Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Dry Fermented Mutton Sausages
2.3. Microbial Analysis
2.4. pH, Water Activity, Color, and TVB-N Analysis
2.5. Proteolysis Index (PI) Analysis
2.6. Free Amino Acid (FAA) Analysis
2.7. Biogenic Amines (BAs) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Microbial Counts
3.2. pH, Water Activity, and Color
3.3. Proteolysis Index (PI) and Total Volatile Basic Nitrogen (TVB-N)
3.4. Free Amino Acid (FAA)
3.5. Biogenic Amines (BAs) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikeuchi, Y. Recent advances in the application of high pressure technology to processed meat products. Process Meats. 2011, 590–616. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Gómez, M.; Fonseca, S. Effect of commercial starter cultures on physicochemical characteristics, microbial counts and free fatty acid composition of dry-cured foal sausage. Food Control. 2014, 46, 382–389. [Google Scholar] [CrossRef]
- Stahnke, L.H. Volatiles produced by Staphylococcus xylosus and Staphylococcus carnosus during growth in sausage minces. LWT-Food Sci. Technol. 1999, 32, 365–371. [Google Scholar] [CrossRef]
- Baka, A.M.; Papavergou, E.J.; Pragalaki, T.; Bloukas, J.G.; Kotzekidou, P. Effect of selected autochthonous starter cultures on processing and quality characteristics of Greek fermented sausages. LWT-Food Sci. Technol. 2011, 44, 54–61. [Google Scholar] [CrossRef]
- Verma, N.; Hooda, V.; Gahlaut, A.; Gothwal, A.; Hooda, V. Enzymatic biosensors for the quantification of biogenic amines: A literature update. Crit. Rev. Biotechnol. 2020, 40, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Zhuang, H.; Chen, X.; Li, L.; Qiao, W.; Zhang, J. Effects of plant polyphenols and α-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and n-nitrosamines formation during ripening and storage of dry-cured bacon. LWT-Food Sci. Technol. 2015, 60, 199–206. [Google Scholar] [CrossRef]
- Barbosa, G.M.; Duarte, P.; Pimenta, F.; Augustus, M.V. O risco das aminas biogênicas nos alimentos. Ciência Saúde Coletiva 2014, 19, 1123–1134. [Google Scholar] [CrossRef] [Green Version]
- Romano, A.; Klebanowski, H.; La Guerche, S.; Beneduce, L.; Spano, G.; Murat, M.-L.; Lucas, P. Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem. 2012, 135, 1392–1396. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Comas-Basté, O.; Bover-Cid, S.; Vidal-Carou, M.C. Tyramine and histamine risk assessment related to consumption of dry fermented sausages by the spanish population. Food Chem Toxicol. 2017, 99, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Torović, L.; Gusman, V.; Kvrgić, S. Biogenic amine and microbiological profile of serbian dry fermented sausages of artisanal and industrial origin and associated health risk. Food Addit. Contam. Part B 2020, 13, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Aymerich, T.; Marcos, B.; Vidal-Carou, M.C.; Garriga, M. Aminogenesis control in fermented sausages manufactured with pressurized meat batter and starter culture. Meat Sci. 2008, 75, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Rauscher-Gabernig, E.; Grossgut, R.; Bauer, F.; Paulsen, P. Phenylethylamin in Lebensmitteln: Gehalte und Erarbeitung von tolerierbaren Höchstgehalten. Wien. Tierärztliche Mon. 2010, 97, 242–252. [Google Scholar] [CrossRef]
