Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Nanoemulsions
2.2.1. Characterization of the Nanoemulsions
Effect of the Microfluidization Parameters on the Emulsification of the Cocoa Liquor
2.3. Preparation of the Films
2.3.1. Film Characterization
Effect of the Formulation on the Properties of the Films
2.3.2. Microstructure Analysis by CLSM
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Coating Application on the Muffins
Stability of the Muffins during Storage
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effect of Microfluidization Parameters on the Emulsification of Cocoa Liquor
3.2. Effect of the Formulation on the Properties of the Film
3.3. Microstructure of the Emulsions and Films
3.4. FTIR Spectroscopy Analysis
3.5. Coating Application on Muffins and Storage Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bai, L.; Huan, S.; Gu, J.; McClements, D.J. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll. 2016, 61, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Guo, R.; Hu, H.; Wu, X.; Ai, L.; Wu, Y. Preparation optimisation and storage stability of nanoemulsion-based lutein delivery systems. J. Microencapsul. 2018, 35, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Karacam, C.H.; Sahin, S.; Oztop, M.H. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT Food Sci. Technol. 2015, 64, 932–937. [Google Scholar] [CrossRef]
- Hebishy, E.; Zamora, A.; Buffa, M.; Blasco-Moreno, A.; Trujillo, A.J. Characterization of whey protein oil-in-water emulsions with different oil concentrations stabilized by ultra-high pressure homogenization. Processes 2017, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Zhou, Y.; Bai, L.; Liu, F.; Deng, Y.; McClements, D.J. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability. J. Colloid Interface Sci. 2017, 490, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galus, S.; Lenart, A. Optical, mechanical, and moisture sorption properties of whey protein edible films. J. Food Process. Eng. 2019, 42, 1–10. [Google Scholar] [CrossRef]
- Meza, B.E.; De Piante Vicín, D.A.; Marino, F.; Sihufe, G.A.; Peralta, J.M.; Zorrilla, S.E. Characterisation of soluble aggregates from commercial whey protein concentrate suspensions: Effect of protein concentration, pH, and heat treatment conditions. Int. J. Dairy Technol. 2020, 73, 429–436. [Google Scholar] [CrossRef]
- García, A.; Pérez, L.M.; Piccirilli, G.N.; Verdini, R.A. Evaluation of antioxidant, antibacterial and physicochemical properties of whey protein-based edible films incorporated with different soy sauces. LWT Food Sci. Technol. 2020, 117, 108587. [Google Scholar] [CrossRef]
- Pluta-Kubica, A.; Jamróz, E.; Kawecka, A.; Juszczak, L.; Krzyściak, P. Active edible furcellaran/whey protein films with yerba mate and white tea extracts: Preparation, characterization and its application to fresh soft rennet-curd cheese. Int. J. Biol. Macromol. 2020, 155, 1307–1316. [Google Scholar] [CrossRef]
- Sogut, E. Fabrication of κ-carrageenan and whey protein isolate-based films reinforced with nanocellulose: Optimization via RSM. J. Appl. Polym. Sci. 2020, 48902, 1–12. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; Sobral, P.J. do A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Hashemi-Gahruie, H.; Ziaee, E.; Eskandari, M.H.; Hosseini, S.M.H. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion. Carbohydr. Polym. 2017, 166, 93–103. [Google Scholar] [CrossRef]
