Food Sci. 1995, 60, 1070–1074. [Google Scholar] [CrossRef]
- Wu, Y.; Stringfellow, A.C. Enriched Protein- and β-Glucan Fractions from High-Protein Oats by Air Classification. Cereal Chem. 1995, 72, 132–134. [Google Scholar]
- Wu, Y.V.; Doehlert, D.C. Enrichment of β -Glucan in Oat Bran by Fine Grinding and Air Classification. LWT-Food Sci. Technol. 2002, 35, 30–33. [Google Scholar] [CrossRef]
- Messia, M.C.; De Arcangelis, E.; Candigliota, T.; Trivisonno, M.C.; Marconi, E. Production of SS-Glucan Enriched Flour from Waxy Barley. J. Cereal Sci. 2020, 93, 102989. [Google Scholar] [CrossRef]
- Heneen, W.K.; Banas, A.; Leonova, S.; Carlsson, A.S.; Marttila, S.; Debski, H.; Stymne, S. The Distribution of Oil in the Oat Grain. Plant Signal. Behav. 2009, 4, 55–56. [Google Scholar] [CrossRef] [Green Version]
- Sibakov, J.; Myllymäki, O.; Holopainen, U.; Kaukovirta-Norja, A.; Hietaniemi, V.; Pihlava, J.-M.; Lehtinen, P.; Poutanen, K. β-Glucan Extraction Methods from Oats: Minireview. Agro Food Ind. Hi-Tech 2012, 23, 10–12. [Google Scholar]
- Sibakov, J.; Abecassis, J.; Barron, C.; Poutanen, K. Electrostatic Separation Combined with Ultra-Fine Grinding to Produce β-Glucan Enriched Ingredients from Oat Bran. Innov. Food Sci. Emerg. Technol. 2014, 26, 445–455. [Google Scholar] [CrossRef]
- Ames, N.; Storsley, J.; Tosh, S.M. Effects of Processing on Physicochemical Properties and Efficacy of β-Glucan from Oat and Barley. Cereal Foods World 2015, 60, 4–8. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Armö, E.; Grangeon, E.; Fredriksson, H.; Andersson, R.; Åman, P. Molecular Weight and Structure Units of (1→3, 1→4)-β-Glucans in Dough and Bread Made from Hull-Less Barley Milling Fractions. J. Cereal Sci. 2004, 40, 195–204. [Google Scholar] [CrossRef]
- Rieder, A.; Ballance, S.; Løvaas, A.; Knutsen, S.H. Minimizing Molecular Weight Reduction of β-Glucan during Barley Bread Making. LWT-Food Sci. Technol. 2015, 64, 767–774. [Google Scholar] [CrossRef]
- Åman, P.; Rimsten, L.; Andersson, R. Molecular Weight Distribution of β-Glucan in Oat-Based Foods. Cereal Chem. 2004, 81, 356–360. [Google Scholar] [CrossRef]
- Flander, L.; Salmenkallio-Marttila, M.; Suortti, T.; Autio, K. Optimization of Ingredients and Baking Process for Improved Wholemeal Oat Bread Quality. LWT-Food Sci. Technol. 2007, 40, 860–870. [Google Scholar] [CrossRef]
- Trogh, I.; Courtin, C.M.; Andersson, A.A.M.; Åman, P.; Sørensen, J.F.; Delcour, J.A. The Combined Use of Hull-Less Barley Flour and Xylanase as a Strategy for Wheat/Hull-Less Barley Flour Breads with Increased Arabinoxylan and (1→3,1→4)-β-D-Glucan Levels. J. Cereal Sci. 2004, 40, 257–267. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Rüegg, N.; Åman, P. Molecular Weight Distribution and Content of Water-Extractable β-Glucan in Rye Crisp Bread. J. Cereal Sci. 2008, 47, 399–406. [Google Scholar] [CrossRef]
- Beer, M.U.; Wood, P.J.; Weisz, J.; Fillion, N. Effect of Cooking and Storage on the Amount and Molecular Weight of (1→3)(1→4)-β-D-Glucan Extracted from Oat Products by an in Vitro Digestion System. Cereal Chem. 1997, 74, 476–480. [Google Scholar] [CrossRef]
