Improving the Quality of Frozen Fillets of Semi-Dried Gourami Fish (Trichogaster pectoralis) by Using Sorbitol and Citric Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Moisture, Protein, and Lipid Content of Frozen Fish Fillets
2.4. The pH of Frozen Fish Fillets
2.5. Drip Loss, Cooking Loss, and Cooking Yield of Frozen Fish Fillets
2.6. Thiobarbituric Acid Reactive Substances (TBARS) of Frozen Fish Fillets
2.7. Color Measurement of Frozen Fish Fillets
2.8. Texture Profile Analysis (TPA) of Frozen Fish Fillets
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Sorbitol and Citric Acid on Moisture, Protein, and Lipid Content of Frozen Fish Fillets
3.2. Effect of Sorbitol and Citric Acid on Drip Loss, Cooking Loss, and Cooking Yield of Frozen Fish Fillet
3.3. Effect of Sorbitol and Citric Acid on pH of Frozen Fish Fillet
3.4. Lipid Oxidation in Frozen Fish Fillet
3.5. Effect of Sorbitol and Citric Acid on Color of Frozen Fish Fillets
3.6. Effect of Sorbitol and Citric Acid Solutions on Texture Properties of Frozen Fish Fillets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minh, N.P.; Mai, P.X.; Van Linh, N.T. Physical aspects influencing to the production of dry-salted snakeskin gourami (Trichogaster Pectoralis). Orient. J. Chem. 2019, 35, 773–777. [Google Scholar] [CrossRef]
- Chantarasuwan, C.; Benjakul, S.; Visessanguan, W. Effects of sodium carbonate and sodium bicarbonate on yield and characteristics of Pacific white shrimp (Litopenaeus vannamei). Food Sci. Technol. Int. 2011, 17, 403–414. [Google Scholar] [CrossRef]
- Long, N.B.S.; Gál, R.; Buňka, F. Use of phosphates in meat products. Afr. J. Biotechnol. 2011, 10, 19874–19882. [Google Scholar]
- Wangtueai, S.; Vichasilp, C. Optimization of phosphate and salt application to physical and sensory properties of frozen Nile tilapia fillets. Int. Food Res. J. 2015, 22, 2002–2009. [Google Scholar]
- Vichasilp, C.; Wangtueai, S. Optimisation of soaking conditions to improve the quality of frozen fillets of Bocourti’s catfish (Pangasius bocourti Sauvage) using response surface methodology (RSM). Pertanika J. Trop. Agric. Sci. 2018, 41, 139–150. [Google Scholar]
- Mulot, V.; Benkhelifa, H.; Pathier, D.; Ndoye, F.-T.; Flick, D. Measurement of food dehydration during freezing in mechanical and cryogenic freezing conditions. Int. J. Refrig. 2019, 103, 329–338. [Google Scholar] [CrossRef]
- Yang, F.; Jing, D.; Yu, D.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage. Food Chem. 2019, 278, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ertbjerg, P. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019, 299, 125107. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Jing, D.; Diao, Y.; Yu, D.; Gao, P.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P.; Zhan, X. Effect of immersion freezing with edible solution on freezing efficiency and physical properties of obscure pufferfish (Takifugu Obscurus) fillets. LWT 2020, 118, 108762. [Google Scholar] [CrossRef]
