Inactivation of Foodborne Viruses by High-Pressure Processing (HPP)
Abstract
:1. Introduction
2. High-Pressure Processing (HPP)
HPP Effect on Food Quality
3. Foodborne Viruses’ Inactivation by HPP
3.1. Factors Affecting Foodborne Viruses’ Inactivation by HPP
3.1.1. Processing Parameters
3.1.2. Non-Processing Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AiV | Aichi virus |
BEN | Bovine enterovirus |
CP | Cold plasma |
DMEM | Dulbecco’s modified Eagle medium, |
DMEM-FBS | DMEM with 10% FBS |
dsDNA | double-stranded DNA |
dsRNA | double-stranded RNA |
EMEM | Eagle’s Minimum Essential Medium |
EV | Enterovirus |
FBS | Fetal bovine serum |
FCV | Feline calicivirus |
FDA | Food and Drug Administration |
HAstV | Human astrovirus |
HAV | Hepatitis A virus |
HCMV | Human cytomegalovirus |
HEV | Hepatitis E virus |
HPP | High-pressure processing |
HRV | Human rotavirus |
HSV-1 | Herpes simplex virus type 1 |
HuAdV | Human adenovirus |
HuNoV | Human norovirus |
IBDV | Infectious bursal disease virus |
MEM | Minimal essential medium |
MNV-1 | Murine norovirus 1 |
NACMCF | National Advisory Committee on Microbiological Criteria for Foods |
PBS | Phosphate-buffered saline |
PEF | Pulsed electric field |
PV | Poliovirus |
SaV | Sapovirus |
ssRNA | single-stranded RNA |
TMV | Tobacco mosaic virus |
UV | Ultraviolet light |
References
- Sanchez, G.; Bosch, A. Survival of enteric viruses in the environment and food. In Viruses in Foods, 2nd ed.; Goyal, S.M., Cannon, J.L., Eds.; Springer: Cham, Switzerland, 2016; pp. 367–392. [Google Scholar]
- EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2013. EFSA J. 2015, 13, 3991. [Google Scholar] [CrossRef] [Green Version]
- Adefisoye, M.A.; Nwodo, U.U.; Green, E.; Okoh, A.I. Quantitative PCR detection and characterisation of human adenovirus, rotavirus and hepatitis A virus in discharged effluents of two wastewater treatment facilities in the Eastern Cape, South Africa. Food Environ. Virology 2016, 8, 262–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todd, E.C.D.; Greig, J.D. Viruses of foodborne origin: A review. Virus Adapt. Treat. 2015, 7, 25–45. [Google Scholar] [CrossRef] [Green Version]
- WHO, 2008 Viruses in Food: Scientific Advice to Support Risk Management Activities Meeting Report. Available online: https://www.who.int/foodsafety/publications/micro/Viruses_in_food_MRA.pdf (accessed on 20 August 2020).
- Pexara, A.; Govaris, A. Foodborne viruses and Innovative Non-Thermal Food-Processing Technologies. Foods 2020, 9, 1520. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.; Gkogka, E.; Le Guyader, S.; Loisy-Hamon, F.; Lee, A.; van Lieshout, L.; Marthi, B.; Myrmel, M.; Sansom, A.; Schultz, A.C.; et al. Foodborne viruses: Detection, risk assessment, and control options in food processing. Int. J. Food Microbiol. 2018, 285, 110–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qu, S.; Xu, L. Progress in the study of virus detection methods: The possibility of alternative methods to validate virus inactivation. Biotechnol. Bioeng. 2019, 116, 2095–2102. [Google Scholar] [CrossRef]
- Koopmans, M.; Duizer, E. Foodborne viruses: An emerging problem. Int. J. Food Microbiol. 2004, 90, 23–41. [Google Scholar] [CrossRef]
- Aadil, R.H.; Roobab, U.; Mann, A.A. Effect of Heat on Food Properties. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 70–75. [Google Scholar]
- Petrescu, D.C.; Vermeir, I.; Petrescu-Mag, R.M. Consumer Understanding of Food Quality, Healthiness, and Environmental Impact: A Cross-National Perspective. Int. J. Environ. Res. Public Health 2020, 17, 169. [Google Scholar] [CrossRef] [Green Version]
