The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Reagents and Chemicals
2.3. Cabbage Thermal Processing
2.3.1. Steaming
2.3.2. Microwaving
2.3.3. Stir-Frying
2.4. Myrosinase Enzyme Extraction and Assay and Protein Content Analysis
2.5. Glucosinolate and Glucosinolate Hydrolysis Products Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Domestic Cooking on Residual Myrosinase Enzyme Activity (Relative Activity) across Cabbage Morphotypes and Accessions
3.2. Comparison of the Myrosinase Activity of Raw versus Cooked Cabbage Morphotypes and Accessions
3.3. Protein Content and Specific Activity of Raw and Cooked Cabbages
3.4. Effect of Domestic Cooking on GSL Profile and Concentration of Cabbage Accessions
3.5. Effect of Domestic Cooking on GHP Profile and Concentration in Cabbage Accessions
3.6. Principal Component Analysis (PCA) and Multifactor Analysis (MFA) of GSLs and GHPs in Raw and Cooked Cabbage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herr, I.; Buchler, M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 2010, 36, 377–383. [Google Scholar] [CrossRef]
- Mithen, R.F.; Dekker, M.; Verkerk, R.; Rabot, S.; Johnson, I.T. The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J. Sci. Food Agric. 2000, 80, 967–984. [Google Scholar] [CrossRef]
- Matusheski, N.V.; Swarup, R.; Juvik, J.A.; Mithen, R.; Bennett, M.; Jeffery, E.H. Epithiospecifier protein from broccoli (Brassica oleracea L. ssp. italica) inhibits formation of the anticancer agent sulforaphane. J. Agric. Food Chem. 2006, 54, 2069–2076. [Google Scholar] [CrossRef]
- Qazi, A.; Pal, J.; Maitah, M.I.; Fulciniti, M.; Pelluru, D.; Nanjappa, P.; Lee, S.; Batchu, R.B.; Prasad, M.; Bryant, C.S.; et al. Anticancer Activity of a Broccoli Derivative, Sulforaphane, in Barrett Adenocarcinoma: Potential Use in Chemoprevention and as Adjuvant in Chemotherapy. Transl. Oncol. 2010, 3, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Karagöz, G.E.; Seo, Y.H.; Zhang, T.; Jiang, Y.; Yu, Y.; Duarte, A.M.S.; Schwartz, S.J.; Boelens, R.; Carroll, K.; et al. Sulforaphane inhibits pancreatic cancer through disrupting Hsp90–p50Cdc37 complex and direct interactions with amino acids residues of Hsp90. J. Nutr. Biochem. 2012, 23, 1617–1626. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Beltran, C.E.; Calderon-Oliver, M.; Pedraza-Chaverri, J.; Chirino, Y.I. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp. Toxicol. Pathol. 2012, 64, 503–508. [Google Scholar] [CrossRef]
- Tarozzi, A.; Angeloni, C.; Malaguti, M.; Morroni, F.; Hrelia, S.; Hrelia, P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxidative Med. Cell. Longev. 2013, 2013, 1–10. [Google Scholar] [CrossRef]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001, 56, 5–51. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew. Chem. Int. Ed. 2014, 53, 11430–11450. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Tang, L.; Li, Y.; Geng, F.; Paonessa, J.D.; Chen, S.C.; Wong, M.K.K.; Zhang, Y. Inhibition of bladder cancer development by allyl isothiocyanate. Carcinogenesis 2010, 31, 281–286. [Google Scholar] [CrossRef]
- Geng, F.; Tang, L.; Li, Y.; Yang, L.; Choi, K.-S.; Kazim, A.L.; Zhang, Y. Allyl isothiocyanate arrests cancer cells in mitosis, and mitotic arrest in turn leads to apoptosis via Bcl-2 protein phosphorylation. J. Biol. Chem. 2011, 286, 32259–32267. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.-C.; Huang, W.-W.; Huang, W.-C.; Lu, C.-C.; Chiang, J.-H.; Peng, S.-F.; Chung, J.-G.; Lin, Y.-H.; Hsu, Y.-M.; Amagaya, S. ERK-modulated intrinsic signaling and G2/M phase arrest contribute to the induction of apoptotic death by allyl isothiocyanate in MDA-MB-468 human breast adenocarcinoma cells. Int. J. Oncol. 2012, 41, 2065–2072. [Google Scholar] [CrossRef]