- Moriartey, S.; Temelli, F.; Vasanthan, T. Effect of Formulation and Processing Treatments on Viscosity and Solubility of Extractable Barley β-Glucan in Bread Dough Evaluated Under In Vitro Conditions. Cereal Chem. 2010, 87, 65–72. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Courtin, C.M.; Delcour, J.A.; Fredriksson, H.; Schofield, J.D.; Trogh, I.; Tsiami, A.A.; Åman, P. Milling Performance of North European Hull-Less Barleys and Characterization of Resultant Millstreams. Cereal Chem. 2003, 80, 667–673. [Google Scholar] [CrossRef]
- Rieder, A.; Ballance, S.; Knutsen, S.H. Viscosity Based Quantification of Endogenous β-Glucanase Activity in Flour. Carbohydr. Polym. 2015, 115, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Vatandoust, A.; Ragaee, S.; Wood, P.J.; Tosh, S.M.; Seetharaman, K. Detection, Localization, and Variability of Endogenous β-Glucanase in Wheat Kernels. Cereal Chem. 2012, 89, 59–64. [Google Scholar] [CrossRef]
- Moriartey, S.; Temelli, F.; Vasanthan, T. Effect of Storage Conditions on the Solubility and Viscosity of β-Glucan Extracted from Bread under In Vitro Conditions. J. Food Sci. 2011, 76, C1–C7. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; MacGregor, A.W. Evidence of Intermolecular Interactions of B-Glucans and Arabinoxylans. Carbohydr. Polym. 2000, 41, 417–420. [Google Scholar] [CrossRef]
- Marklinder, I.; Johansson, L. Sour Dough Fermentation of Barley Flours with Varied Content of Mixed-Linked 13-D-Glucans. Food Microbiol. 1995, 12, 363–371. [Google Scholar] [CrossRef]
- Gamel, T.H.; Abdel-Aal, E.-S.M.; Tosh, S.M. Effect of Yeast-Fermented and Sour-Dough Making Processes on Physicochemical Characteristics of β-Glucan in Whole Wheat/Oat Bread. LWT-Food Sci. Technol. 2015, 60, 78–85. [Google Scholar] [CrossRef]
- Gamel, T.H.; Badali, K.; Tosh, S.M. Changes of β-Glucan Physicochemical Characteristics in Frozen and Freeze Dried Oat Bran Bread and Porridge. J. Cereal Sci. 2013, 58, 104–109. [Google Scholar] [CrossRef]
- Gaosong, J.; Vasanthan, T. Effect of Extrusion Cooking on the Primary Structure and Water Solubility of β-Glucans from Regular and Waxy Barley. Cereal Chem. 2000, 77, 396–400. [Google Scholar] [CrossRef]
- Sharma, P.; Gujral, H.S. Extrusion of Hulled Barley Affecting β-Glucan and Properties of Extrudates. Food Bioprocess Technol. 2013, 6, 1374–1389. [Google Scholar] [CrossRef]
- Honců, I.; Sluková, M.; Vaculová, K.; Sedláčková, I.; Wiege, B.; Fehling, E. The Effects of Extrusion on the Content and Properties of Dietary Fibre Components in Various Barley Cultivars. J. Cereal Sci. 2016, 68, 132–139. [Google Scholar] [CrossRef]
- Chang, C.; Yang, C.; Samanros, A.; Lin, J. Collet and Cooking Extrusion Change the Soluble and Insoluble β-Glucan Contents of Barley. J. Cereal Sci. 2015, 66, 18–23. [Google Scholar] [CrossRef]
- Köksel, H.; Ryu, G.-H.; Basman, A.; Demiralp, H.; Ng, P.K.W. Effects of Extrusion Variables on the Properties of Waxy Hulless Barley Extrudates. Food Nahr. 2004, 48, 19–24. [Google Scholar] [CrossRef]
