Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat
Abstract
:1. Introduction
2. Microalgae: Definition and Properties
3. Meat Quality and Nutritional Value
4. Production of Pork with Dietary Microalgae
5. Production of Poultry Meat with Dietary Microalgae
6. Conclusions and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Poppi, D.P.; McLennan, S.R. Nutritional research to meet future challenges. Anim. Prod. Sci. 2010, 50, 329–338. [Google Scholar] [CrossRef]
- Chaudhary, A.; Gustafson, D.; Mathys, A. Multiindicator sustainability assessment of global food systems. Nat. Commun. 2018, 9, 848. [Google Scholar] [CrossRef] [Green Version]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Cabrita, A.R.J.; Maia, M.R.G.; Valente, I.M.; Engrola, S.; Fonseca, A.J.M.; Ribeiro, D.M.; Lordelo, M.; Martins, C.F.; Falcão-E-Cunha, L.; et al. Microalgae as feed ingredients for livestock production and aquaculture. In Microalgae—Cultivation, Recovery of Compounds and Applications; Galanakis, C.M., Ed.; Academic Press, Inc.: London, UK, 2020; pp. 239–302. [Google Scholar]
- Holman, B.W.; Malau-Aduli, A.E. Spirulina as a livestock supplement and animal feed. J. Anim. Physiol. Anim. Nutr. 2013, 97, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Altmann, B.A.; Neumann, C.; Rothstein, S.; Liebert, F.; Mörlein, D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019, 153, 26–34. [Google Scholar] [CrossRef]
- Gutiérrez-Salmeán, G.; Fabila-Castillo, L.; Chamorro-Cevallos, G. Nutritional and toxicological aspects of Spirulina (Arthrospira). Nutr. Hosp. 2015, 32, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Kulpys, J.; Paulauskas, E.; Pilipavicius, V.; Stankevicius, R. Influence of cyanobacteria Arthrospira (Spirulina) platensis biomaxx additives towards the body condition of lactation cows and biochemical milk indexes. Agron. Res. 2009, 7, 823–835. [Google Scholar]
- Peiretti, P.G.; Meineri, G. Effects of diets with increasing levels of Spirulina platensis on the performance and apparent digestibility in growing rabbits. Livest. Sci. 2008, 118, 173–177. [Google Scholar] [CrossRef]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Simkus, A.; Simkiene, A.; Cernauskiene, J.; Kvietkute, N.; Cernauskas, A.; Paleckaitis, M.; Kerziene, S. The effect of blue algae Spirulina platensis on pig growth performance and carcass and meat quality. Vet. Med. Zoot. 2013, 61, 70–74. [Google Scholar]
- Gerken, H.; Donohoe, B.; Knoshaug, E. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 2013, 237, 239–253. [Google Scholar] [CrossRef]
- Austic, R.; Mustafa, A.; Jung, B.; Gatrell, S.; Lei, X. Potential and limitation of a new defatted diatom microalgal biomass in replacing soybean meal and corn in diets for broiler chickens. J. Agric. Food Chem. 2013, 31, 7341–7348. [Google Scholar] [CrossRef] [PubMed]
- Lum, K.; Kim, J.; Lei, X. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 21, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, D.; Lopes, P.A.; Cardoso, V.; Ponte, P.; Brás, J.; Madeira, M.S.; Alfaia, C.M.; Bandarra, N.M.; Gerken, H.G.; Fontes, C.M.G.A.; et al. Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Sci. Rep. 2019, 9, 5382. [Google Scholar]
- Coelho, D.; Lopes, P.A.; Cardoso, V.; Ponte, P.; Brás, J.; Madeira, M.S.; Alfaia, C.M.; Bandarra, N.M.; Fontes, C.M.G.A.; Prates, J.A.M. A two-enzyme constituted mixture to improve the degradation of Arthrospira platensis microalga cell wall for monogastric diets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 310–321. [Google Scholar] [CrossRef] [Green Version]