- Tripathi, K.; Hussein, U.K.; Anupalli, R.; Barnett, R.; Bachaboina, L.; Scalici, J.; Rocconi, R.P.; Owen, L.B.; Piazza, G.A.; Palle, K. Allyl isothiocyanate induces replication-associated DNA damage response in NSCLC cells and sensitizes to ionizing radiation. Oncotarget 2015, 6, 5237. [Google Scholar] [CrossRef]
- Cashman, J.R.; Xiong, Y.; Lin, J.; Verhagen, H.; van Poppel, G.; van Bladeren, P.J.; Larsen-Su, S.; Williams, D.E. In vitro and in vivo inhibition of human flavin-containing monooxygenase form 3 (FMO3) in the presence of dietary indoles. Biochem. Pharmacol. 1999, 58, 1047–1055. [Google Scholar] [CrossRef]
- Bonnesen, C.; Eggleston, I.M.; Hayes, J.D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Res. 2001, 61, 6120–6130. [Google Scholar]
- Kim, D.J.; Han, B.S.; Ahn, B.; Hasegawa, R.; Shirai, T.; Ito, N.; Tsuda, H. Enhancement by indole-3-carbinol of liver and thyroid gland neoplastic development in a rat medium-term multiorgan carcinogenesis model. Carcinogenesis 1997, 18, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Baik, H.Y.; Juvik, J.; Jeffery, E.H.; Wallig, M.A.; Kushad, M.; Klein, B.P. Relating glucosinolate content and flavor of broccoli cultivars. J. Food Sci. 2003, 68, 1043–1050. [Google Scholar] [CrossRef]
- Kubec, R.; Drhová, V.; Velíšek, J. Thermal Degradation of S-Methylcysteine and Its SulfoxidesImportant Flavor Precursors of Brassica and Allium Vegetables. J. Agric. Food Chem. 1998, 46, 4334–4340. [Google Scholar] [CrossRef]
- Cox, D.N.; Melo, L.; Zabaras, D.; Delahunty, C.M. Acceptance of health-promoting Brassica vegetables: The influence of taste perception, information and attitudes. Public Health Nutr. 2012, 15, 1474–1482. [Google Scholar] [CrossRef] [Green Version]
- Conaway, C.C.; Getahun, S.M.; Liebes, L.L.; Pusateri, D.J.; Topham, D.K.W.; Botero-Omary, M.; Chung, F.-L. Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr. Cancer 2000, 38, 168–178. [Google Scholar] [CrossRef]
- Okunade, O.; Niranjan, K.; Ghawi, S.K.; Kuhnle, G.; Methven, L. Supplementation of the diet by exogenous myrosinase via mustard seeds to increase the bioavailability of sulforaphane in healthy human subjects after the consumption of cooked broccoli. Mol. Nutr. Food Res. 2018, 62, 1700980. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Huang, H.; Childs, H.; Wu, Y.; Yu, L.; Pehrsson, P.R. Glucosinolates in Brassica Vegetables: Characterization and Factors That Influence Distribution, Content, and Intake. Annu. Rev. Food Sci. Technol. 2021, 12, 485–511. [Google Scholar] [CrossRef]
- Dekker, M.; Verkerk, R.; Jongen, W.M.F. Predictive modelling of health aspects in the food production chain: A case study on glucosinolates in cabbage. Trends Food Sci. Technol. 2000, 11, 174–181. [Google Scholar] [CrossRef]
- Verkerk, R.; Dekker, M. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. Var. capitata f. rubra DC.) after various microwave treatments. J. Agric. Food Chem. 2004, 52, 7318–7323. [Google Scholar] [CrossRef]
- Rungapamestry, V.; Duncan, A.J.; Fuller, Z.; Ratcliffe, B. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations. J. Agric. Food Chem. 2006, 54, 7628–7634. [Google Scholar] [CrossRef] [PubMed]