- Feroz, F.; Nafisa, S.; Noor, R. Emerging Technologies for Food Safety: High Pressure Processing (HPP) and Cold Plasma Technology (CPT) for Decontamination of Foods. Bangladesh J. Microbiol. 2019, 36, 35–43. [Google Scholar] [CrossRef]
- Roos, Y.H. Water and Pathogenic Viruses Inactivation—Food Engineering Perspectives. Food Eng. Rev. 2020, 12, 251–267. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Kniel, K.E. Inactivation of internalized and surface contaminated enteric viruses in green onions. Int. J. Food Microbiol. 2013, 166, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Nasheri, N.; Doctor, T.; Chen, A.; Harlow, J.; Gill, A. Evaluation of High-Pressure Processing in Inactivation of the Hepatitis E Virus. Front. Microbiol. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, M.; Li, X.; Kingsley, D.H.; Jiang, X.; Chen, H. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure. Appl. Environ. Microbiol. 2014, 80, 2248–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calci, K.V.; Meade, K.G.; Tezloff, R.C.; Kingsley, D.H. High-Pressure Inactivation of Hepatitis A Virus 476 within Oysters. Appl. Environ. Microbiol. 2005, 71, 339–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Shearer, A.E.H.; Hoover, D.G.; Liu, M.N.; Solomon, M.B.; Kniel, K.E. Comparison of hydrostatic and hydrodynamic pressure to inactivate foodborne viruses. Innov. Food Sci. Emerg. Technol. 2008, 9, 418–422. [Google Scholar] [CrossRef]
- Farkas, D.F.; Hoover, D.G. High pressure processing. J. Food Sci. 2000, 65, 47–64. [Google Scholar] [CrossRef]
- Elamin, W.M.; Endan, J.B.; Yosuf, Y.A.; Shamsudin, R.; Ahmedov, A. High Pressure Processing Technology and Equipment Evolution: A Review. J. Eng. Sci. Technol. 2015, 8, 75–83. [Google Scholar] [CrossRef]
- Abera, G. Review on high-pressure processing of foods. Cogent. Food Agric. 2019, 5, 1568725. [Google Scholar] [CrossRef]
- Ayvaz, H.; Balasubramaniam, V.M.; Koutchma, T. High pressure effects on packaging materials. In High Pressure Processing of Food: Principles, Technology and Application; Balasubramaniam, V.M., Barbosa-Cánovas, G.V., Lelieveld, H.L.M., Eds.; Springer: New York, NY, USA, 2016; pp. 73–93. [Google Scholar]
- Balasubramaniam, V.M.; Martınez-Monteagudo, S.I.; Gupta, R. Principles and application of High Pressure–based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015, 6, 19.1–19.28. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Wang, C.-Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry. J. Food Drug. Anal. 2020, 28, 1–13. [Google Scholar] [CrossRef]
- Daher, D.; Le Gourrierec, S.; Pérez-Lamela, C. Review Effect of High-Pressure Processing on the Microbial Inactivation in Fruit Preparations and Other Vegetable Based Beverages. Agriculture 2017, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Lou, F.; Neetoo, H.; Chen, H.; Li, J. High Hydrostatic Pressure Processing: A promising nonthermal technology to inactivate viruses in high-risk foods. Annu. Rev. Food Sci. Technol. 2015, 6, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Koutchma, T. Regulatory Status update. In Adapting High Hydrostatic Pressure (HPP) for Food Processing Operations; Novel Technologies in the Food Industry; Academic Press: Oxford, UK, 2014; pp. 61–62. [Google Scholar]
- Commission Implementing Regulation (EU) 2017/2470 of 20 December 2017 Establishing the Union List of Novel Foods in Accordance with Regulation (EU) 2015/2283 of the European Parliament and of the Council on Novel Foods. OJ Brussels, Belgium, 2008. L 351/72. Available online: https://eur-lex.europa.eu/eli/reg_impl/2017/2470/2018-04-11 (accessed on 30 August 2020).