- Mohammadi, M.; Mirabzadeh, S.; Shahvalizadeh, R.; Hamishehkar, H. Development of novel active packaging films based on whey protein isolate incorporated with chitosan nanofiber and nano-formulated cinnamon oil. Int. J. Biol. Macromol. 2020, 149, 11–20. [Google Scholar] [CrossRef]
- Tuenter, E.; Delbaere, C.; De Winne, A.; Bijttebier, S.; Custers, D.; Foubert, K.; Van Durme, J.; Messens, K.; Dewettinck, K.; Pieters, L. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Res. Int. 2020, 130, 108943. [Google Scholar] [CrossRef] [PubMed]
- Cisse, V.; Yemiscioglu, F. Cacao butter and alternatives production. Çukurova J. Agric. Food Sci. 2019, 34, 37–50. [Google Scholar]
- Bordiga, M.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Mazza, G.; Arlorio, M. Evaluation of the effect of processing on cocoa polyphenols: Antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. Int. J. Food Sci. Technol. 2015, 50, 840–848. [Google Scholar] [CrossRef]
- Kurt, A.; Toker, O.S.; Tornuk, F. Effect of xanthan and locust bean gum synergistic interaction on characteristics of biodegradable edible film. Int. J. Biol. Macromol. 2017, 102, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, D.; Biendl, M. Physicochemical and antioxidant properties of biopolymer/candelilla wax emulsion films containing hop extract-A comparative study. Food Hydrocoll. 2016, 60, 384–392. [Google Scholar] [CrossRef]
- Bartolozzo, J.; Borneo, R.; Aguirre, A. Effect of triticale-based edible coating on muffin quality maintenance during storage. J. Food Meas. Charact. 2016, 10, 88–95. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, M.; Sun, W.; Zhao, G.; Ren, J. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate. J. Agric. Food Chem. 2011, 59, 8886–8894. [Google Scholar] [CrossRef]
- Koo, C.K.W.; Chung, C.; Ogren, T.; Mutilangi, W.; McClements, D.J. Extending protein functionality: Microfluidization of heat denatured whey protein fibrils. J. Food Eng. 2018, 223, 189–196. [Google Scholar] [CrossRef]
- Gökkaya-Erdem, B.; Dıblan, S.; Kaya, S. Development and structural assessment of whey protein isolate/sunflower seed oil biocomposite film. Food Bioprod Process. 2019, 118, 270–280. [Google Scholar] [CrossRef]
- Talens, P.; Krochta, J.M. Plasticizing Effects of Beeswax and Carnauba Wax on Tensile and Water Vapor Permeability Properties of Whey Protein Films. J. Food Sci. 2005, 70, E239–E243. [Google Scholar] [CrossRef]
- Fernández, L.; De Apodaca, E.D.; Cebrián, M.; Villarán, M.C.; Maté, J.I. Effect of the unsaturation degree and concentration of fatty acids on the properties of WPI-based edible films. Eur. Food Res. Technol. 2007, 224, 415–420. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef]
- Çakir-Fuller, E. Enhanced heat stability of high protein emulsion systems provided by microparticulated whey proteins. Food Hydrocoll. 2015, 47, 41–50. [Google Scholar] [CrossRef]
- Pereira, R.N.; Souza, B.W.S.; Cerqueira, M.A.; Teixeira, J.A.; Vicente, A.A. Effects of electric fields on protein unfolding and aggregation: Influence on edible films formation. Biomacromolecules 2010, 11, 2912–2918. [Google Scholar] [CrossRef] [Green Version]