- Ghawi, S.K.; Methven, L.; Rastall, R.A.; Niranjan, K. Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: A kinetic study. Food Chem. 2012, 131, 1240–1247. [Google Scholar] [CrossRef]
- Yen, G.-C.; Wei, Q.-K. Myrosinase activity and total glucosinolate content of cruciferous vegetables, and some properties of cabbage myrosinase in Taiwan. J. Sci. Food Agric. 1993, 61, 471–475. [Google Scholar] [CrossRef]
- Oerlemans, K.; Barrett, D.M.; Suades, C.B.; Verkerk, R.; Dekker, M. Thermal degradation of glucosinolates in red cabbage. Food Chem. 2006, 95, 19–29. [Google Scholar] [CrossRef]
- Song, L.; Thornalley, P.J. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables. Food Chem. Toxicol. 2007, 45, 216–224. [Google Scholar] [CrossRef]
- Xu, F.; Zheng, Y.; Yang, Z.; Cao, S.; Shao, X.; Wang, H. Domestic cooking methods affect the nutritional quality of red cabbage. Food Chem. 2014, 161, 162–167. [Google Scholar] [CrossRef]
- Vallejo, F.; Tomás-Barberán, F.; García-Viguera, C. Glucosinolates and vitamin C content in edible parts of broccoli florets after domestic cooking. Eur. Food Res. Technol. 2002, 215, 310–316. [Google Scholar] [CrossRef]
- Ghawi, S.K.; Methven, L.; Niranjan, K. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chem. 2013, 138, 1734–1741. [Google Scholar] [CrossRef]
- Baenas, N.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P.; Moreno, D. Influence of cooking methods on glucosinolates and isothiocyanates content in novel cruciferous foods. Foods 2019, 8, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanschen, F.S.; Kühn, C.; Nickel, M.; Rohn, S.; Dekker, M. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products. Food Chem. 2018, 263, 240–250. [Google Scholar] [CrossRef]
- Tabart, J.; Pincemail, J.; Kevers, C.; Defraigne, J.-O.; Dommes, J. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. Eur. Food Res. Technol. 2018, 244, 2085–2094. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Kaufmann, M.; Kupke, F.; Hackl, T.; Kroh, L.W.; Rohn, S.; Schreiner, M. Brassica vegetables as sources of epithionitriles: Novel secondary products formed during cooking. Food Chem. 2018, 245, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Hanschen, F.S. Domestic boiling and salad preparation habits affect glucosinolate degradation in red cabbage (Brassica oleracea var. capitata f. rubra). Food Chem. 2020, 321, 126694. [Google Scholar] [CrossRef]
- Oloyede, O.O.; Wagstaff, C.; Methven, L. Influence of cabbage (Brassica oleracea) accession and growing conditions on myrosinase activity, glucosinolates and their hydrolysis products. Foods 2021, accepted. [Google Scholar]
- Rungapamestry, V.; Duncan, A.J.; Fuller, Z.; Ratcliffe, B. Influence of blanching and freezing broccoli (Brassica oleracea var. italica) prior to storage and cooking on glucosinolate concentrations and myrosinase activity. Eur. Food Res. Technol. 2008, 227, 37. [Google Scholar] [CrossRef]
- Gatfield, I.L.; Sand, T. A coupled enzymatic procedure for the determination of myrosinase activity. Lebensm.-Wiss. Technol. 1983, 16, 73–75. [Google Scholar]
- Wilkinson, A.P.; Rhodes, M.J.C.; Fenwick, R.G. Myrosinase Activity of Cruciferous Vegetables. J. Sci. Food Agric. 1984, 35, 543–552. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bell, L.; Oruna-Concha, M.J.; Wagstaff, C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015, 172, 852–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, L.; Yahya, H.N.; Oloyede, O.O.; Methven, L.; Wagstaff, C. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing. Food Chem. 2017, 221, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Rochfort, S.J.; Trenerry, V.C.; Imsic, M.; Panozzo, J.; Jones, R. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochemistry 2008, 69, 1671–1679. [Google Scholar] [CrossRef]