- Nikoo, M.; Benjakul, S.; Rahmanifarah, K. Hydrolysates from marine sources as cryoprotective substances in seafoods and seafood products. Trends Food Sci. Technol. 2016, 57 Pt A, 40–51. [Google Scholar] [CrossRef]
- Medina, J.R.; Garrote, R.L. The effect of two cryoprotectant mixtures on frozen surubí surimi. Braz. J. Chem. Eng. 2002, 19, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Huda, N.; Leng, O.H.; Nopianti, R. Cryoprotective Effects of Different Levels of Polydextrose in Threadfin Bream Surimi during Frozen Storage. J. Fish. Aquat. Sci. 2011, 6, 404–416. [Google Scholar] [CrossRef]
- Jenkelunas, P.J.; Li-Chan, E.C.Y. Production and assessment of Pacific hake (Merluccius productus) hydrolysates as cryoprotectants for frozen fish mince. Food Chem. 2018, 239, 535–543. [Google Scholar] [CrossRef]
- Chakroborty, T.; Chakraborty, S.C. Effect of Storage Temperature on the Quality and Microbial Content of Salt-Smoke-Dried shoal (Ophiocephalus striatus). J. Fish. Livestig. Prod. 2017, 5, 217. [Google Scholar]
- Tao, L.; Tian, L.; Zhang, X.; Huang, X.; Long, H.; Chang, F.; Li, T.; Li, S. Effects of γ-polyglutamic acid on the physicochemical properties and microstructure of grass carp (Ctenopharyngodon idellus) surimi during frozen storage. LWT 2020, 134, 109960. [Google Scholar] [CrossRef]
- Antony, K.P.; Govindan, T.K. Packaging and Storage Studies of dried Lizard Fish. Fish. Technol. 1983, 20, 34–41. [Google Scholar]
- Aubourg, S.P.; Pérez-Alonso, F.; Gallardo, J.M. Studies on rancidity inhibition in frozen horse mackerel (Trachurus trachurus) by citric and ascorbic acids. Eur. J. Lipid Sci. Technol. 2001, 106, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Hernández, M.D.; López, M.B.; Álvarez, A.; Ferrandini, E.; García, B.G.; Garrido, M.D. Sensory, physical, chemical and microbiological changes in aquacultured meagre (Argyrosomus regius) fillets during ice storage. Food Chem. 2009, 114, 237–245. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis International, 17th ed.; Association of Official Agricultural Chemistry: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Wangtueai, S.; Vichasilp, C.; Pankasemsuk, T.; Theanjumpol, P.; Phimolsiripol, Y. Near infrared spectroscopy measurement and kinetic modeling for physicochemical properties of tabtim fish (Hybrid. Tilapia Oreochromis sp.) fillets during chilling storage. J. Microbiol. Biotechnol. Food Sci. 2021, 11, e1412. [Google Scholar] [CrossRef]
- Wangteui, S.; Maneerote, J.; Seesuriyachan, P.; Phimonsiripol, Y.; Laokuldilok, T.; Surawang, S.; Regenstein, J.M. Combination effects of phosphate and NaCl on physiochemical, microbiological, and sensory properties of frozen Nile Tilapia (Oreochromis niloticus) fillets during frozen storage. Walailak J. Sci. Technol. 2020, 17, 313–323. [Google Scholar] [CrossRef]
- Wachirasiri, K.; Wanlapa, S.; Uttapap, D.; Puttanlek, C.; Rungsardthong, V. Changing in processing yield and physical properties of frozen white shrimp (Penaeus vannamei) treated with lysine and sodium bicarbonate. Int. J. Food Sci. 2017, 52, 763–771. [Google Scholar] [CrossRef]