- Martins, C.F.; Assunção, J.P.; Santos, D.M.R.; Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Coelho, D.; Lemos, J.P.; Almeida, A.M.; Prates, J.A.M.; et al. Effect of dietary inclusion of Spirulina on production performance, nutrient digestibility and meat quality traits in post-weaning piglets. J. Anim. Physiol. Anim. Nutr. 2021, 105, 247–259. [Google Scholar] [CrossRef]
- Martins, C.F.; Pestana, J.M.; Alfaia, C.M.; Costa, M.; Ribeiro, D.M.; Coelho, D.; Lopes, P.A.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Effects of Chlorella vulgaris as a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets’ Meat. Foods 2021, 10, 1155. [Google Scholar] [CrossRef]
- Coelho, D.; Pestana, J.; Almeida, J.M.; Alfaia, C.M.; Fontes, C.M.G.A.; Moreira, O.; Prates, J.A.M. A High Dietary incorporation level of Chlorella vulgaris improves the nutritional value of pork fat without impairing the performance of finishing pigs. Animals 2020, 10, 2384. [Google Scholar] [CrossRef]
- Pestana, J.M.; Puerta, B.; Santos, H.; Lopes, P.A.; Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Pinto, R.M.A.; Lemos, J.P.C.; Fontes, C.M.G.A.; et al. Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits and meat quality. Poult. Sci. J. 2020, 99, 2519–2532. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Major, V.T.; Martins, C.F.; Santos, H.; Lopes, P.A.; et al. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. J. 2021, 100, 926–937. [Google Scholar] [CrossRef]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef]
- Madeira, M.; Pires, V.; Alfaia, C.; Costa, A.; Luxton, R.; Doran, O.; Bessa, R.; Prates, J. Differential effects of reduced protein diets on fatty acid composition and gene expression in muscle and subcutaneous adipose tissue of Alentejana purebred and Large White × Landrace × Pietrain crossbred pigs. Br. J. Nutr. 2013, 28, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Hocquette, J.; Gondret, F.; Baeza, E. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Ruxton, C.H.S.; Reed, S.C.; Simpson, J.A.; Millington, K.J. The health benefits of omega-3 polyunsaturated fatty acids: A review of the evidence. J. Hum. Nutr. Diet. 2007, 20, 275–285. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: Effects on performance, carcass characteristics and tissue fatty acid profile. Asian-Australas. J. Anim. Sci. 2018, 31, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, P.A.; Sheehy, P.J.A.; Galvin, K.; Kerry, J.P.; Buckley, D.J. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
- Wood, J.D.; Richardson, R.I.; Nute, G.R.; Fisher, A.V.; Campo, M.M.; Kasapidou, E.; Sheard, P.R.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Calder, P. Mechanisms of Action of (n-3) Fatty Acids. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardi, L.; Martelli, G.; Lambertini, L.; Parisini, P.; Mordenti, A. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest. Sci. 2006, 103, 95–103. [Google Scholar] [CrossRef]
- Vossen, E.; Raes, K.; Van Mullem, D.; De Smet, S. Production of docosahexaenoic acid (DHA) enriched loin and dry cured ham from pigs fed algae: Nutritional and sensory quality. Eur. J. Lipid Sci. Technol. 2017, 119, 1600144. [Google Scholar] [CrossRef] [Green Version]
- Meadus, W.J.; Duff, P.; Rolland, D.; Aalhus, J.L.; Uttaro, B.; Dugan, M.E.R. Feeding docosahexaenoic acid to pigs reduces blood triglycerides and induces gene expression for fat oxidation. Can. J. Anim. Sci. 2011, 91, 601–612. [Google Scholar] [CrossRef] [Green Version]