- Batista, N.N.; de Andrade, D.P.; Ramos, C.L.; Dias, D.R.; Schwan, R.F. Antioxidant capacity of cocoa beans and chocolate assessed by FTIR. Food Res. Int. 2016, 90, 313–319. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Osorio, C.; Herrera, A. Effect of microencapsulation by spray drying on cocoa aroma compounds and physicochemical characterisation of microencapsulates. Powder Technol. 2017, 318, 110–119. [Google Scholar] [CrossRef]
- Delgado-Sánchez, C.; Amaral-Labat, G.; Grishechko, L.I.; Sánchez –Sánchez, A.; Fierro, V.; Pizzi, A.; Celzard, A. Fire-resistant tannin-ethylene glycol gels working as rubber springs with tuneable elastic properties. J. Mater. Chem. A 2017, 5, 14720–14732. [Google Scholar] [CrossRef]
- Gu, L.; Wang, M.; Zhou, J. Effects of protein interactions on properties and microstructure of zein-gliadin composite films. J. Food Eng. 2013, 119, 288–298. [Google Scholar] [CrossRef]
- Feng, X.; Li, C.; Ullah, N.; Cao, J.; Lan, Y.; Ge, W.; Hackman, R.M.; Li, Z.; Chen, L. Susceptibility of whey protein isolate to oxidation and changes in physicochemical, structural, and digestibility characteristics. J. Dairy Sci. 2015, 98, 7602–7613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, V.; Rouabhia, M.; Wang, H.; Arnould, A.L.; Remondetto, G.; Subirade, M. Characterization and evaluation of whey protein-based biofilms as substrates for in vitro cell cultures. Biomaterials 2005, 26, 7471–7480. [Google Scholar] [CrossRef] [PubMed]
- Eom, H.; Chang, Y.; Lee, E.; Choi, H.D.; Han, J. Development of a starch/gum-based edible coating for rice cakes to retard retrogradation during storage. LWT 2018, 97, 516–522. [Google Scholar] [CrossRef]
Independent Variable | Response | |||||||
---|---|---|---|---|---|---|---|---|
Run | Cocoa Liquor | Homogenization Pressure | Number of Cycles | Particle Size | Polydispersity Index | ζ-Potential | TPC Retention | DPPH• Inhibition |
(x1) | (x2) | (x3) | (y1) | (y2) | (y3) | (y4) | (y5) | |
% | PSI (Equivalent in MPa) | d nm | mV | % | % | |||
1 | 4.00 | 25,000 (172.4) | 5 | 232.00 | 0.42 | −22.30 | 98.73 | 28.38 |
2 | 5.00 | 20,000 (138.9) | 7 | 209.50 | 0.36 | −22.30 | 98.54 | 3.39 |
3 | 0.50 | 30,000 (206.8) | 3 | 210.26 | 0.38 | −21.60 | 93.05 | 5.44 |
4 | 2.25 | 25,000 (172.4) | 5 | 217.33 | 0.39 | −22.70 | 96.51 | 15.01 |
5 | 2.25 | 25,000 (172.4) | 5 | 212.13 | 0.37 | −22.90 | 95.12 | 13.50 |
6 | 0.50 | 25,000 (172.4) | 5 | 212.13 | 0.33 | −22.83 | 93.99 | 8.04 |
7 | 2.25 | 30,000 (206.8) | 5 | 213.10 | 0.40 | −22.83 | 95.36 | 12.61 |
8 | 2.25 | 25,000 (172.4) | 5 | 213.38 | 0.38 | −21.90 | 97.20 | 14.32 |
9 | 4.00 | 30,000 (206.8) | 7 | 251.43 | 0.55 | −20.03 | 78.50 | 35.12 |
10 | 4.00 | 30,000 (206.8) | 3 | 261.76 | 0.45 | −20.30 | 83.03 | 34.29 |
11 | 2.25 | 25,000 (172.4) | 5 | 219.24 | 0.39 | −23.30 | 97.45 | 14.20 |
12 | 0.50 | 20,000 (138.9) | 3 | 227.86 | 0.40 | −22.10 | 97.76 | 1.62 |
13 | 2.25 | 25,000 (172.4) | 5 | 221.33 | 0.39 | −22.76 | 96.51 | 13.83 |
14 | 2.25 | 20,000 (138.9) | 5 | 226.43 | 0.45 | −22.90 | 97.13 | 11.24 |
15 | 0.50 | 30,000 (206.8) | 7 | 206.76 | 0.36 | −22.33 | 94.19 | 5.10 |
16 | 2.25 | 25,000 (172.4) | 5 | 214.43 | 0.40 | −22.63 | 94.95 | 13.83 |
17 | 2.25 | 25,000 (172.4) | 7 | 215.96 | 0.42 | −22.10 | 90.09 | 13.90 |
18 | 4.00 | 20,000 (138.9) | 7 | 225.70 | 0.38 | −22.23 | 87.85 | 29.38 |
19 | 2.25 | 25,000 (172.4) | 3 | 213.36 | 0.42 | −23.63 | 99.64 | 12.28 |
20 | 4.00 | 20,000 (138.9) | 3 | 258.66 | 0.41 | −20.16 | 89.39 | 34.79 |