- Klinmalai, P.; Hagiwara, T.; Sakiyama, T.; Ratanasumawong, S. Chitosan effects on physical properties, texture, and microstructure of flat rice noodles. LWT 2017, 76, 117–123. [Google Scholar] [CrossRef]
- Wang, Y.; Miyazaki, R.; Saitou, S.; Hirasaka, K.; Takeshita, S.; Tachibana, K.; Taniyama, S. The effect of ice crystals formations on the flesh quality of frozen horse mackerel (Trachurus japonicus). J. Texture Stud. 2018, 49, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Walayat, N.; Xiong, H.; Xiong, Z.; Moreno, H.M.; Nawaz, A.; Niaz, N.; Randhawa, M.A. Role of Cryoprotectants in Surimi and Factors Affecting Surimi Gel Properties: A Review. Food Rev. Int. 2020, 1–20. [Google Scholar] [CrossRef]
- Nopianti, R.; Huda, N.; Fazilah, A.; Ismail, N.; Easa, A. Effect of different types of low sweetness sugar on physicochemical properties of threadfin bream surimi (Nemipterus spp.) during frozen storage. Int. Food Res. J. 2012, 19, 1011–1021. [Google Scholar]
- León, J.G.; López, J.H.; Lozano, J.M.; Muñoz-Ramírez, A.P. Cryoprotective effect of sorbitol on the muscle microstructure of Yamú (Brycon amazonicus) during storage at 2 and −18 °C. Rev. Fac. Nac. Agron. Medellín 2019, 72, 8763–8774. [Google Scholar] [CrossRef]
- Cho, W.I.; Song, S.H. Quality improvement of retorted frozen seafood by adding sorbitol. Korean J. Food Sci. Technol. 2017, 49, 85–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yao, H.; Qi, H.; Ying, X.G. Cryoprotective characteristics of different sugar alcohols on peeled Pacific white shrimp (Litopenaeus vannamei) during frozen storage and their possible mechanisms of action. Int. J. Food Prop. 2020, 23, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Soares, N.M.F.; Oliveira, M.S.G.; Vicente, A.A. Effects of glazing and chitosan-based coating application on frozen salmon preservation during six-month storage in industrial freezing chambers. Food Sci. Technol. 2015, 61, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Khalafalla, F.A.; Ali, F.H.; Hassan, A.R.H. Quality improvement and shelf-life extension of refrigerated Nile tilapia (Oreochromis niloticus) fillets using natural herbs. Beni-Seuf Univ. J. Appl. Sci. 2015, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Jasour, M.S. Improvement of lipid stability of refrigerated rainbow trout (Oncorhynchus mykiss) fillets by pre-storage α-tocopherol acetate dipping treatment. In Veterinary Research Forum; Faculty of Veterinary Medicine, Urmia University: Urmia, Iran, 2012; Volume 3, pp. 269–273. [Google Scholar]
- Paulinus, O.N.; Tinuade, O.O. A comparative study of malondialdehyde contents of some meat and fish samples processed by different methods. J. Pharm. Innov. 2013, 2, 26–29. [Google Scholar]
- Duarte, A.M.; Silva, F.; Pinto, F.R.; Barroso, S.; Gil, M.M. Quality Assessment of Chilled and Frozen Fish—Mini Review. Foods 2020, 9, 1739. [Google Scholar] [CrossRef] [PubMed]