- Lelario, F.; Bianco, G.; Bufo, S.A.; Cataldi, T.R.I. Establishing the occurrence of major and minor glucosinolates in Brassicaceae by LC–ESI-hybrid linear ion-trap and Fourier-transform ion cyclotron resonance mass spectrometry. Phytochemistry 2012, 73, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.N.; Mellon, F.A.; Kroon, P.A. Screening crucifer seeds as sources of specific intact glucosinolates using ion-pair high-performance liquid chromatography negative ion electrospray mass spectrometry. J. Agric. Food Chem. 2004, 52, 428–438. [Google Scholar] [CrossRef]
- Al-Gendy, A.A.; Lockwood, G.B. GC-MS analysis of volatile hydrolysis products from glucosinolates in Farsetia aegyptia var. ovalis. Flavour Fragr. J. 2003, 18, 148–152. [Google Scholar] [CrossRef]
- Arora, R.; Sharma, D.; Kumar, R.; Singh, B.; Vig, A.P.; Arora, S. Evaluating extraction conditions of glucosinolate hydrolytic products from seeds of Eruca sativa (Mill.) Thell. using GC-MS. J. Food Sci. 2014, 79, C1964–C1969. [Google Scholar] [CrossRef]
- Hong, E.; Kim, G.-H. GC-MS analysis of the extracts from Korean cabbage (Brassica campestris L. ssp. pekinensis) and its seed. Prev. Nutr. Food Sci. 2013, 18, 218–221. [Google Scholar] [CrossRef] [Green Version]
- Spencer, G.F.; Daxenbichler, M.E. Gas chromatography-mass spectrometry of nitriles, isothiocyanates and oxazolidinethiones derived from cruciferous glucosinolates. J. Sci. Food Agric. 1980, 31, 359–367. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Klopsch, R.; Oliviero, T.; Schreiner, M.; Verkerk, R.; Dekker, M. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci. Rep. 2017, 7, 40807. [Google Scholar] [CrossRef]
- de Pinho, P.G.; Valentão, P.; Gonçalves, R.F.; Sousa, C.; Andrade, P.B. Volatile composition of Brassica oleracea L. var. costata DC leaves using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 2292–2300. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, S.F.; Palmquist, D.E.; Duval, S.M.; Berhow, M.A. Herbicidal activity of glucosinolate-containing seedmeals. Weed Sci. 2017, 54, 743–748. [Google Scholar] [CrossRef]
- Matusheski, N.V.; Juvik, J.A.; Jeffery, E.H. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochemistry 2004, 65, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Adler-Nissen, J. The continuous work—A new unit operation in industiral food processes. J. Food Process Eng. 2002, 25, 435–453. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s Swiss Army Knife: The Diverse Protective Roles of Anthocyanins in Leaves. J. Biomed. Biotechnol. 2004, 2004, 314–320. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Arasu, M.V.; Lee, M.-K.; Chun, J.-H.; Seo, J.M.; Al-Dhabi, N.A.; Kim, S.-J. Analysis and metabolite profiling of glucosinolates, anthocyanins and free amino acids in inbred lines of green and red cabbage (Brassica oleracea L.). LWT-Food Sci. Technol. 2014, 58, 203–213. [Google Scholar] [CrossRef]
- Bones, A.M.; Rossiter, J.T. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant. 1996, 97, 194–208. [Google Scholar] [CrossRef]
- Rask, L.; Andréasson, E.; Ekbom, B.; Eriksson, S.; Pontoppidan, B.; Meijer, J.; Andreasson, E. Myrosinase: Gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 2000, 42, 93–113. [Google Scholar] [CrossRef]