- Wüst, N.; Rauscher-Gabernig, E.; Steinwider, J.; Bauer, F.; Paulsen, P. Risk assessment of dietary exposure to tryptamine for the Austrian population. Food Addit. Contam. Part A 2017, 34, 404–420. [Google Scholar] [CrossRef]
- Lu, S.L.; Ji, H.; Wang, Q.L.; Li, B.K.; Li, K.X.; Xu, C.J.; Jiang, C.H. The effects of starter cultures and plant extracts on the biogenic amine accumulation in traditional Chinese smoked horsemeat sausages. Food Control. 2015, 50, 869–875. [Google Scholar] [CrossRef]
- Jaguey-Hernández, Y.; Aguilar-Arteaga, K.; Ojeda-Ramirez, D.; Aorve-Morga, J.; Ovando, A.C. Biogenic amines levels in food processing: Efforts for their control in foodstuffs. Food Res. Int. 2021, 144, 110341. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- Hazards, E. Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011, 9, 2393. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, C.; Bordiga, M.; Pérez-Álvarez, E.P.; Travaglia, F.; Arlorio, M.; Salinas, M.R.; Coïsson, J.D.; Garde-Cerdán, T. The impacts of temperature, alcoholic degree and amino acids content on biogenic amines and their precursor amino acids content in red wine. Food Res. Int. 2017, 99, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Yongsawatdigul, J.; Rodtong, S.; Raksakulthai, N. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Food Sci. 2007, 72, 382–390. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Ladero, V.; Fernández, M.; Fiocco, D.; Alvarez, M.A.; Grieco, F.; Spano, G. Biogenic amines degradation by Lactobacillusp lantarum: Toward a potential application in wine. Front. Microbiol. 2012, 3, 122–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeghi, H.; Arjmand, S.; Siadat, S.; Fooladi, J.; Ebrahimipour, G. A novel thermostable alkaline histamine oxidase from glutamicibacter sp. n1a3101, induced by histamine and its analogue betahistine. AMB Express. 2020, 10, 176. [Google Scholar] [CrossRef]
- Latorre-Moratalla, M.L.; Sara, B.C.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Control of biogenic amines in fermented sausages: Role of starter cultures. Front. Microbiol. 2012, 3, 169. [Google Scholar] [CrossRef] [Green Version]
- Hyun-Il, L.; Young, M.K.; Young, T.R. Purification and characterization of a copper-containing amine oxidase from Mycobacterium sp. strain JC1 DSM 3803 grown on benzylamine. J. Biochem. 2008, 144, 107–114. [Google Scholar] [CrossRef]
- Yagodina, O.V.; Nikol’skaia, E.B.; Khovanskikh, A.E.; Kormilitsyn, B.N. Amine oxidases of microorganisms. J. Evol. Biochem. Physiol. 2002, 38, 251–258. [Google Scholar] [CrossRef]