- Brahma, S.; Weier, S.A.; Rose, D.J. Effects of Selected Extrusion Parameters on Physicochemical Properties and in Vitro Starch Digestibility and β-Glucan Extractability of Whole Grain Oats. J. Cereal Sci. 2016, 70, 85–90. [Google Scholar] [CrossRef]
- Saldanha do Carmo, C.; Varela, P.; Poudroux, C.; Dessev, T.; Myhrer, K.; Rieder, A.; Zobel, H.; Sahlstrøm, S.; Knutsen, S.H. The Impact of Extrusion Parameters on Physicochemical, Nutritional and Sensorial Properties of Expanded Snacks from Pea and Oat Fractions. LWT 2019, 112, 108252. [Google Scholar] [CrossRef]
- Tosh, S.M.; Brummer, Y.; Miller, S.S.; Regand, A.; Defelice, C.; Duss, R.; Wolever, T.M.S.; Wood, P.J. Processing Affects the Physicochemical Properties of β-Glucan in Oat Bran Cereal. J. Agric. Food Chem. 2010, 58, 7723–7730. [Google Scholar] [CrossRef] [PubMed]
- Kivelä, R.; Henniges, U.; Sontag-Strohm, T.; Potthast, A. Oxidation of Oat β-Glucan in Aqueous Solutions during Processing. Carbohydr. Polym. 2012, 87, 589–597. [Google Scholar] [CrossRef]
- Faure, A.M.; Sánchez-Ferrer, A.; Zabara, A.; Andersen, M.L.; Nyström, L. Modulating the Structural Properties of β-d-Glucan Degradation Products by Alternative Reaction Pathways. Carbohydr. Polym. 2014, 99, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Faure, A.M.; Werder, J.; Nyström, L. Reactive Oxygen Species Responsible for Beta-Glucan Degradation. Food Chem. 2013, 141, 589–596. [Google Scholar] [CrossRef]
- Wang, X.; Storsley, J.; Thandapilly, S.J.; Ames, N. Effects of Processing, Cultivar, and Environment on the Physicochemical Properties of Oat β-Glucan. Cereal Chem. 2016, 93, 402–408. [Google Scholar] [CrossRef]
- Johansson, L.; Tuomainen, P.; Anttila, H.; Rita, H.; Virkki, L. Effect of Processing on the Extractability of Oat β-Glucan. Food Chem. 2007, 105, 1439–1445. [Google Scholar] [CrossRef]
- Verspreet, J.; Hansen, A.H.; Harrison, S.J.; Vergauwen, R.; Van den Ende, W.; Courtin, C.M. Building a Fructan LC-MS2 Library and Its Application to Reveal the Fine Structure of Cereal Grain Fructans. Carbohydr. Polym. 2017, 174, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, J.; Struyf, N.; Bautil, A.; Bakeeva, A.; Chmielarz, M.; Lyly, M.; Herrera-Malaver, B.; Passoth, V.; Verstrepen, K.J.; Courtin, C.M. The Potential of Kluyveromyces Marxianus to Produce Low-FODMAP Straight-Dough and Sourdough Bread: A Pilot-Scale Study. Food Bioprocess Technol. 2021, 14, 1920–1935. [Google Scholar] [CrossRef]
- Whelan, K.; Abrahmsohn, O.; David, G.J.P.; Staudacher, H.; Irving, P.; Lomer, M.C.E.; Ellis, P.R. Fructan Content of Commonly Consumed Wheat, Rye and Gluten-Free Breads. Int. J. Food Sci. Nutr. 2011, 62, 498–503. [Google Scholar] [CrossRef]
- Karppinen, S.; Myllymäki, O.; Forssell, P.; Poutanen, K. Fructan Content of Rye and Rye Products. Cereal Chem. 2003, 80, 168–171. [Google Scholar] [CrossRef]
- Haskå, L.; Nyman, M.; Andersson, R. Characterization of Indigestible Carbohydrates in Various Fractions from Wheat Processing. Cereal Chem. 2010, 87, 125–130. [Google Scholar] [CrossRef]