- Hematyar, N.; Masilko, J.; Mraz, J.; Sampels, S. Nutritional quality, oxidation, and sensory parameters in fillets of common carp (Cyprinus carpio L.) influenced by frozen storage (−20 °C). J. Food Process. Preserv. 2018, 42, e13589. [Google Scholar] [CrossRef]
- Özyurt, G.; Gökdoğan, S.; Şimşek, A.; Yuvka, I.; Ergüven, M.; Boga, E.K. Fatty acid composition and biogenic amines in acidified and fermented fish silage: A comparison study. Arch. Anim. Nutr. 2015, 70, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, W.; Yuan, C.; Zhang, L.; Liu, J.; Liu, J. Nutritional and digestive properties of protein isolates extracted from the muscle of the common carp using pH-shift processing. J. Food Process. Preserv. 2017, 41, e12847. [Google Scholar] [CrossRef] [Green Version]
Parameter | Treatment | Storage Time | ||
---|---|---|---|---|
Day 0 | Day 20 | Day 40 | ||
Lipid (%) | Distilled water | 1.44 ± 0.19 Cc | 17.70 ± 1.15 Bd | 30.06 ± 1.73 Ac |
2.5% Citric acid | 4.89 ± 0.08 Ca | 32.97 ± 1.11 Ba | 48.44 ± 3.38 Aa | |
5% Citric acid | 3.62 ± 0.40 Cb | 34.74 ± 1.96 Ba | 50.00 ± 2.82 Aa | |
2.5% Sorbitol | 1.88 ± 0.12 Cc | 24.42 ± 2.00 Bc | 35.80 ± 4.24 Abc | |
5% Sorbitol | 1.88 ± 0.23 Cc | 30.01 ± 1.05 Bb | 42.99 ± 6.41 Aab | |
Protein (%) | Distilled water | 12.60 ± 0.09 Bb | 15.93 ± 1.53 Aa | 17.45 ± 0.90 Abc |
2.5% Citric acid | 15.47 ± 1.17 Ba | 16.42 ± 0.63 Ba | 18.98 ± 0.88 Aab | |
5% Citric acid | 15.89 ± 0.99 Ba | 13.03 ± 0.12 Cb | 20.38 ± 0.48 Aa | |
2.5% Sorbitol | 16.03 ± 0.23 Aa | 14.90 ± 1.32 Aab | 17.38 ± 2.04 Abc | |
5% Sorbitol | 15.95 ± 0.38 Aa | 16.77 ± 1.17 Aa | 16.19 ± 0.95 Ac | |
Moisture content (%) | Distilled water | 73..20 ± 1.17 Aa | 61.65 ± 0.52 Ad | 54.98 ± 3.22 Bb |
2.5% Citric acid | 70.85 ± 0.04 Ab | 68.86 ± 0.80 Ac | 63.19 ± 2.16 Ba | |
5% Citric acid | 67.18 ± 0.62 Bc | 72.65 ± 1.62 Aab | 46.94 ± 1.90 Cc | |
2.5% Sorbitol | 73.81 ± 1.36 Aa | 74.23 ± 1.17 Aa | 63.25 ± 2.95 Ba | |
5% Sorbitol | 73.09 ± 1.24 Aa | 71.07 ± 1.17 Abc | 66.02 ± 0.94 Ba |
Treatment | Storage Time | |||||||
---|---|---|---|---|---|---|---|---|
Day 0 | Day 20 | Day 40 | ||||||
Cooking Loss (%) | Cooking Yield (%) | Drip Loss (%) | Cooking Loss (%) | Cooking Yield (%) | Drip Loss (%) | Cooking Loss (%) | Cooking Yield (%) | |
Distilled water | 6.73 ± 2.22 Bd | 93.27 ± 2.22 Aa | 0.95 ± 0.55 Ab | 8.33 ± 0.66 Bc | 89.55 ± 2.02 Aa | 3.09 ± 1.11 Ab | 12.66 ± 2.74 Abc | 87.34 ± 2.74 Bbc |
2.5% Citric acid | 31.64 ± 3.90 Ab | 68.36 ± 3.90 Bb | 6.12 ± 1.88 Aa | 29.23 ± 1.60 Ab | 70.77 ± 1.60 Bc | 7.16 ± 2.82 Aa | 14.38 ± 3.89 Bb | 85.62 ± 3.89 Ac |
5% Citric acid | 38.98 ± 2.89 Aa | 61.02 ± 2.89 Ac | 6.90 ± 1.47 Aa | 31.48 ± 0.97 Ba | 68.52 ± 0.97 Bd | 8.25 ± 1.06 Aa | 19.16 ± 4.94 Ca | 80.84 ± 4.94 Cd |
2.5% Sorbitol | 10.50 ± 1.47 Ac | 89.50 ± 1.47 Aa | 1.06 ± 0.43 Ab | 9.22 ± 2.69 Ac | 90.77 ± 2.69 Ab | 1.72 ± 0.67 Abc | 10.18 ± 3.41 Ac | 89.82 ± 3.41 Ab |