- Xie, C.; Wang, H.H.; Nie, X.K.; Chen, L.; Deng, S.L.; Xu, X.L. Reduction of biogenic amine concentration in fermented sausage by selected starter cultures. CyTA-J. Food. 2015, 13, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Martuscelli, M.; Crudele, M.A.; Gardini, F.; Suzzi, G. Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett. Appl. Microbiol. 2000, 31, 228–232. [Google Scholar] [CrossRef]
- Zhang, H.; Li, B.; Zhao, L.; Wang, Q.; Li, B.; Lu, S. The effects of amine oxidase-producing starter culture on biogenic amine accumulation in traditional chinese smoked horsemeat sausages. J. Food Saf. 2019, 39, e12638. [Google Scholar] [CrossRef]
- Wang, D.B.; Zhao, L.H.; Su, R.N.; Jin, Y. Effects of different starter culture combinations on microbial counts and physico-chemical properties in dry fermented mutton sausages. Food Sci. Nutr. 2019, 7, 1957–1968. [Google Scholar] [CrossRef]
- Wang, D.B. Study on the Effect of Starter on Protein Lipid Catabolism and Flavor Formation Mechanism of Fermented Mutton Sausage. Ph.D. Dissertation, Inner Mongolia Agricultural University, Hohhot, China, 2020. [Google Scholar]
- Malle, P.; Tao, S.H. Rapid quantitative determination of trimethylamine using steam distillation. J. Food Protect. 1987, 50, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.C.; Kerry, J.P.; Arendt, E.K.; Kenneally, P.M.; McSweeney, P.L.H.; O’Neill, E.E. Characterization of proteolysis during the ripening of semi-dry fermented sausages. Meat Sci. 2002, 62, 205–216. [Google Scholar] [CrossRef]
- Kamil, E.; Khalid, O.A. The determination of some biogenic amines in turkish fermented sausages consumed in van. Toxicol. Rep. 2018, 5, 639–643. [Google Scholar] [CrossRef]
- Essid, I.; Hassouna, M. Effect of inoculation of selected Staphylococcus xylosus and Lactobacillus plantarum strains on biochemical, microbiological and textural characteristics of a Tunisian dry fermented sausage. Food Control. 2013, 32, 707–714. [Google Scholar] [CrossRef]
- Villani, F.; Casaburi, A.; Pennacchia, C.; Filosa, L.; Russo, F.; Ercolini, D. Microbial ecology of the Soppressata of Vallo di Diano, a traditional dry fermented sausage from Southern Italy, and in vitro and in situ selection of autochthonous starter cultures. Appl. Environ. Microbiol. 2007, 73, 5453–5463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrière, C.; Centeno, D.; Lebert, A.; Leroy-Sétrin, S.; Berdagué, J.L.; Talon, R. Rolesof superoxide dismutase and catalase of Staphylococcus xylosus in the inhibition of linoleic acid oxidation. Microbiol. Lett. 2001, 201, 181–185. [Google Scholar] [CrossRef]
- Casaburi, A.; Aristoy, M.C.; Cavella, S.; Rossella, D.M.; Danilo, E.; Fidel, T.; Francesco, V. Biochemical and sensory characteristics of traditional fermented sausages of Vallo di Diano (Southern Italy) as affected by the use of starter cultures. Meat Sci. 2007, 76, 295–307. [Google Scholar] [CrossRef]