- Böhm, A.; Kaiser, I.; Trebstein, A.; Henle, T. Heat-Induced Degradation of Inulin. Eur. Food Res. Technol. 2005, 220, 466–471. [Google Scholar] [CrossRef]
- Glibowski, P.; Bukowska, A. The Effect of PH, Temperature and Heating Time on Inulin Chemical Stability. Acta Sci. Pol. Technol. Aliment. 2011, 10, 189–196. [Google Scholar]
- Courtin, C.M.; Swennen, K.; Verjans, P.; Delcour, J.A. Heat and PH Stability of Prebiotic Arabinoxylooligosaccharides, Xylooligosaccharides and Fructooligosaccharides. Food Chem. 2009, 112, 831–837. [Google Scholar] [CrossRef]
- Verspreet, J.; Hemdane, S.; Dornez, E.; Cuyvers, S.; Delcour, J.A.; Courtin, C.M. Maximizing the Concentrations of Wheat Grain Fructans in Bread by Exploring Strategies To Prevent Their Yeast (Saccharomyces cerevisiae)-Mediated Degradation. J. Agric. Food Chem. 2013, 61, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Loponen, J.; Gänzle, M.G. Characterization of the Extracellular Fructanase FruA in Lactobacillus Crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. J. Agric. Food Chem. 2020, 68, 8637–8647. [Google Scholar] [CrossRef] [PubMed]
- Englyst, H.N.; Cummings, J.H. Digestion of the Polysaccharides of Some Cereal Foods in the Human Small Intestine. Am. J. Clin. Nutr. 1985, 42, 778–787. [Google Scholar] [CrossRef]
- Sajilata, M.G.; Singhal, R.S.; Kulkarni, P.R. Resistant Starch–A Review. Compr. Rev. Food Sci. Food Saf. 2006, 5, 1–17. [Google Scholar] [CrossRef]
- Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.-L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; et al. Resistant Starch: Promise for Improving Human Health. Adv. Nutr. 2013, 4, 587–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massarolo, K.C.; Ferreira, C.F.J.; de Borba, V.S.; Kupski, L.; Furlong, E.B. Particle Size and Physical-Chemical Characteristics of Hydrothermally Treated Cornmeal on Resistant Starch Content. Food Chem. 2019, 283, 39–45. [Google Scholar] [CrossRef]
- Alsaffar, A.A. Effect of Food Processing on the Resistant Starch Content of Cereals and Cereal Products—A Review. Int. J. Food Sci. Technol. 2011, 46, 455–462. [Google Scholar] [CrossRef]
- Liljeberg, H.; Åkerberg, A.; Björck, I. Resistant Starch Formation in Bread as Influenced by Choice of Ingredients or Baking Conditions. Food Chem. 1996, 56, 389–394. [Google Scholar] [CrossRef]
- Åkerberg, A.; Liljeberg, H.; Björck, I. Effects of Amylose/Amylopectin Ratio and Baking Conditions on Resistant Starch Formation and Glycaemic Indices. J. Cereal Sci. 1998, 28, 71–80. [Google Scholar] [CrossRef]
- Štěrbová, L.; Bradová, J.; Sedláček, T.; Holasová, M.; Fiedlerová, V.; Dvořáček, V.; Smrčková, P. Influence of Technological Processing of Wheat Grain on Starch Digestibility and Resistant Starch Content. Starch-Stärke 2016, 68, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Hagenimana, A.; Ding, X.; Fang, T. Evaluation of Rice Flour Modified by Extrusion Cooking. J. Cereal Sci. 2006, 43, 38–46. [Google Scholar] [CrossRef]
- Faraj, A.; Vasanthan, T.; Hoover, R. The Effect of Extrusion Cooking on Resistant Starch Formation in Waxy and Regular Barley Flours. Food Res. Int. 2004, 37, 517–525. [Google Scholar] [CrossRef]