- Charron, C.S.; Sams, C.E. Glucosinolate content and myrosinase activity in rapid-cycling Brassica oleracea grown in a controlled environment. J. Am. Soc. Hortic. Sci. 2004, 129, 321–330. [Google Scholar] [CrossRef] [Green Version]
- Penas, E.; Frias, J.; Martinez-Villaluenga, C.; Vidal-Valverde, C. Bioactive compounds, myrosinase activity, and antioxidant capacity of white cabbages grown in different locations of Spain. J. Agric. Food Chem. 2011, 59, 3772–3779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, M.; Hennig, K.; Verkerk, R. Differences in thermal stability of glucosinolates in five Brassica vegetables. Czech J. Food Sci. 2009, 27, S85–S88. [Google Scholar] [CrossRef] [Green Version]
- Rosa, E.A.S.; Heaney, R.K. The effect of cooking and processing on the glucosinolate content: Studies on four varieties of portuguese cabbage and hybrid white cabbage. J. Sci. Food Agric. 1993, 62, 259–265. [Google Scholar] [CrossRef]
- Ciska, E.; Kozłowska, H. The effect of cooking on the glucosinolates content in white cabbage. Eur. Food Res. Technol. 2001, 212, 582–587. [Google Scholar] [CrossRef]
- Jones, R.B.; Faragher, J.D.; Winkler, S. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol. Technol. 2006, 41, 1–8. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Ciska, E.; Pawlak-Lemańska, K.; Chmielewski, J.; Borkowski, T.; Tyrakowska, B. Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Addit. Contam. 2006, 23, 1088–1098. [Google Scholar] [CrossRef]
- Francisco, M.; Velasco, P.; Moreno, D.A.; García-Viguera, C.; Cartea, M.E. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Res. Int. 2010, 43, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Wathelet, J.-P.; Mabon, N.; Foucart, M.; Marlier, M. Influence of blanching on the quality of Brussels sprouts (Brassica oleracea L cv gemmifera). Sci. Aliment. 1996, 16, 393–402. [Google Scholar]
- Moreno, D.A.; López-Berenguer, C.; García-Viguera, C. Effects of Stir-Fry Cooking with Different Edible Oils on the Phytochemical Composition of Broccoli. J. Food Sci. 2007, 72, S064–S068. [Google Scholar] [CrossRef]
- Nugrahedi, P.Y.; Oliviero, T.; Heising, J.K.; Dekker, M.; Verkerk, R. Stir-frying of chinese cabbage and pakchoi retains health-promoting glucosinolates. Plant Foods Hum. Nutr. 2017, 72, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Shen, Y.; Wu, X.; Zhu, Y.; Mupunga, J.; Bao, W.; Huang, J.; Mao, J.; Liu, S.; You, Y. Hydrolysis before stir-frying increases the isothiocyanate content of broccoli. J. Agric. Food Chem. 2018, 66, 1509–1515. [Google Scholar] [CrossRef]
- Yuan, G.-F.; Sun, B.; Yuan, J.; Wang, Q.-M. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palermo, M.; Pellegrini, N.; Fogliano, V. The effect of cooking on the phytochemical content of vegetables. J. Sci. Food Agric. 2014, 94, 1057–1070. [Google Scholar] [CrossRef]
- Hanschen, F.S.; Rohn, S.; Mewis, I.; Schreiner, M.; Kroh, L.W. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem. 2012, 130, 1–8. [Google Scholar] [CrossRef]
- Jensen, S.K.; Liu, Y.-G.; Eggum, B.O. The effect of heat treatment on glucosinolates and nutritional value of rapeseed meal in rats. Anim. Feed Sci. Technol. 1995, 53, 17–28. [Google Scholar] [CrossRef]
- Kushad, M.M.; Brown, A.F.; Kurilich, A.C.; Juvik, J.A.; Klein, B.P.; Wallig, M.A.; Jeffery, E.H. Variation of glucosinolates in vegetable crops of Brassica oleracea. J. Agric. Food Chem. 1999, 47, 1541–1548. [Google Scholar] [CrossRef] [PubMed]