- Ciuciu Simion, A.M.; Vizireanu, C.; Alexe, P.; Franco, I.; Carballo, J. Effect of the use of selected starter cultures on some quality, safety and sensorial properties of Dacia sausage, a traditional Romanian dry-sausage variety. Food Control. 2014, 35, 123–131. [Google Scholar] [CrossRef]
- Domínguez, R.; Munekata, P.E.; Agregán, R.; Lorenzo, J.M. Effect of commercial starter cultures on free amino acid, biogenic amine and free fatty acid contents in dry-cured foal sausage. LWT-Food Sci. Technol. 2016, 71, 47–53. [Google Scholar] [CrossRef]
- Ruiz-Moyano, S.; Martín, A.; Benito, M.J.; Hernández, A.; Casquete, R.; Córdoba, M.G. Application of Lactobacillus fermentum HL57 and Pediococcus acidilactici SP979 as potential probiotics in the manufacture of traditional Iberian dry-fermented sausages. Food Microbiol. 2011, 28, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Mejri, L.; Ziadi, A.; Adab, S.E.; Boulares, M.; Essid, I.; Hassouna, M. Effect of commercial starter cultures on physicochemical, microbiological and textural characteristics of a traditional dry fermented sausage reformulated with camel meat and hump fat. J. Food Meas. Charact. 2017, 11, 758–767. [Google Scholar] [CrossRef]
- Tabanelli, G.; Coloretti, F.; Chiavari, C.; Grazia, L.; Lanciotti, R.; Gardini, F. Effects of starter cultures and fermentation climate on the properties of two types of typical Italian dry fermented sausages produced under industrial conditions. Food Control. 2012, 26, 416–426. [Google Scholar] [CrossRef]
- Benito, M.J.; Rodríguez, M.; Córdoba, M.G.; Andrade, M.J.; Córdoba, J.J. Effect of the fungal protease EPg222 on proteolysis and texture in the dry fermented sausage ‘salchichón’. J. Sci. Food Agric. 2005, 85, 273–280. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, W.; Yang, F.; Nie, X. Physical and chemical changes of silver carp sausages during fermentation with Pediococcus pentosaceus. Food Chem. 2010, 122, 633–637. [Google Scholar] [CrossRef]
- Nie, X.H.; Lin, S.L.; Zhang, Q.L. Proteolytic characterisation in grass carp sausage inoculated with Lactobacillus plantarum and Pediococcus pentosaceus. Food Chem. 2014, 145, 840–844. [Google Scholar] [CrossRef]
- Aro, J.M.A.; Nyam-Osor, P.; Tsuji, K.; Shimada, K.; Fukushima, M.; Sekikawa, M. The effect of starter cultures on proteolytic changes and amino acid content in fermented sausages. Food Chem. 2010, 119, 279–285. [Google Scholar] [CrossRef]
- Pérez-Santaescolástica, C.; Carballo, J.; Fulladosa, E.; Garcia-Perez, J.V.; Benedito, J.; Lorenzo, J.M. Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Res. Int. 2018, 107, 559–566. [Google Scholar] [CrossRef]