- Kim, J.H.; Tanhehco, E.J.; Ng, P.K.W. Effect of Extrusion Conditions on Resistant Starch Formation from Pastry Wheat Flour. Food Chem. 2006, 99, 718–723. [Google Scholar] [CrossRef]
- Buddrick, O.; Jones, O.A.H.; Hughes, J.G.; Kong, I.; Small, D.M. The Effect of Fermentation and Addition of Vegetable Oil on Resistant Starch Formation in Wholegrain Breads. Food Chem. 2015, 180, 181–185. [Google Scholar] [CrossRef]
- Virkki, L.; Maina, H.N.; Johansson, L.; Tenkanen, M. New Enzyme-Based Method for Analysis of Water-Soluble Wheat Arabinoxylans. Carbohydr. Res. 2008, 343, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Champ, M.; Langkilde, A.-M.; Brouns, F.; Kettlitz, B.; Bail-Collet, Y.L. Advances in Dietary Fibre Characterisation. 2. Consumption, Chemistry, Physiology and Measurement of Resistant Starch; Implications for Health and Food Labelling. Nutr. Res. Rev. 2003, 16, 143–161. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; Monaghan, D.A. Measurement of Resistant Starch. J. AOAC Int. 2002, 85, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Courtin, C.M.; Van den Broeck, H.; Delcour, J.A. Determination of Reducing End Sugar Residues in Oligo- and Polysaccharides by Gas–Liquid Chromatography. J. Chromatogr. A 2000, 866, 97–104. [Google Scholar] [CrossRef]
- Nishitsuji, Y.; Whitney, K.; Nakamura, K.; Hayakawa, K.; Simsek, S. Changes in Structure and Solubility of Wheat Arabinoxylan during the Breadmaking Process. Food Hydrocoll. 2020, 109, 106129. [Google Scholar] [CrossRef]
- Rieder, A.; Grimmer, S.; Aachmann, F.L.; Westereng, B.; Kolset, S.O.; Knutsen, S.H. Generic Tools to Assess Genuine Carbohydrate Specific Effects on in Vitro Immune Modulation Exemplified by β-Glucans. Carbohydr. Polym. 2013, 92, 2075–2083. [Google Scholar] [CrossRef]
- Rieder, A.; Knutsen, S.H.; Ulset, A.-S.T.; Christensen, B.E.; Andersson, R.; Mikkelson, A.; Tuomainen, P.; Maina, N.; Ballance, S. Inter-Laboratory Evaluation of SEC-Post-Column Calcofluor for Determination of the Weight-Average Molar Mass of Cereal β-Glucan. Carbohydr. Polym. 2015, 124, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Rimsten, L.; Stenberg, T.; Andersson, R.; Andersson, A.; Åman, P. Determination of β-Glucan Molecular Weight Using SEC with Calcofluor Detection in Cereal Extracts. Cereal Chem. 2003, 80, 485–490. [Google Scholar] [CrossRef]
- Håkansson, A.; Ulmius, M.; Nilsson, L. Asymmetrical Flow Field-Flow Fractionation Enables the Characterization of Molecular and Supramolecular Properties of Cereal β-Glucan Dispersions. Carbohydr. Polym. 2012, 87, 518–523. [Google Scholar] [CrossRef]
- Mäkelä, N.; Sontag-Strohm, T.; Maina, N.H. The Oxidative Degradation of Barley β-Glucan in the Presence of Ascorbic Acid or Hydrogen Peroxide. Carbohydr. Polym. 2015, 123, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Zielke, C.; Teixeira, C.; Ding, H.; Cui, S.; Nyman, M.; Nilsson, L. Analysis of β-Glucan Molar Mass from Barley Malt and Brewer’s Spent Grain with Asymmetric Flow Field-Flow Fractionation (AF4) and Their Association to Proteins. Carbohydr. Polym. 2017, 157, 541–549. [Google Scholar] [CrossRef]