- De Tonnac, A.; Guillevic, M.; Mourot, J. Fatty acid composition of several muscles and adipose tissues of pigs fed n-3 PUFA rich diets. Meat Sci. 2018, 140, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Tonnac, A.D.; Mourot, J. Effect of dietary sources of n-3 fatty acids on pig performance and technological, nutritional and sensory qualities of pork. Animal 2017, 12, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- De Tonnac, A.D.; Labussie`re, E.; Vincent, A.; Mourot, J.; Pegase, U.M.R.; Ouest, A. Effect of α-linolenic acid and DHA intake on lipogenesis and gene expression involved in fatty acid metabolism in growing-finishing pigs. Br. J. Nutr. 2016, 116, 7–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, C.A.; Fusconi, G.; Morlacchini, M.; Jacques, K.A. 123 Performance and docosahexaenoic acid (DHA) content in longissimus dorsi and backfat tissues of grow-finish pigs fed diets differing in heterotrophically grown algae content. J Anim. Sci. 2017, 95 (Suppl. 2), 58. [Google Scholar] [CrossRef]
- Bonos, E.; Kasapidou, E.; Kargopoulos, A.; Karampampas, A.; Christaki, E.; Florou-Paneri, P.; Nokolakakis, I. Spirulina as a functional ingredient in broiler chicken diets. S. Afr. J. Anim. Sci. 2016, 46, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Kim, I.H. Effects of dietary ω-3 fatty acid-enriched microalgae supplementation on growth performance, blood profiles, meat quality, and fatty acid composition of meat in broilers. J. Appl. Anim. Res. 2013, 4, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Mooney, J.W.; Hirschler, E.M.; Kennedy, A.K.; Sams, A.R.; Van Elswyk, M.E. Lipid and flavour quality of stored breast meat from broilers fed marine algae. J. Sci. Food Agric. 1998, 78, 134–140. [Google Scholar] [CrossRef]
- Baeza, E.; Chartrin, P.; Lessire, M.; Meteau, K.; Chesneau, G.; Guillevic, M.; Mourot, J. Is it possible to increase n-3 fatty acid content of meat without affecting its technological and/or sensory quality and the growing performance of chickens? Br. Poult. Sci. 2015, 56, 543–550. [Google Scholar] [CrossRef]
- Moran, C.; Currie, D.; Keegan, J.; Knox, A. Tolerance of broilers to dietary supplementation with high levels of the DHA-rich microalga, Aurantiochytrium limacinum: Effects on health and productivity. Animals 2018, 8, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, T.; Lordelo, M.M.; Alves, S.P.; Bessa, R.J.B.; Costa, P.; Lemos, J.P.C.; Ferreira, L.M.A.; Fontes, C.M.G.A.; Prates, J.A.M. Direct supplementation of diet is the most efficient way of enriching broiler meat with n-3 long-chain polyunsaturated fatty acids. Br. Poult. Sci. 2013, 54, 753–765. [Google Scholar] [CrossRef]
- Ribeiro, T.; Lordelo, M.M.; Costa, P.; Alves, S.P.; Benevides, W.S.; Bessa, R.J.B.; Lemos, J.P.C.; Pinto, R.M.A.; Ferreira, L.M.A.; Fontes, C.M.G.A.; et al. Effect of reduced dietary protein and supplementation with a docosahexaenoic acid product on broiler performance and meat quality. Br. Poult. Sci. 2014, 55, 752–765. [Google Scholar] [CrossRef]
- Pôjo, V.; Tavares, T.; Malcata, F.X. Processing Methodologies of Wet Microalga Biomass Toward Oil Separation: An Overview. Molecules 2021, 26, 641. [Google Scholar] [CrossRef]
- Ribeiro, D.M.; Martins, C.F.; Kuleš, J.; Horvatić, A.; Guillemin, N.; Freire, J.P.B.; Eckersall, P.D.; Almeida, A.M.; Prates, J.A.M. Influence of dietary Spirulina inclusion and lysozyme supplementation on the longissimus lumborum muscle proteome of newly weaned piglets. J. Proteom. 2021, 244, 104274. [Google Scholar] [CrossRef]