- Lee, Y.C.; Tseng, P.H.; Hwang, C.C.; Kung, H.F.; Huang, Y.L.; Lin, C.S.; Wei, C.-I.; Tsai, Y.H. Effect of Vacuum Packaging on Histamine Production in Japanese Spanish Mackerel (Scomberomorus niphonius) Stored at Various Temperatures. J. Food Protect. 2019, 82, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, Z.; Li, J.; Ma, X.; Hopkins, D.L.; Holman, B.W.B.; Bekhit, A.-D. The effect of freezing time on the quality of normal and pale, soft and exudative (PSE)-like pork. Meat Sci. 2019, 152, 1–7. [Google Scholar] [CrossRef]
- Bermúdez, R.; Franco, D.; Carballo, J.; Sentandreu, M.A.; Lorenzo, J.M. Influence of muscle type on the evolution of free amino acids and sarcoplasmic and myofibrillar proteins through the manufacturing process of Celta dry-cured ham. Food Res. Int. 2014, 56, 226–235. [Google Scholar] [CrossRef]
- Candogan, K.; Wardlaw, F.B.; Acton, J.C. Effect of starter culture on proteolytic changes during processing of fermented beef sausages. Food Chem. 2009, 116, 731–737. [Google Scholar] [CrossRef]
- Mau, J.L.; Tseng, Y.H. Nonvolatile taste components of three strains of Agrocybe cylindracea. J. Agric. Food Chem. 1998, 46, 2071–2074. [Google Scholar] [CrossRef]
- Friedrich, J.E.; Acree, T.E. Gas chromatography olfactometry (GC/O) of dairy products. Int. Dairy J. 1998, 8, 235–241. [Google Scholar] [CrossRef]
- Preininger, M.; Grosch, W. Evaluation of key odorants of the neutral volatiles of Emmentaler cheese by the calculation of odour activity values. Lebensm. Wiss. Und-Technol. Food Sci. Technol. 1994, 27, 237–244. [Google Scholar] [CrossRef]
- Rychlik, M.; Bosset, J.O. Flavour and off-flavours compounds of Swiss Gruyère cheese. Identification of key odorants by quantitative instrumental and sensory studies. Int. Dairy J. 2001, 11, 903–910. [Google Scholar] [CrossRef]
- Hinrichsen, L.L.; Andersen, H.J. Volatile compounds and chemical changes in cured pork: Role of three Halotolerant Bacteria. J. Agric. Food Chem. 1994, 42, 1537–1542. [Google Scholar] [CrossRef]
- Ke, R.; Weic, Z.; Bogdald, C.; Göktaşe, R.K.; Xiao, R. Profiling wines in China for the biogenic amines: A nationwide survey and pharmacokinetic fate modelling. Food Chem. 2018, 250, 268–275. [Google Scholar] [CrossRef]
- Bermúdez, R.; Lorenzo, J.M.; Fonseca, S.; Franco, I.; Carballo, J. Strains of Staphylococcus and Bacillus isolated from traditional sausages as producers of biogenic amines. Front. Microbiol. 2012, 3, 151. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.L.; Xu, X.L.; Zhou, G.H.; Zhu, Z.Y.; Meng, Y.; Sun, Y.M. Effect of starter cultures on microbial ecosystem and biogenic amines in fermented sausage. Food Control. 2010, 21, 444–449. [Google Scholar] [CrossRef]
- Ekici, K.; Omer, A.K. Biogenic amines formation and their importance in fermented foods. BIO Web Conf. 2020, 17, 232. [Google Scholar] [CrossRef] [Green Version]
- Roseiro, L.C.; Gomes, A.; Gonçalves, H.; Sol, M.; Cercas, R.; Santos, C. Effect of processing on proteolysis and biogenic amines formation in a Portuguese traditional dry-fermented ripened sausage “Chouriço Grosso de Estremoz e Borba PGI”. Meat Sci. 2010, 84, 172–179. [Google Scholar] [CrossRef]