- Daryaei, H.; Yousef, A.E.; Balasubramaniam, V.M. Microbiological aspects of high-pressure processing of food: Inactivation of microbial vegetative cells and spores. In High Pressure Processing of Food; Food Engineering Series; Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H., Eds.; Springer: New York, NY, USA, 2016; pp. 271–294. [Google Scholar]
- Wang, C.Y.; Huang, H.W.; Hsu, C.P.; Yang, B.B. Recent advances in food processing using high hydrostatic pressure technology. Crit. Rev. Food Sci. Nutr. 2016, 56, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, B.; Morshedi, A.; Moayedi, G.; Akbarian, M.; Akbarian, A.; Hadidi, M. Effect of high pressure processing of food characteristics: A review of quality aspect. Int. J. Biosci. 2014, 10, 193–205. [Google Scholar]
- Evrendilek, G.A. Effects of High-Pressure Processing on Bioavaliability of Food Components. J. Nutr. Food Sci. 2018, 8, 676. [Google Scholar] [CrossRef]
- Sharma, R. Market Trends in High Pressure Processing (HPP) Food; The University of Queensland: Queensland, Australia, 2011; Available online: https://issuu.com/functionalfoodsweekly/docs/high_pressure_processing_market_trends_2011_-_dr_r (accessed on 10 October 2020).
- Martinez-Monteagudo, S.I.; Saldaña, M.D.A. Chemical Reactions in Food Systems at High Hydrostatic Pressure. Food Eng. Rev. 2014, 6, 105–127. [Google Scholar] [CrossRef]
- Wesolowska, A.; Sinkiewicz-Darol, E.; Barbarska, O.; Barbarska, O.; Bernatowicz-Lojko, U.; Borszewska-Kornacka, M.K.; van Goudoever, J.B. Innovative techniques of processing human milk to preserve key components. Nutrients 2019, 11, 1169. [Google Scholar] [CrossRef] [Green Version]
- Bak, K.H.; Bolumar, T.; Karlsson, A.H.; Lindahl, G.; Orlien, V. Effect of high pressure treatment on the color of fresh and processed meats: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 228–252. [Google Scholar] [CrossRef]
- Pal, M.; Devrani, M. Application of various techniques for meat preservation. J. Exp. Food Chem. 2018, 4, 134. [Google Scholar] [CrossRef]
- Bajovic, B.; Bolumar, T.; Heinz, V. Quality considerations with high pressure processing of fresh and value- added meat products. Meat Sci. 2012, 92, 280–289. [Google Scholar] [CrossRef]
- Briones-Labarca, V.; Munoz, C.; Maureira, H. Effect of high hydrostatic pressure on antioxidant capacity, mineral and starch bioaccessibility of a nonconventional food: Prosopis chilensis seed. Food Res. Int. 2011, 44, 875–883. [Google Scholar] [CrossRef]
- McInerney, J.K.; Seccafien, C.A.; Stewart, C.M.; Bird, A. Effects of high-pressure processing on antioxidant activity, and total carotenoid content and availability, in vegetables. Innov. Food Sci. Emerg. Technol. 2007, 8, 543–548. [Google Scholar] [CrossRef]
- Patras, A.; Brunton, N.P.; Da Pieve, S.; Butler, F. Impact of high-pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innov. Food Sci. Emerg. Technol. 2009, 10, 308–313. [Google Scholar] [CrossRef]
- Barba, F.J.; Terefe, N.S.; Buckow, R.; Knorr, D.; Orlien, V. New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods: A review. Food Res. Int. 2015, 77, 725–742. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Hoover, D.G.; Papafragkou, E.; Richards, G.P. Inactivation of hepatitis A virus and a calicivirus by high hydrostatic pressure. J. Food Prot. 2002, 65, 1605–1609. [Google Scholar] [CrossRef]
- Giddings, N.J.; Allard, H.A.; Hite, B.H. Inactivation of the tobacco mosaic virus by high pressure. Phytopathology 1929, 19, 749–750. [Google Scholar]
- Basset, J.; Gratia, A.; Macheboeuf, M.; Manil, P. Action of high pressures on plant viruses. Proc. Soc. Exptl. Biol. Med. 1938, 38, 248–251. [Google Scholar] [CrossRef]
- Emmoth, E.; Rovira, J.; Rajkovic, A.; Corcuera, E.; Wilches Pérez, D.; Dergel, I.; Ottoson, J.R.; Widén, F. Inactivation of Viruses and Bacteriophages as Models for Swine Hepatitis E Virus in Food Matrices. Food Environ. Virol. 2017, 9, 20–34. [Google Scholar] [CrossRef]