- Wolever, T.M.; Tosh, S.M.; Gibbs, A.L.; Brand-Miller, J.; Duncan, A.M.; Hart, V.; Lamarche, B.; Thomson, B.A.; Duss, R.; Wood, P.J. Physicochemical Properties of Oat β-Glucan Influence Its Ability to Reduce Serum LDL Cholesterol in Humans: A Randomized Clinical Trial. Am. J. Clin. Nutr. 2010, 92, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Rieder, A.; Knutsen, S.H.; Ballance, S. In Vitro Digestion of Beta-Glucan Rich Cereal Products Results in Extracts with Physicochemical and Rheological Behavior like Pure Beta-Glucan Solutions—A Basis for Increased Understanding of in Vivo Effects. Food Hydrocoll. 2017, 67, 74–84. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Y.; Zhu, L.; Fang, Z.; He, L.; Ai, D.; Jin, Y. Whole Grain and Cereal Fiber Intake and the Risk of Type 2 Diabetes: A Meta-Analysis. Int. J. Mol. Epidemiol. Genet. 2019, 10, 38–46. [Google Scholar]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Rye Fibre and Changes in Bowel Function (ID 825), Reduction of Post Prandial Glycaemic Responses (ID 826) and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 827) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2258. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Oat and Barley Grain Fibre and Increase in Faecal Bulk (ID 819, 822) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2249. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Wheat Bran Fibre and Increase in Faecal Bulk (ID 3066), Reduction in Intestinal Transit Time (ID 828, 839, 3067, 4699) and Contribution to the Maintenance or Achievement of a Normal Body Weight (ID 829) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1817. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Beta-Glucans from Oats and Barley and Maintenance of Normal Blood LDL-Cholesterol Concentrations (ID 1236, 1299), Increase in Satiety Leading to a Reduction in Energy Intake (ID 851, 852), Reduction of Post-Prandial Glycaemic Responses (ID 821, 824), and “Digestive Function” (ID 850) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2207. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Substantiation of Health Claims Related to Arabinoxylan Produced from Wheat Endosperm and Reduction of Post-Prandial Glycaemic Responses (ID 830) Pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2205. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Substantiation of a Health Claim Related to Barley Beta-glucans and Lowering of Blood Cholesterol and Reduced Risk of (Coronary) Heart Disease Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2470. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Scientific Opinion on the Substantiation of a Health Claim Related to Oat Beta Glucan and Lowering Blood Cholesterol and Reduced Risk of (Coronary) Heart Disease Pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2010, 8, 1885. [Google Scholar] [CrossRef]
- Goff, H.D.; Repin, N.; Fabek, H.; El Khoury, D.; Gidley, M.J. Dietary Fibre for Glycaemia Control: Towards a Mechanistic Understanding. Bioact. Carbohydr. Diet. Fibre 2018, 14, 39–53. [Google Scholar] [CrossRef]