- Sun, Q.X.; Chen, Q.; Li, F.F.; Zheng, D.M.; Kong, B.H. Biogenic amine inhibition and quality protection of Harbin dry sausages by inoculation with Staphylococcus xylosus and Lactobacillus plantarum. Food Control. 2016, 68, 358–366. [Google Scholar] [CrossRef]
- Güven, K.C.; Percot, A.; Sezik, E. Alkaloids in marine algae. Mar. Drugs 2010, 8, 269–284. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.; Chang, H.C. Development of a screening method for biogenic amine producing Bacillus spp. Int. J. Food Microbiol. 2012, 153, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Moratalla, M.L.; Bover-Cid, S.; Talon, R.; Garriga, M.; Zanardi, E.; Ianieri, A.; Fraqueza, M.J.; Elias, M.; Drosinos, E.H.; Vidal-Carou, M.C. Strategies to reduce biogenic amine accumulation in traditional sausage manufacturing. LWT-Food Sci. Technol. 2010, 43, 20–25. [Google Scholar] [CrossRef]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Mixed starter cultures to control biogenic amine production in dry fermented sausages. J. Food Protect. 2000, 63, 1556–1562. [Google Scholar] [CrossRef] [PubMed]
Days | Batch | Sign. | ||||
---|---|---|---|---|---|---|
CO | LB | LS | LSS | |||
Total viable counts (Log CFU/g) | 0 | 5.55 ± 0.02 Aa | 6.55 ± 0.04 Ab | 6.45 ± 0.13 Ab | 6.50 ± 0.10 Ab | * |
2 | 9.50 ± 0.02 Ba | 9.57 ± 0.01 Ba | 9.62 ± 0.10 Ba | 9.60 ± 0.14 Ba | n.s. | |
5 | 9.35 ± 0.05 Ba | 9.16 ± 0.02 Ba | 9.77 ± 0.07 Ba | 9.97 ± 0.05 Ba | n.s. | |
8 | 9.21 ± 0.08 Ba | 9.27 ± 0.10 Ba | 9.35 ± 0.05 Ba | 9.92 ± 0.15 Bb | * | |
Sign. | *** | *** | *** | *** | ||
Lactic acid bacteria (Log CFU/g) | 0 | 4.60 ± 0.30 Aa | 5.74 ± 0.21 Ab | 5.71 ± 0.07 Ab | 5.80 ± 0.07 Ab | *** |
2 | 8.47 ± 0.27 Ba | 8.48 ± 0.05 Ba | 8.59 ± 0.03 Ba | 9.00 ± 0.04 Bb | ** | |
5 | 9.21 ± 0.25 Ca | 9.20 ± 0.21 Ca | 9.09 ± 0.12 Da | 9.80 ± 0.92 Ba | n.s. | |
8 | 9.15 ± 0.31 Ca | 9.18 ± 0.12 Ca | 8.81 ± 0.12 Ca | 8.94 ± 0.67 Ba | n.s. | |
Sign. | *** | *** | *** | *** | ||
Staphylococci (Log CFU/g) | 0 | 3.23 ± 0.25 Aa | 5.25 ± 0.02 Ab | 5.37 ± 0.02 Ab | 5.55 ± 0.03 Ab | *** |
2 | 5.69 ± 0.01 Ba | 6.92 ± 0.25 Bb | 7.28 ± 0.25 Bb | 8.03 ± 0.26 Bc | ** | |
5 | 7.84 ± 0.08 Cb | 7.14 ± 0.03 Ba | 8.74 ± 0.23 Bc | 8.89 ± 0.01 Cc | *** | |
8 | 7.22 ± 0.30 Ca | 8.55 ± 0.18 Cb | 9.31 ± 0.15 Cc | 9.37 ± 0.21 Cc | *** | |
Sign. | *** | *** | *** | *** | ||
Enterobacteriaceae (Log CFU/g) | 0 | 3.28 ± 0.07 Ba | 3.29 ± 0.02 Ca | 3.51 ± 0.08 Bb | 3.47 ± 0.08 Bb | ** |
2 | 4.78 ± 0.02 Cb | 4.78 ± 0.03 Db | 4.30 ± 0.05 Ca | 4.89 ± 0.04 Cb | *** | |
5 | 3.50 ± 0.24 Bc | 2.93 ± 0.02 Bb | 2.64 ± 0.07 Aa | 3.11 ± 0.18 Bb | ** | |
8 | 2.99 ± 0.16 Ac | 2.36 ± 0.12 Ab | 2.35 ± 0.35 Ab | 1.74 ± 0.44 Aa | *** | |
Sign. | *** | *** | *** | *** |
Colour | Days | Batch | Sign. | |||
---|---|---|---|---|---|---|
CO | LB | LS | LSS | |||
Lightness (L) | 0 | 49.21 ± 1.10 Ba | 51.52 ± 2.03 Ba | 49.46 ± 1.04 Ba | 48.37 ± 2.11 Ba | n.s. |