- Cartea, M.E.; Velasco, P.; Obregon, S.; Padilla, G.; de Haro, A. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain. Phytochemistry 2008, 69, 403–410. [Google Scholar] [CrossRef]
- Choi, S.-H.; Park, S.; Lim, Y.P.; Kim, S.-J.; Park, J.-T.; An, G. Metabolite profiles of glucosinolates in cabbage varieties (Brassica oleracea var. capitata) by season, color, and tissue position. Hortic. Environ. Biotechnol. 2014, 55, 237–247. [Google Scholar] [CrossRef]
- Park, S.; Valan Arasu, M.; Lee, M.-K.; Chun, J.-H.; Seo, J.M.; Lee, S.-W.; Al-Dhabi, N.A.; Kim, S.-J. Quantification of glucosinolates, anthocyanins, free amino acids, and vitamin C in inbred lines of cabbage (Brassica oleracea L.). Food Chem. 2014, 145, 77–85. [Google Scholar] [CrossRef]
- Jasper, J.; Wagstaff, C.; Bell, L. Growth temperature influences postharvest glucosinolate concentrations and hydrolysis product formation in first and second cuts of rocket salad. Postharvest Biol. Technol. 2020, 163, 111157. [Google Scholar] [CrossRef]
- Bell, L.; Kitsopanou, E.; Oloyede, O.O.; Lignou, S. Important odorants of four Brassicaceae species, and discrepancies between glucosinolate profiles and observed hydrolysis products. Foods 2021, 10, 1055. [Google Scholar] [CrossRef] [PubMed]
- Traka, M.H.; Saha, S.; Huseby, S.; Kopriva, S.; Walley, P.G.; Barker, G.C.; Moore, J.; Mero, G.; van den Bosch, F.; Constant, H.; et al. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. New Phytol. 2013, 198, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusheski, N.V.; Jeffery, E.H. Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. J. Agric. Food Chem. 2001, 49, 5743–5749. [Google Scholar] [CrossRef] [PubMed]
- Mithen, R.; Faulkner, K.; Magrath, R.; Rose, P.; Williamson, G.; Marquez, J. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells. Theor. Appl. Genet. 2003, 106, 727–734. [Google Scholar] [CrossRef]
- Chiang, W.C.K.; Pusateri, D.J.; Leitz, R.E.A. Gas chromatography/mass spectrometry method for the determination of sulforaphane and sulforaphane nitrile in broccoli. J. Agric. Food Chem. 1998, 46, 1018–1021. [Google Scholar] [CrossRef]
- Nor, N.D.M.; Lignou, S.; Bell, L.; Houston-Price, C.; Harvey, K.; Methven, L. The relationship between glucosinolates and the sensory characteristics of steamed-pureed turnip (Brassica rapa subsp. Rapa L.). Foods 2020, 9, 1719. [Google Scholar] [CrossRef] [PubMed]
- Klopsch, R.; Witzel, K.; Börner, A.; Schreiner, M.; Hanschen, F.S. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Food Res. Int. 2017, 100, 392–403. [Google Scholar] [CrossRef]
- Jones, R.B.; Frisina, C.L.; Winkler, S.; Imsic, M.; Tomkins, R.B. Cooking method significantly effects glucosinolate content and sulforaphane production in broccoli florets. Food Chem. 2010, 123, 237–242. [Google Scholar] [CrossRef]
Common Name | Chemical Name | Abbreviation | Mass Parent Ion | MS2 Spectrum Ion (Base Ion in Bold) | Reference |
---|---|---|---|---|---|
sinigrin | 2-propenyl(allyl)GSL | SIN | 358 | 278, 275, 259, 227, 195, 180, 162 | [45,46] |
gluconapin | 3-butenyl GSL | GPN | 372 | 292, 275, 259, 195, 194, 176 | [45,47] |
epi/progoitrin | (R, S)-2-hydroxy-3-butenyl GSL | PROG | 388 | 332, 308, 301, 275, 259, 210, 195, 146, 136 | [45,46,47] |
glucoiberverin | 3-(methylthio)propyl GSL | GIBVN | 406 | 326, 275, 259, 288, 228,195 | [43,45,46] |
glucoerucin | 4-(methylthio)butyl GSL | GER | 420 | 340, 291, 275, 259, 227, 195, 178, 163 | [43,45,46] |
glucoiberin | 3-(methylsulfinyl)propyl GSL | GIBN | 422 | 407, 358, 259 | [45,46,47] |