- Meadus, W.J.; Turner, T.D.; Dugan, M.E.; Aalhus, A.L.; Duff, P.; Rolland, D.; Uttaro, B.; Gibson, L.L. Fortification of pork loins with docosahexaenoic acid (DHA) and its effect on flavour. J. Anim. Sci. Biotechnol. 2013, 4, 46. [Google Scholar] [CrossRef] [Green Version]
- Kalbe, C.; Priepke, A.; Nürnberg, G.; Dannenberger, D. Effects of long-term microalgae supplementation on muscle microstructure, meat quality and fatty acid composition in growing pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 574–582. [Google Scholar] [CrossRef]
- Wei, H.K.; Zhou, Y.; Jiang, S.; Tao, Y.X.; Sun, H.; Peng, J.; Jiang, S. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: Association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1. Br. J. of Nutr. 2013, 110, 671–680. [Google Scholar] [CrossRef] [Green Version]
- Venkataraman, L.V.; Somasekaran, T.; Becker, E.W. Replacement value of blue-green alga (Spirulina platensis) for fishmeal and a vitamin-mineral premix for broiler chicks. Br. Poult. Sci. 1994, 35, 373–381. [Google Scholar] [CrossRef]
- Toyomizu, M.; Sato, K.; Taroda, H.; Kato, T.; Akiba, Y. Effects of dietary Spirulina on meat colour in muscle of broiler chickens. Br. Poult. Sci. 2001, 42, 197–202. [Google Scholar] [CrossRef]
- Altmann, B.A.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat Quality Derived from High Inclusion of a Micro-Alga or Insect Meal as an Alternative Protein Source in Poultry Diets: A Pilot Study. Foods 2018, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Lee, S.I.; Kim, I.H. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poult. Sci. J. 2018, 97, 2451–2459. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.T.; Zheng, L.; Kwon, H.J.; Choo, Y.K.; Lee, K.W.; Kang, C.W.; An, B.K. Effects of dietary fermented Chlorella vulgaris (CBT®) on growth performance, relative organ weights, cecal microflora, tibia bone characteristics, and meat qualities in Pekin ducks. Asian Australas. J. Anim. Sci. 2015, 28, 95–101. [Google Scholar] [CrossRef]
- Khan, I.A.; Parker, N.B.; Löhr, C.V.; Cherian, G. Docosahexaenoic acid (22:6 n-3)-rich microalgae along with methionine supplementation in broiler chickens: Effects on production performance, breast muscle quality attributes, lipid profile, and incidence of white striping and myopathy. Poult. Sci. 2021, 100, 865–874. [Google Scholar] [CrossRef]
- Long, S.F.; Kang, S.; Wang, Q.Q.; Xu, Y.T.; Pan, L.; Hu, J.X.; Li, M.; Piao, X.S. Dietary supplementation with DHA-rich microalgae improves performance, serum composition, carcass trait, antioxidant status, and fatty acid profile of broilers. Poult Sci. 2018, 97, 1881–1890. [Google Scholar] [CrossRef]
- Ganuza, E.; Benítez-Santana, T.; Atalah, E.; Vega-Orellana, O.; Ganga, R.; Izquierdo, M.S. Crypthecodinium cohnii and Schizochytrium sp. as potential substitutes to fisheries-derived oils from seabream (Sparus aurata) microdiets. Aquaculture 2008, 277, 109–116. [Google Scholar] [CrossRef]
- Schiavone, A.; Chiarini, R.; Marzoni, M.; Castillo, A.; Tassone, S.; Romboli, I. Breast meat traits of Muscovy ducks fed on a microalga (Crypthecodinium cohnii) meal supplemented diet. Br. Poult. Sci. 2007, 48, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Gatrell, S.K.; Kim, J.; Derksen, T.J.; O’Neil, E.V.; Lei, X.G. Creating omega-3 fatty-acid-enriched chicken using defatted green microalgal biomass. J. Agric. Food Chem. 2015, 63, 9315–9322. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Sun, T.; Magnuson, A.D.; Qamar, T.R.; Lei, X.G. Defatted Microalgae-Mediated Enrichment of n-3 Polyunsaturated Fatty Acids in Chicken Muscle Is Not Affected by Dietary Selenium, Vitamin E, or Corn Oil. J. Nutr. 2018, 148, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