2 | 48.96 ± 0.14 Ba | 49.26 ± 0.39 Ba | 49.76 ± 0.20 Ba | 48.09 ± 4.66 Ba | n.s. | |
5 | 37.13 ± 0.11 Aa | 36.52 ± 1.87 Aa | 36.24 ± 0.59 Aa | 35.01 ± 4.50 Aa | n.s. | |
8 | 37.59 ± 0.12 Aa | 37.34 ± 0.12 Aa | 35.63 ± 0.06 Aa | 39.53 ± 3.89 Aa | n.s. | |
Sign. | *** | *** | *** | *** | ||
Redness (a) | 0 | 10.19 ± 0.03 Aa | 10.22 ± 0.17 Aa | 9.86 ± 0.10 Aa | 8.43 ± 0.59 Aa | n.s. |
2 | 18.65 ± 0.06 Da | 19.99 ± 0.28 Ba | 20.76 ± 0.18 Ba | 26.05 ± 3.74 Bb | ** | |
5 | 15.36 ± 0.12 Ba | 21.78 ± 0.86 Bb | 22.45 ± 0.14 Bb | 25.47 ± 5.33 Bb | *** | |
8 | 17.37 ± 0.31 Ca | 20.16 ± 0.20 Bb | 22.48 ± 0.04 Bc | 21.53 ± 2.04 Bbc | *** | |
Sign. | *** | *** | *** | *** | ||
Yellowness (b) | 0 | 14.50 ± 0.24 Da | 14.41 ± 0.47 Da | 13.60 ± 0.18 Ba | 14.31 ± 0.94 Aa | *** |
2 | 10.64 ± 0.43 Ca | 12.32 ± 0.19 Cb | 10.44 ± 0.18 Aa | 12.48 ± 0.40 Cb | ** | |
5 | 6.62 ± 0.03 Aa | 10.53 ± 1.04 Bb | 9.52 ± 0.04 Ab | 11.12 ± 0.97 Bb | n.s. | |
8 | 8.42 ± 0.20 Ba | 8.67 ± 0.06 Aa | 10.12 ± 0.11 Ab | 11.20 ± 0.51 Bb | n.s. | |
Sign. | ** | ** | ** | ** |
FAA | Batch | Sign. | |||
---|---|---|---|---|---|
CO | LB | LS | LSS | ||
Aspartic acid | 10.65 ± 3.37 a | 9.89 ± 0.27 a | 14.08 ± 2.12 a | 13.60 ± 3.01 a | n.s. |
Threonine | 8.48 ± 1.27 a | 9.51 ± 0.23 a | 11.28 ± 2.96 a | 12.87 ± 1.84 a | n.s. |
Serine | 7.52 ± 1.05 a | 8.61 ± 0.19 a | 10.13 ± 2.64 a | 9.84 ± 0.57 a | n.s. |
Glutamic acid | 20.32 ± 2.68 a | 23.43 ± 0.47 a | 27.36 ± 6.87 a | 24.74 ± 1.42 a | n.s. |
Glycine | 8.94 ± 0.82 a | 9.60 ± 0.08 a | 9.64 ± 0.03 a | 9.37 ± 1.15 a | n.s. |
Alanine | 9.43 ± 1.44 a | 8.74 ± 1.82 a | 12.71 ± 2.92 a | 11.86 ± 3.22 a | n.s. |
Cystine | 13.43 ± 1.14 b | 6.54 ± 1.96 a | 19.71 ± 5.58 c | 16.72 ± 0.30 c | *** |
Valine | 7.51 ± 0.90 a | 8.81 ± 0.19 a | 10.06 ± 2.63 a | 9.50 ± 1.66 a | n.s. |
Methionine | 5.91 ± 1.02 a | 6.25 ± 0.23 a | 7.36 ± 2.97 ab | 8.15 ± 0.63 b | * |
Isoleucine | 9.41 ± 1.25 a | 10.30 ± 0.37 a | 11.74 ± 4.28 a | 11.50 ± 1.57 a | n.s. |
Leucine | 12.23 ± 1.43 a | 14.26 ± 0.32 ab | 16.37 ± 4.16 ab | 17.34 ± 0.93 b | * |
Tyrosine | 7.80 ± 1.32 a | 7.97 ± 0.28 a | 9.53 ± 3.82 ab | 10.22 ± 0.07 b | * |
Phenylalanine | 9.22 ± 1.55 a | 9.49 ± 0.33 a | 11.25 ± 4.47 a | 11.64 ± 2.15 a | n.s. |
Lysine | 7.31 ± 0.95 a | 8.58 ± 0.16 a | 9.90 ± 2.49 a | 10.34 ± 1.99 a | n.s. |
Histidine | 6.77 ± 0.88 a | 7.93 ± 0.19 a | 9.29 ± 2.45 a | 18.82 ± 1.52 b | *** |
Arginine | 11.30 ± 1.69 a | 13.45 ± 0.44 a | 15.72 ± 4.65 ab | 21.93 ± 3.61 b | *** |
Proline | 14.70 ± 2.47 a | 15.68 ± 0.35 a | 18.85 ± 7.31 a | 17.09 ± 0.75 a | n.s. |
Total free amino acids | 170.93 ± 3.57 a | 179.04 ± 4.18 a | 224.97 ± 5.05 b | 235.53 ± 4.79 b | *** |
BAs (mg/kg) | Days | Batch | Sign. | |||
---|---|---|---|---|---|---|
CO | LB | LS | LSS | |||
TRY | 0 | 1.45 ± 0.54 Aa | 0.93 ± 0.19 Aa | 1.16 ± 0.27 Aa | 1.43 ± 0.32 Aa | n.s. |
2 | 3.64 ± 0.29 Ba | 2.98 ± 0.56 Ba | 3.15 ± 0.47 Ba | 3.46 ± 0.37 Ba | n.s. | |