glucoraphanin | 4-(methylsulfinyl)butyl GSL | GRPN | 436 | 422, 372, 291, 259, 194 | [43,45,46] |
glucobrassicin | 3-indolylmethyl GSL | GBSN | 447 | 275, 259, 251, 205 | [45,46,47] |
4-hydroxyglucobrassicin | 4-hydroxy-3-indolylmethyl GSL | 4-HOH | 463 | 383, 285, 267, 259, 240, 195 | [45,46,47] |
Precursor Glucosinolate | Glucosinolate Hydrolysis Product | Abbreviation | LRI a | ID b | MS2 Spectrum Ion (Base Ion in Bold) | Reference | |
---|---|---|---|---|---|---|---|
Common Name | Chemical Name | ||||||
sinigrin | allyl thiocyanate | 2-propenyl thiocyanate | ATC | 871 | B | 99, 72, 45, 44, 41, 39 | [48] |
allyl-ITC | 2-propenyl isothiocyanate | AITC | 884 | B | 99, 72, 71, 45, 41, 39 | [48,49] | |
1-cyano-2,3-epithiopropane | 3,4-epithiobutane nitrile | CETP | 1004 | B | 99, 72, 66, 59, 45, 41, 39 | [48] | |
gluconapin | 3-butenyl-ITC | 1-butene, 4-isothiocyanate | 3BITC | 983 | B | 113, 85, 72, 64, 55, 46, 45, 41 | [48,49,50] |
4,5-epithiovaleronitrile | 1-cyano-3,4-epithiobutane | EVN | 1121 | B | 113, 86, 80, 73, 60, 45 | [50] | |
progoitrin | goitrin | 5-vinyloxazolidin-2-thione | GN | 1545 | B | 129, 86, 85, 68, 57, 45, 43, 41, 39 | [51] |
1-cyano-2-hydroxy-3,4-epit-hiobutane isomer 1 | 2-hydroxy-3,4-epithiobutylcyanide diastereomer-1 | CHETB-1 | 1225 | B | 129, 111, 89, 84, 68, 61, 58, 55, 45 | ||
1-cyano-2-hydroxy-3,4-epit-hiobutane isomer 2 | 2-hydroxy-3,4-epithiobutylcyanide diastereomer-2 | CHETB-2 | 1245 | B | 129, 111, 89, 84, 68, 61, 58, 55, 45 | ||
glucoiberverin | iberverin | 3-methylthiopropyl-ITC | IBVN | 1307 | B | 147, 101, 86, 73, 72, 61, 47, 46, 41 | [48] |
4-methylthiobutyl nitrile | 4-methylthio butanenitrile | 4MBN | 1085 | B | 115, 74, 68, 61, 54, 47, 41 | ||
glucoerucin | erucin | 4-(methylthio)-butyl-ITC | ER | 1427 | B | 161, 146, 115, 85, 72, 61, 55 | [48,49] |
erucin nitrile | 1-cyano-4-(methylthio) butane | ERN | 1200 | B | 129, 87, 82, 61, 55, 48, 41, 47 | ||
glucoiberin | iberin | 3-methylsulfinylpropyl-ITC | IB | 1617 | B | 163, 130, 116, 102, 100, 86, 72, 63, 61,41 | [48] |
iberin nitrile | 4-methylsulfinylbutanenitrile | IBN | 1384 | B | 131, 78, 64, 47, 41 | ||
gluconasturtin | 2-phenylethyl-ITC | 2-isothiocyanatoethyl benzene | PEITC | 1458 | B | 163, 105, 91, 65, 51, 40 | [48] |
benzenepropanenitrile | 2-phenylethyl cyanide | BPN | 1238 | B | 131, 91, 85, 65, 63, 57, 44, 51 | [50] | |
glucoraphanin | sulforaphane | 4-methylsulfinylbutyl-ITC | SFP | 1757 | A | 160, 114, 85, 72, 64, 63, 61, 55. 41, 39 | [44,49] |
sulforaphane nitrile | 5-(methylsulfinyl) pentanenitrile | SFN | 1526 | B | 145, 128, 82, 64, 55, 41 | ||
glucobrassiccin | indole-3-carbinol | 1H-indole-3-methanol | I3C | 1801 | B | 144, 145, 116, 108, 89 | [51] |
indoleacetonitrile | 1H-indole-3-acetonitrile | 1IAN | 1796 | B | 155, 145, 144, 130, 116, 89, 101, 63 | [52] | |
pentyl glucosinolate | pentyl-ITC | 1-isothiocyanato-pentane | PITC | 1165 | B | 129, 114, 101, 96, 72, 55, 43, 41, 39 | [53] |
indole | 1H-indole | Indole (8CI) | 1H-I | 1290 | B | 117, 90, 89, 63, 58 | [54] |
glucotropaeolin | benzeneacetonitrile | 2-phenylacetonitrile | BAN | 1137 | A | 117, 90, 89, 77, 63, 51 |
Cabbage Morphotype a/Accession | Protein Content (mg/g ± SD) DW | Specific Activity (U/mg Soluble Protein ± SD) DW | ||||||
---|---|---|---|---|---|---|---|---|
Raw | Steamed | Microwaved | Stir-Fried | Raw | Steamed | Microwaved | Stir-Fried | |
Black Kale | ||||||||