Microalga | Inclusion Level | Animal-Initial Weight LW-Final Weight LW or Trial Duration | Main Findings | Reference |
---|---|---|---|---|
Arthospira platensis | 0.200% | Grower pigs-30.6–96.4 kg | Microalga had no effect on protein, color, pH, cooking loss, tenderness and backfat thickness; decreased the amount of intramuscular fat in meat | [13] |
Arthrospira platensis | 8.3 and 12.5% (1st period—25–50 kg LW), 6.6 and 9.9% (2nd period—51–75 kg LW) and 9.5 % (3rd period—more than 75 kg LW) | Barrows-25–110 or 122 kg | Microalga influenced the FA composition of backfat with increased PUFA levels. Meat quality was not compromised | [8] |
Arthrospira platensis | 10.0% | Weaned piglets-12.0 kg-4 weeks | No significant effects on meat quality traits with the dietary microalga | [19] |
Chlorella vulgaris | 5.00% | Weaned piglets-11.2 kg-2 weeks | Microalga improved total carotenoids and n-3 PUFA content in meat | [20] |
Chlorella vulgaris | 5.00% | Grower pigs-59.1–101 kg | Microalga improved total carotenoids and n-3 PUFA content in meat | [21] |
Schizochytrium sp. | 0.250% (for 4 or 8 weeks) and 0.500% (for 4 weeks) | Barrows-118–160 kg | Microalga had no effect on backfat thickness; feeding 0.50% microalga over 4 weeks prior to slaughter increased the DHA content and decreased n-6/n-3 ratio | [32] |
Schizochytrium sp. | 0.300, 0.600 and 1.20% | Finisher pigs-75–110 kg | Microalga increased lipid peroxidation and EPA and DHA contents in dry-cured hams; no effect on proximate composition, color, pH and TBARS values | [33] |
Schizochytrium sp. | 0.06, 0.60 and 1.6% | Finisher pigs-80–110 kg | Microalga increased DHA content and lipid peroxidation of bacon. Over 0.6% inclusion, consumer acceptability was reduced due to the development of off-flavors during and after cooking bacon | [34] |
Schizochytrium sp. | 0.250 and 0.500% | Grower pigs-27.9 kg–17 weeks | Microalga increased DHA content of loin and backfat | [38] |
Schizochytrium sp. | 1.00% | Finisher pigs-117–140 kg | Microalga increased EPA, DHA and n-3/n-6 ratio in longissimus lumborum muscle | [28] |
Schizochytrium sp. | 0.900, 1.90 and 3.70% | Finisher pigs-50.7–115 kg | Microalga increased C20:4, C20:5 and C22:6n-3 contents in the tissues studied; DHA deposition depends on tissue location | [35,36] |
Schizochytrium sp. | 0.940, 1.85, 2.74 and 3.61% | Finisher pigs-64.6–115 kg | Increasing dietary DHA reduced the activity of lipogenic enzymes in the liver and inhibited the expressions of genes involved in FA metabolism | [37] |
Schizochytrium sp. | 7.00% (piglet diet)/5.00% (grower pig diet) | Grower pigs-9.46–104 kg | Microalga increased DHA in longissimus thoracis and semitendinosus muscles | [49] |
Microalga | Inclusion Level | Animal-Initial Age-Trial Duration | Main Findings | Reference |
---|---|---|---|---|
Arthrospira platensis | 0.250, 0.500, 0.750 and 1.00% | Broilers-1-day old-5 weeks | Microalga decreased drip loss of breast meat after 7 days of storage | [54] |
Arthrospira platensis | 0.500 and 1.00% | Broilers-1-day old-6 weeks | Microalga had no effect on the lipid peroxidation of breast and thigh meat. Increased PUFA, EPA, DPA and DHA content in breast and thigh meat, more pronounced in the latter | [39] |
Arthrospira platensis | 4.00 and 8.00% | Male broilers chicks-21 days old-2 weeks | Increased the pigmentation of meat (yellowness and redness) | [52] |
Arthrospira platensis | 11.8% (starter, for 21 days)/ 9.70% (finisher, for 14 days) | Broilers-1-day old-5 weeks | Microalga improved meat quality: increased pH, water-holding capacity and less off-flavors; Increased the intensity of color in the breast meat | [53] |