- Tosh, S.M. Review of Human Studies Investigating the Post-Prandial Blood-Glucose Lowering Ability of Oat and Barley Food Products. Eur. J. Clin. Nutr. 2013, 67, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ellis, P.R. Oat β-Glucan: Physico-Chemical Characteristics in Relation to Its Blood-Glucose and Cholesterol-Lowering Properties. Br. J. Nutr. 2014, 112, S4–S13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, P.J.; Braaten, J.T.; Scott, F.W.; Riedel, K.D.; Wolynetz, M.S.; Collins, M.W. Effect of Dose and Modification of Viscous Properties of Oat Gum on Plasma Glucose and Insulin Following an Oral Glucose Load. Br. J. Nutr. 1994, 72, 731–743. [Google Scholar] [CrossRef]
- Lin, S.; Agger, J.W.; Wilkens, C.; Meyer, A.S. Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annu. Rev. Food Sci. Technol. 2021, 12, 331–354. [Google Scholar] [CrossRef] [PubMed]
- Pekkinen, J.; Rosa, N.N.; Savolainen, O.-I.; Keski-Rahkonen, P.; Mykkänen, H.; Poutanen, K.; Micard, V.; Hanhineva, K. Disintegration of Wheat Aleurone Structure Has an Impact on the Bioavailability of Phenolic Compounds and Other Phytochemicals as Evidenced by Altered Urinary Metabolite Profile of Diet-Induced Obese Mice. Nutr. Metab. 2014, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Gibson, P.R.; Halmos, E.P.; Muir, J.G. Review Article: FODMAPS, Prebiotics and Gut Health-the FODMAP Hypothesis Revisited. Aliment. Pharmacol. Ther. 2020, 52, 233–246. [Google Scholar] [CrossRef]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.-M.; Loponen, J.; Poussa, T.; Hillilä, M.; Korpela, R. Randomised Clinical Trial: Low-FODMAP Rye Bread vs. Regular Rye Bread to Relieve the Symptoms of Irritable Bowel Syndrome. Aliment. Pharmacol. Ther. 2016, 44, 460–470. [Google Scholar] [CrossRef]
- Rosa, N.N.; Aura, A.-M.; Saulnier, L.; Holopainen-Mantila, U.; Poutanen, K.; Micard, V. Effects of Disintegration on in Vitro Fermentation and Conversion Patterns of Wheat Aleurone in a Metabolical Colon Model. J. Agric. Food Chem. 2013, 61, 5805–5816. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.L.; Slavin, J.L. Particle Size and Fraction of Wheat Bran Influence Short-Chain Fatty Acid Production in Vitro. Br. J. Nutr. 2009, 102, 1404–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ames, N.P.; Tun, H.M.; Tosh, S.M.; Jones, P.J.; Khafipour, E. High Molecular Weight Barley β-Glucan Alters Gut Microbiota Toward Reduced Cardiovascular Disease Risk. Front. Microbiol. 2016, 7, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DF | AX | Cellulose | Lignin | β-Glucan | Fructan | Ref | ||
---|---|---|---|---|---|---|---|---|
Wheat | Wholemeal | 11.5–18.3 | 4.0–9.0 | 1.2–1.6 | 0.7–3.3 | 0.5–1.0 | 0.7–2.9 | [17,18,19,20,21] |
Refined flour | 4.1–4.3 | 1.4–2.8 | nd | 0.2–0.5 | nd | 1.4–1.7 | [18,19,21] | |
Bran | 35.7–55.5 | 13.2–33.0 | 9.0–14.0 | 3.0–10.0 | 1.0–3.0 | 3.0–4.0 | [18,19,21,22,23,24] | |
Oat | Wholemeal | 10.6–23.4 | 2.2–4.1 | 0.8–1.2 | 1.3–5.9 | 1.1–5.6 | <0.2 | [17,21,25,26] |