BK-CNDTP | 33.7 ± 0.6 no, E | 11.0 ± 0.3 ab, A | 11.2 ± 0.4 ab, A | 29.0 ± 0.7 kl, D | 1.3 ± 0.2 d–k, D | 0.2 ± 0.0 a, A | 0.2 ± 0.0 a, A | 1.0 ± 0.1 a–j, C |
BK-CPNT | 35.4 ± 1.0 op, EF | 11.7 ± 0.6 b, A | 11.9 ± 1.4 b, A | 21.6 ± 1.9 hi, B | 0.9 ± 0.1 a–i, BC | 0.3 ± 0.1 abc, A | 0.3 ± 0.1 abc, A | 0.7 ± 0.0 a–h, B |
BK-CNDTT | 36.7 ± 0.7 p, F | 12.7 ± 0.1 bc, A | 12.5 ± 0.1 bc, A | 24.9 ± 1.6 j, C | 1.0 ± 0.0 a–j, C | 0.2 ± 0.1 a, A | 0.3 ± 0.1 ab, A | 0.8 ± 0.1 a–h, BC |
Wild | ||||||||
WD-8707 | 31.4 ± 0.1.2 lmn, E | 11.1 ± 0.1 ab, A | 10.9 ± 0.1 ab, A | 19.1 ± 0.4 fgh, C | 1.6 ± 0.1 g–l, C | 0.2 ± 0.1 a A | 0.2 ± 0.0 a, A | 1.1 ± 0.1 a–j, B |
WD-GRU | 29.9 ± 0.6 kl, D | 10.7 ± 0.4 ab, A | 10.6 ± 0.1 ab, A | 18.1 ± 1.1 efg, C | 1.7 ± 0.2 h–l, C | 0.3 ± 0.1 a–c A | 0.2 ± 0.0 a, A | 1.2 ± 0.2 c–k, B |
WD-8714 | 30.6 ± 0.8 lm, DE | 10.9 ± 0.1 ab, A | 11.0 ± 0.2 ab, A | 16.9 ± 0.5 def, B | 2.4 ± 0.2 l, D | 0.2 ± 0.0 a A | 0.2 ± 0.0 a, A | 1.7 ± 0.1 h–l, C |
Tronchuda | ||||||||
TC-PCM | 33.6 ± 0.2 no, F | 11.1 ± 0.3 ab, A | 11.1 ± 0.1 ab, A | 19.9 ± 1.47 gh, D | 1.2 ± 0.1 b–k, D | 0.3 ± 0.1 a–c A | 0.3 ± 0.1 a–c, A | 0.7 ± 0.1 a–g, C |
TC-CPDP | 27.8 ± 0.6 k, E | 11.0 ± 0.3 ab, A | 11.0 ± 0.3 ab, A | 18.1 ± 0.8 efg, C | 2.4 ± 0.3 l, E | 0.4 ± 0.2 a–e ABC | 0.4 ± 0.1 a–e, AB | 1.4 ± 0.2 e–k, D |
TC-T | 33.1 ± 0.8 mno, F | 10.9 ± 0.2 ab, A | 10.8 ± 0.2 ab, A | 15.7 ± 0.9 de, B | 1.4 ± 0.1 f–k, D | 0.3 ± 0.1 abc A | 0.3 ± 0.1 abc, A | 0.6 ± 0.1 a–f, BC |
Savoy | ||||||||
SC-HSC | 24.6 ± 1.43 j, D | 10.7 ± 0.4 ab, AB | 10.6 ± 0.3 ab, AB | 12.0 ± 1.1 b, B | 4.7 ± 0.3 n, B | 0.4 ± 0.1 a–d A | 0.2 ± 0.0 ab, A | 1.8 ± 0.2 i–l, A |
SC-PW | 24.3 ± 0.3 j, D | 12.0 ± 1.2 b, B | 10.1 ± 0.2 b, AB | 14.8 ± 0.4 cd, C | 6.4 ± 0.5 o, B | 0.2 ± 0.0 a A | 0.2 ± 0.0 a, A | 0.3 ± 0.0 abc, A |
SC-SDG | 24.4 ± 0.5 j, D | 10.3 ± 0.4 ab, AB | 8.9 ± 0.2 a, A | 11.4 ± 0.3 ab, AB | 5.8 ± 0.7 o, B | 0.3 ± 0.1 abc A | 1.5 ± 0.1 f–l, A | 1.1 ± 0.1 a–j, A |
Red | ||||||||
RC-RL | 33.6 ± 0.6 no, E | 11.0 ± 0.3 ab, A | 11.2 ± 0.4 ab, A | 29.0 ± 0.7 kl, D | 0.9 ± 0.1 a–j, D | 0.4 ± 0.1 a–d A | 0.4 ± 0.1 a–d, A | 0.5 ± 0.1 a–f, ABC |
RC-RM | 35.4 ± 1.0 op, EF | 11.7 ± 0.6 b, A | 11.9 ± 1.4 b, A | 21.6 ± 1.9 hi, B | 1.5 ± 0.3 g–l, E | 0.7 ± 0.1 a–g BCD | 0.4 ± 0.1 a–e, AB | 0.9 ± 0.1 a–i, D |
RC-RD | 36.7 ± 0.7 p, F | 12.7 ± 0.1 bc, A | 12.5 ± 0.1 bc, A | 24.9 ± 3.9 j, C | 1.9 ± 0.1 jkl, F | 0.2 ± 0.1 a A | 0.3 ± 0.1 ab, A | 0.7 ± 0.1 a–h, CD |
White | ||||||||
WC-FEM | 21.3 ± 0.4 hi, C | 10.1 ± 0.3 ab, A | 10.1 ± 0.1 ab, A | 10.9 ± 0.2 ab, A | 3.4 ± 0.2 m, E | 0.3 ± 0.1 abc, A | 0.4 ± 0.1 a–d, AB | 0.6 ± 0.2 a–f, BC |
WC-CRB | 23.0 ± 1.2 ij, D | 10.2 ± 0.1 ab, A | 10.2 ± 0.1 ab, A | 12.1 ± 0.7 b, B | 2.1 ± 0.1 kl, D | 0.3 ± 0.1 abc, A | 0.2 ± 0.1 ab, A | 0.7 ± 0.2 a–h, C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oloyede, O.O.; Wagstaff, C.; Methven, L. The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions. Foods 2021, 10, 2908. https://doi.org/10.3390/foods10122908
Oloyede OO, Wagstaff C, Methven L. The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions. Foods. 2021; 10(12):2908. https://doi.org/10.3390/foods10122908
Chicago/Turabian StyleOloyede, Omobolanle O., Carol Wagstaff, and Lisa Methven. 2021. "The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions" Foods 10, no. 12: 2908. https://doi.org/10.3390/foods10122908
APA StyleOloyede, O. O., Wagstaff, C., & Methven, L. (2021). The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (Brassica oleracea) Accessions. Foods, 10(12), 2908. https://doi.org/10.3390/foods10122908