Arthrospira platensis | 14.0 and 17.0% (starter, for 7 weeks)/ 12.0 and 12.8% (finisher, for 5 weeks) | Broilers-4–12 weeks old | Spirulina carotenoids are incorporated into broiler tissue; meat quality traits were not negatively affected | [51] |
Arthrospira platensis | 15.0% | Broilers-21 days old-2 weeks | Microalga increased yellowness, total carotenoids and SFA and decreased n-3 PUFA and α-tocopherol in breast and thigh muscles | [22] |
Chlorella vulgaris | 0.1 and 0.2% | Male Pekin ducks-1-day old-6 weeks | Microalga increased the lightness and yellowness in the leg meat and the yellowness, pH, shear force and water-hold capacity in the breast meat | [55] |
Chlorella vulgaris | 10.0% | Broilers-21 days old-2 weeks | Microalga increased tenderness, yellowness and total carotenoids in breast and thigh meat | [23] |
Schizochytrium sp. | 0.1 and 0.2% | Broilers-1-day old-5 weeks | Microalga increased oleic acid, DHA and n-3 PUFA; decreased SFA and n-6/n-3 ratio in breast meat | [40] |
Schizochytrium sp. | 2.8 and 5.5% | Broilers-21 days old-3 weeks | Microalga increased n-3 PUFA and decreased flavor scores (2.8% were still considered acceptable by sensorial panelists) | [41] |
Schizochytrium sp. | 2.00% | Broilers-21 days old-3 weeks | DHA-rich microalgae along with methionine reduced the incidence of breast muscle striping and myopathy and enriched meat with n-3 FA | [56] |
Schizochytrium sp. | 0.500 and 2.00% | Broilers-11 days old-4 weeks | Microalga increased n-3 FA, the susceptibility to oxidation in breast meat and off-flavors in thigh meat | [42] |
Schizochytrium sp. | 1.00 and 2.00% | Broilers-1-days old-5 weeks | Microalga increased n-3 FA in breast and thigh meat | [57] |
Schizochytrium sp. | 0.500, 2.50 and 5.00% | Broilers-1-day old-6 weeks | Microalga increased n-3 FA content in broiler meat | [43] |
Schizochytrium sp. | 3.70 and 7.40% | Broilers-21 days old-2 weeks | Microalga increased SFA, n-3 FA, LC-PUFA, EPA, DHA and TBARS; Decreased total n-6 FA, vitamin E, flavor and overall acceptability | [44] |
Schizochytrium sp. | 7.40% | Broilers-21 days old-2 weeks | Microalga increased the SFA, n-3 FA, LC-PUFA, EPA, DHA and TBARS; decreased the MUFA, total n-6 FA, PUFA/SFA ratio, n-6/n-3 ratio, vitamin E, flavor and overall acceptability | [45] |
Crypthecodinium cohnii | 5.00% | Muscovy ducks-50 or 43 days old-3 weeks | Microalga increased the DHA content in breast meat | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, C.F.; Ribeiro, D.M.; Costa, M.; Coelho, D.; Alfaia, C.M.; Lordelo, M.; Almeida, A.M.; Freire, J.P.B.; Prates, J.A.M. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods 2021, 10, 2933. https://doi.org/10.3390/foods10122933
Martins CF, Ribeiro DM, Costa M, Coelho D, Alfaia CM, Lordelo M, Almeida AM, Freire JPB, Prates JAM. Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods. 2021; 10(12):2933. https://doi.org/10.3390/foods10122933
Chicago/Turabian StyleMartins, Cátia F., David M. Ribeiro, Mónica Costa, Diogo Coelho, Cristina M. Alfaia, Madalena Lordelo, André M. Almeida, João P. B. Freire, and José A. M. Prates. 2021. "Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat" Foods 10, no. 12: 2933. https://doi.org/10.3390/foods10122933
APA StyleMartins, C. F., Ribeiro, D. M., Costa, M., Coelho, D., Alfaia, C. M., Lordelo, M., Almeida, A. M., Freire, J. P. B., & Prates, J. A. M. (2021). Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods, 10(12), 2933. https://doi.org/10.3390/foods10122933