5 | 6.72 ± 0.73 Cab | 4.79 ± 0.78 Ca | 7.77 ± 1.88 Cb | 6.59 ± 0.46 Cab | * | |
8 | 10.66 ± 1.81 Db | 6.04 ± 0.69 Da | 6.56 ± 0.49 Ca | 6.25 ± 0.21 Ca | *** | |
Sign. | *** | *** | *** | *** | ||
PHE | 0 | 1.25 ± 0.04 Ac | 0.45 ± 0.06 Aa | 0.44 ± 0.06 Aa | 0.84 ± 0.17 Ab | *** |
2 | 1.52 ± 0.24 Ab | 1.36 ± 0.26A Bb | 0.96 ± 0.23 Aa | 0.95 ± 0.13 Aa | * | |
5 | 1.64 ± 0.76 Aa | 2.61 ± 0.57 Cab | 2.48 ± 0.78 Bab | 2.91 ± 0.02 Bb | * | |
8 | 3.63 ± 1.30 Ba | 3.24 ± 0.20 Da | 2.73 ± 0.32 Ba | 2.72 ± 0.34 Ba | n.s. | |
Sign. | ** | *** | *** | |||
PUT | 0 | 1.79 ± 0.69 Aa | 1.57 ± 0.19 Aa | 1.29 ± 0.20 Aa | 1.51 ± 0.07 Aa | n.s. |
2 | 18.91 ± 5.62 Bb | 4.82 ± 0.63 Ba | 3.23 ± 0.84 Ba | 3.82 ± 0.21 Ba | *** | |
5 | 48.38 ± 9.05 Cb | 11.53 ± 2.15 Ca | 7.12 ± 1.50 Ca | 6.57 ± 0.89 Ca | *** | |
8 | 62.87 ± 5.97 Dc | 16.11 ± 2.25 Db | 6.09 ± 0.77 Ca | 5.72 ± 1.08 Ca | *** | |
Sign. | *** | *** | *** | *** | ||
CAD | 0 | 0.15 ± 0.03 Aa | 0.13 ± 0.02 Aa | 0.12 ± 0.05 Aa | 0.17 ± 0.05 Aa | n.s. |
2 | 1.52 ± 0.58 Bb | 0.59 ± 0.08 Ba | 0.36 ± 0.08 Aa | 0.51 ± 0.15 Ba | ** | |
5 | 1.19 ± 0.15 Ba | 1.66 ± 0.31 Da | 1.11 ± 0.28 Ba | 1.24 ± 0.39 Ca | n.s. | |
8 | 1.63 ± 0.19 Bc | 1.25 ± 0.13 Cb | 0.86 ± 0.04 Ba | 1.12 ± 0.14 Cb | *** | |
Sign. | ** | *** | *** | *** | ||
HIS | 0 | 0.94 ± 0.11 Aa | 0.87 ± 0.20 Aa | 0.87 ± 0.16 Aa | 1.17 ± 0.22 Aa | n.s. |
2 | 16.14 ± 5.44 Bb | 8.67 ± 0.13 Ab | 6.20 ± 0.78 Ab | 6.93 ± 1.04 Ab | ** | |
5 | 13.99 ± 2.60 Bb | 14.42 ± 1.10 Bc | 9.65 ± 1.79 Ac | 10.09 ± 0.95 Ac | ** | |
8 | 30.30 ± 1.51 Cc | 18.17 ± 2.13 Bd | 5.17 ± 0.70 Ab | 5.56 ± 0.29 Ab | *** | |
Sign. | *** | *** | *** | *** | ||
TYR | 0 | 2.49 ± 0.06 Ba | 2.01 ± 0.08 ABa | 2.69 ± 0.88 Ba | 1.17 ± 0.24 Aa | * |
2 | 21.98 ± 1.47 Ab | 34.55 ± 6.88 Bb | 25.35 ± 6.59 ABb | 26.55 ± 5.36 ABb | * | |
5 | 77.69 ± 6.45 Ac | 71.37 ± 9.98 Ac | 76.35 ± 4.86 Ac | 74.45 ± 5.30 Ac | n.s. | |
8 | 110.40 ± 5.49 Bd | 84.50 ± 8.82 Ac | 73.70 ± 4.08 Ac | 77.69 ± 5.48 Ac | *** | |
Sign. | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Hu, G.; Wang, H.; Wang, L.; Zhang, Y.; Zou, Y.; Zhao, L.; Liu, F.; Jin, Y. Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages. Foods 2021, 10, 2939. https://doi.org/10.3390/foods10122939
Wang D, Hu G, Wang H, Wang L, Zhang Y, Zou Y, Zhao L, Liu F, Jin Y. Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages. Foods. 2021; 10(12):2939. https://doi.org/10.3390/foods10122939
Chicago/Turabian StyleWang, Debao, Guanhua Hu, Huiting Wang, Limei Wang, Yuanyuan Zhang, Yufu Zou, Lihua Zhao, Fang Liu, and Ye Jin. 2021. "Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages" Foods 10, no. 12: 2939. https://doi.org/10.3390/foods10122939
APA StyleWang, D., Hu, G., Wang, H., Wang, L., Zhang, Y., Zou, Y., Zhao, L., Liu, F., & Jin, Y. (2021). Effect of Mixed Starters on Proteolysis and Formation of Biogenic Amines in Dry Fermented Mutton Sausages. Foods, 10(12), 2939. https://doi.org/10.3390/foods10122939