5% Sorbitol | 10.45 ± 2.02 Bc | 91.67 ± 0.66 Aa | 0.68 ± 0.25 Ab | 5.97 ± 2.26 Bd | 94.03 ± 2.26 Aa | 0.74 ± 0.27 Ac | 5.04 ± 1.06 Ad | 94.96 ± 1.06 Ba |
Treatment | Storage Time | ||
---|---|---|---|
Day 0 | Day 20 | Day 40 | |
Distilled water | 6.76 ± 0.12 Aa | 6.87 ± 0.04 Aa | 6.89 ± 0.02 Aa |
2.5% Citric acid | 4.51 ± 0.07 Bd | 5.30 ± 0.07 Ad | 4.36 ± 0.06 Cc |
5% Citric acid | 4.68 ± 0.05 Bc | 5.56 ± 0.14 Ac | 4.35 ± 0.01 Cc |
2.5% Sorbitol | 6.53 ± 0.05 Cb | 6.92 ± 0.04 Aa | 6.66 ± 0.03 Bb |
5% Sorbitol | 6.50 ± 0.03 Bb | 6.69 ± 0.09 Ab | 6.67 ± 0.04 Ab |
Treatment | Storage Time | |||
---|---|---|---|---|
0 | 20 | 40 | ||
Distilled water | L* | 45.67 ± 2.92 Bc | 49.06 ± 2.72 Ab | 49.59 ± 2.39 Ad |
a* | −3.39 ± 0.39 Ca | −5.28 ± 0.71 Aa | −4.94 ± 0.48 Ba | |
b* | 0.96 ± 0.43 Bc | 3.65 ± 1.58 Abc | 4.42 ± 1.18 Ab | |
whiteness | 45.52 ± 2.82 Bb | 48.64 ± 2.63 Ab | 49.14 ± 2.39 Ad | |
2.5% Citric acid | L* | 63.91 ± 2.61 Bb | 66.67 ± 2.51 Aa | 66.51 ± 3.86 Ab |
a* | −3.26 ± 0.59 Aa | −2.66 ± 0.58 Bd | −2.66 ± 0.60 Bc | |
b* | 4.18 ± 1.52 Bb | 8.23 ± 1.28 Aa | 7.87 ± 2.19 Aa | |
whiteness | 63.48 ± 2.50 Ba | 65.53 ± 2.42 Ab | 65.50 ± 3.87 Ab | |
5% Citric acid | L* | 65.87 ± 3.28 Ba | 66.37 ± 2.41 Ba | 68.89 ± 2.24 Aa |
a* | −2.54 ± 1.18 Bb | −3.30 ± 0.62 Ac | −2.13 ± 0.75 Bd | |
b* | 6.58 ± 2.18 Aa | 3.05 ± 1.88 Bc | 7.59 ± 1.92 Aa | |
whiteness | 64.6 ± 3.38 Ba | 66.05 ± 2.26 Ba | 67.84 ± 2.10 Aa | |
2.5% Sorbitol | L* | 45.10 ± 2.97 Ccd | 48.23 ± 2.89 Bb | 51.51 ± 2.53 Ac |
a* | −3.22 ± 0.81 Ca | −4.16 ± 0.68 Bb | −4.95 ± 0.46 Aa | |
b* | 1.21 ± 0.87 Bc | 4.38 ± 1.84 Ab | 3.59 ± 1.55 Ab | |
whiteness | 50.63 ± 2.99 Cbc | 52.82 ± 2.76 Bb | 55.19 ± 2.47 Ac | |
5% Sorbitol | L* | 43.62 ± 2.97 Cd | 45.38 ± 3.01 Bc | 49.22 ± 2.03 Ad |
a* | −2.64 ± 0.96 Bb | −4.40 ± 0.66 Ab | −4.33 ± 0.53 Ab | |
b* | 1.48 ± 0.90 Bc | 3.48 ± 0.80 Ac | 3.53 ± 1.40 Ab | |
whiteness | 43.56 ± 2.86 Cc | 45.08 ± 2.91 Bc | 48.89 ± 1.96 Ad |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinmalai, P.; Fong-in, S.; Phongthai, S.; Klunklin, W. Improving the Quality of Frozen Fillets of Semi-Dried Gourami Fish (Trichogaster pectoralis) by Using Sorbitol and Citric Acid. Foods 2021, 10, 2763. https://doi.org/10.3390/foods10112763
Klinmalai P, Fong-in S, Phongthai S, Klunklin W. Improving the Quality of Frozen Fillets of Semi-Dried Gourami Fish (Trichogaster pectoralis) by Using Sorbitol and Citric Acid. Foods. 2021; 10(11):2763. https://doi.org/10.3390/foods10112763
Chicago/Turabian StyleKlinmalai, Phatthranit, Suwalee Fong-in, Suphat Phongthai, and Warinporn Klunklin. 2021. "Improving the Quality of Frozen Fillets of Semi-Dried Gourami Fish (Trichogaster pectoralis) by Using Sorbitol and Citric Acid" Foods 10, no. 11: 2763. https://doi.org/10.3390/foods10112763
APA StyleKlinmalai, P., Fong-in, S., Phongthai, S., & Klunklin, W. (2021). Improving the Quality of Frozen Fillets of Semi-Dried Gourami Fish (Trichogaster pectoralis) by Using Sorbitol and Citric Acid. Foods, 10(11), 2763. https://doi.org/10.3390/foods10112763