Refined flour | 9.5–13.1 | 1.0–1.3 | nd | nd | 1.0–1.1 | nd | [26,27] | |
Bran | 16.5–24.7 | 3.5–13.2 | ca. 1.4 | nd | 5.4–8.4 | ca. 0.3 | [22,24,26] | |
Barley | Wholemeal | 15.0–23.8 | 3.4–8.6 | 1.4–3.7 | 1.5–4.7 | 3.7–6.5 | <1.0 | [17,20,21,28] |
Refined flour | 4.8–18.3 | 1.2–6.0 | 0.9–1.6 | nd | 2.4–7.5 | 0.7–2.5 | [28,29,30,31] | |
Bran | ca. 72.5 | 4.8–9.8 | nd | nd | 6.2–7.6 | nd | [22,28,30] | |
Rye | Wholemeal | 20.4–25.2 | 7.1–12.2 | 0.6–1.2 | 0.9–3.2 | 1.7–2.6 | 2.5–6.6 | [17,20,21,32] |
Refined flour | 11.8–21.8 | 3.1–9.3 | nd | 0.2–0.5 | 1.5–3.4 | 3.1–4.6 | [21,32,33] | |
Bran | 33.5–47.5 | 12.1–25.1 | 2.6–6.5 | 3.0–4.5 | 2.9–5.3 | 5.0–7.7 | [21,22,24,32,33,34] |
Process | Total Amount |
Amount of WUAX |
A/X Ratio (WUAX) |
Amount of WEAX |
A/X Ratio (WEAX) | Mw | Reference |
---|---|---|---|---|---|---|---|
Milling * | [41,48,102] | ||||||
Bran | ↑ | ↑ | ↑ | ↑ | ↑ | nd | |
Perikarp | ↑ | ↑ | ↑ | ↓ | ↑ | nd | |
Aleurone | ↑ | ↑ | ↓ | ↑ | ↓ | nd | |
Endosperm | ↓ | ↓ | ↑ | ↓ | ↑ | nd | |
Baking process | - | ↓ | - | ↑ | - | /- a | [59,93] |
Sourdough Fermentation ** | - | ↓ | nd | ↑ | nd | ↓/- b | [71,72,73,74,76,103] |
Extrusion Pasta making | - - | - | ↑ ↑ | - | - c | [92,93] | |
Germination | ↑ | ↑ | ↓ | -/↓ | nd | ↓ d | [84,86] |
Process |
Total Amount |
Amount (Soluble β-Glucans) | Viscosity | Mw | Reference |
---|---|---|---|---|---|
Dry fractionation * | [118,123,128,129] | ||||
Coarse fraction | ↑ | ↑ | nd | nd | |
Defatted, ultragrinded coarse fraction | ↑ | ↑ | nd | - | |
Abrasion milling and sieving | ↑ | nd | nd | nd | |
Pin milling/air classification | ↑ | nd | nd | nd | |
Kilning | - | ↓ | ↑ a | ↑ a | [158] |
Baking process ** | - | ↑↓ | ↓ | ↓ | [131,132,133,134,135,136,137] |
Sourdough Fermentation ** | ↓ | ↑ | ↓ | ↓ | [104,144] |
Extrusion *** | ↑↓ | ↑ | nd | ↑↓- | [93,148,152] |
Cooking Porridge | - | ↑ | nd | - | [159] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maina, N.H.; Rieder, A.; De Bondt, Y.; Mäkelä-Salmi, N.; Sahlstrøm, S.; Mattila, O.; Lamothe, L.M.; Nyström, L.; Courtin, C.M.; Katina, K.; et al. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods 2021, 10, 2566. https://doi.org/10.3390/foods10112566
Maina NH, Rieder A, De Bondt Y, Mäkelä-Salmi N, Sahlstrøm S, Mattila O, Lamothe LM, Nyström L, Courtin CM, Katina K, et al. Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods. 2021; 10(11):2566. https://doi.org/10.3390/foods10112566
Chicago/Turabian StyleMaina, Ndegwa H., Anne Rieder, Yamina De Bondt, Noora Mäkelä-Salmi, Stefan Sahlstrøm, Outi Mattila, Lisa M. Lamothe, Laura Nyström, Christophe M. Courtin, Kati Katina, and et al. 2021. "Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber" Foods 10, no. 11: 2566. https://doi.org/10.3390/foods10112566
APA StyleMaina, N. H., Rieder, A., De Bondt, Y., Mäkelä-Salmi, N., Sahlstrøm, S., Mattila, O., Lamothe, L. M., Nyström, L., Courtin, C. M., Katina, K., & Poutanen, K. (2021). Process-Induced Changes in the Quantity and Characteristics of Grain Dietary Fiber. Foods, 10(11), 2566. https://doi.org/10.3390/foods10112566