Independent Variable | Response | |||||
---|---|---|---|---|---|---|
Run | Cocoa Liquor | Plasticizer | Solubility | WVP | TS | EAB |
(x1) | (x2) | (y1) | (y2) | (y3) | (y4) | |
% | % | % | g mm h−1 m−2 Kpa−1 | MPa | % | |
1 | 1.00 | 6.00 | 35.28 | 1.67 | 0.94 | 24.00 |
2 | 1.00 | 7.00 | 35.82 | 1.65 | 1.17 | 11.71 |
3 | 2.00 | 5.00 | 21.87 | 1.57 | 2.69 | 8.06 |
4 | 2.00 | 7.00 | 33.70 | 2.72 | 1.94 | 7.43 |
5 | 0.00 | 6.00 | 34.88 | 3.97 | 1.82 | 22.76 |
6 | 1.00 | 5.00 | 34.07 | 2.80 | 1.96 | 8.74 |
7 | 1.00 | 6.00 | 32.97 | 2.46 | 0.86 | 16.16 |
8 | 2.00 | 6.00 | 20.99 | 1.27 | 1.10 | 11.54 |
9 | 1.00 | 6.00 | 36.13 | 1.60 | 1.13 | 25.53 |
10 | 1.00 | 6.00 | 34.15 | 2.08 | 0.93 | 20.17 |
11 | 0.00 | 5.00 | 38.94 | 3.21 | 3.71 | 27.23 |
12 | 1.00 | 6.00 | 33.39 | 1.49 | 0.97 | 17.02 |
13 | 0.00 | 7.00 | 44.36 | 4.21 | 2.15 | 14.11 |
Sample | RH (%) | Weight Loss | Moisture Loss | Water Activity | Hardness | ||||
---|---|---|---|---|---|---|---|---|---|
r2 | k (g/100 g)/day | r2 | k (g/100 g)/day | r2 | k aw/day | r2 | k N/day | ||
Control | 80 | 0.9106 | −1.86 ± 0.08 a | 0.9632 | −0.72 ± 0.01 a | 0.8834 | −0.002 ± 0.000 a | 0.9945 | 0.27 ± 0.04 a |
Coating WPC | 80 | 0.9585 | −1.66 ± 0.09 a | 0.8068 | −0.56 ± 0.03 b | 0.9248 | −0.002 ± 0.000 a | 0.9441 | 0.29 ± 0.02 a |
Coating WPC/CL | 80 | 0.9905 | −0.86 ± 0.01 b | 0.8255 | −0.60 ± 0.02 b | 0.9343 | −0.002 ± 0.000 a | 0.8932 | 0.28 ± 0.04 a |
Control | 50 | 0.977 | −5.98 ± 0.19 a | 0.9994 | −14.01 ± 0.11 a | 0.9291 | −0.060 ± 0.00 a | 0.9457 | 2.00 ± 0.42 a |
Coating WPC | 50 | 0.9757 | −6.01 ± 0.10 a | 0.9919 | −12.66 ± 0.44 b | 0.8913 | −0.054 ± 0.00 b | 0.8683 | 1.75 ± 0.24 a |
Coating WPC/CL | 50 | 0.9924 | −5.84 ± 0.22 a | 0.9957 | −12.63 ± 0.17 b | 0.901 | −0.050 ± 0.00 c | 0.9171 | 1.58 ± 0.16 a |
Control | 20 | 0.9139 | −9.30 ± 0.70 a | 0.9525 | −21.51 ± 0.29 a | 0.9961 | −0.095 ± 0.00 a | 0.8638 | 15.35 ± 1.09 a |
Coating WPC | 20 | 0.9396 | −8.69 ± 0.48 a | 0.9871 | −20.00 ± 0.19 b | 0.9652 | −0.088 ± 0.00 b | 0.8529 | 11.40 ± 0.53 b |
Coating WPC/CL | 20 | 0.9832 | −7.42 ± 0.44 b | 0.994 | −16.83 ± 0.52 c | 0.9235 | −0.080 ± 0.00 c | 0.8075 | 8.87 ± 1.45 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calva-Estrada, S.d.J.; Jimenez-Fernandez, M.; Vallejo-Cardona, A.A.; Castillo-Herrera, G.A.; Lugo-Cervantes, E.d.C. Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins. Foods 2021, 10, 2672. https://doi.org/10.3390/foods10112672
Calva-Estrada SdJ, Jimenez-Fernandez M, Vallejo-Cardona AA, Castillo-Herrera GA, Lugo-Cervantes EdC. Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins. Foods. 2021; 10(11):2672. https://doi.org/10.3390/foods10112672
Chicago/Turabian StyleCalva-Estrada, Sergio de Jesús, Maribel Jimenez-Fernandez, Alba Adriana Vallejo-Cardona, Gustavo Adolfo Castillo-Herrera, and Eugenia del Carmen Lugo-Cervantes. 2021. "Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins" Foods 10, no. 11: 2672. https://doi.org/10.3390/foods10112672
APA StyleCalva-Estrada, S. d. J., Jimenez-Fernandez, M., Vallejo-Cardona, A. A., Castillo-Herrera, G. A., & Lugo-Cervantes, E. d. C. (2021). Cocoa Nanoparticles to Improve the Physicochemical and Functional Properties of Whey Protein-Based Films to Extend the Shelf Life of Muffins. Foods, 10(11), 2672. https://doi.org/10.3390/foods10112672