- Grove, S.F.; Forsyth, S.; Wan, J.; Coventry, J.; Cole, M.; Stewart, C. Inactivation of hepatitis A virus, poliovirus, and a norovirus surrogate by high pressure processing. Innov. Food Sci. Emerg. Technol. 2008, 9, 206–210. [Google Scholar] [CrossRef]
- Chen, H.; Hoover, D.G.; Kingsley, D.H. Temperature and treatment time influence high hydrostatic pressure inactivation of feline calicivirus, a norovirus surrogate. J. Food Prot. 2005, 68, 2389–2394. [Google Scholar] [CrossRef]
- Lou, F.; Neetoo, H.; Li, J.; Chen, H. Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing. Appl. Environ. Microbiol. 2011, 77, 8538–8547. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Holliman, D.R.; Calci, K.R.; Chen, H.; Flick, G.J. Inactivation of a norovirus by high-pressure processing. Appl. Environ. Microbiol. 2007, 73, 581–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, G. Processing strategies to inactivate hepatitis A virus in food products: A critical review. Compr. Rev. Food Sci. Food Saf. 2014, 14, 771–784. [Google Scholar] [CrossRef]
- Lou, F.; Huang, P.; Neetoo, H.; Gurtler, J.B.; Niemira, B.A.; Chen, H.; Jiang, X.; Li, J. High-Pressure Inactivation of Human Norovirus Virus-Like Particles Provides Evidence that the Capsid of Human Norovirus Is Highly Pressure Resistant. Appl. Environ. Microbiol. 2012, 78, 5320–5327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Q.; Li, D.; Xu, J.; Wang, J.; Zhao, Y.; Li, Z.; Xue, C. Mechanism of inactivation of murine norovirus-1 by high pressure processing. Int. J. Food Microbiol. 2010, 137, 186–189. [Google Scholar] [CrossRef]
- Khadre, M.A.; Yousef, A.E. Susceptibility of human rotavirus to ozone, high pressure, and pulse electric field. J. Food Prot. 2002, 65, 1441–1446. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Chen, H.; Hoover, D.G. Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Res. 2004, 102, 221–224. [Google Scholar] [CrossRef]
- Lou, F.; DiCaprio, E.; Li, X.; Dai, X.; Ma, Y.; Hughes, J.; Chen, H.; Kingsley, D.H.; Li, J. Variable high-pressure-processing sensitivities for genogroup II human noroviruses. Appl. Environ. Microbiol. 2016, 82, 6037–6045. [Google Scholar] [CrossRef] [Green Version]
- Araud, E.; DiCaprio, E.; Yang, Z.; Li, X.; Lou, F.; Hughes, J.H.; Chen, H.; Li, J. High-Pressure Inactivation of Rotaviruses: Role of Treatment Temperature and Strain Diversity in Virus Inactivation. Appl. Environ. Microbiol. 2015, 81, 6669–6678. [Google Scholar] [CrossRef] [Green Version]
- DiCaprio, E.; Ye, M.; Chen, H.; Li, J. Inactivation of Human Norovirus and Tulane Virus by High Pressure Processing in Simple Mediums and Strawberry Puree. Front. Sustain. Food Syst. 2019, 3, 26. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Guan, D.S.; Hoover, D.G. Pressure inactivation of hepatitis A virus in strawberry puree and sliced green onions. J. Food Prot. 2005, 68, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, D.H.; Chen, H.Q. Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. Int. J. Food Microbiol. 2009, 130, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, N.; Kurdziel, A.S.; Langton, S.; Needs, E.; Cook, N. Resistance of poliovirus to inactivation by high hydrostatic pressures. Innov. Food Sci. Emerg. Technol. 2001, 2, 95–98. [Google Scholar] [CrossRef]
- Hirneisen, K.; Reith, J.L.; Wei, J.; Hoover, D.G.; Hicks, D.T.; Pivarnik, L.F.; Kniela, K.E. Comparison of pressure inactivation of caliciviruses and picornaviruses in a model food system. Innov. Food Sci. Emerg. Technol. 2014, 26, 102–107. [Google Scholar] [CrossRef]
- Parekh, S.L.; Aparnathi, K.D.; Sreeja, V. High Pressure Processing: A Potential Technology for Processing and Preservation of Dairy Foods. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 3526–3535. [Google Scholar] [CrossRef]
- Nakagami, T.; Shigehisa, T.; Ohmori, T.; Taji, S.; Hase, A.; Kimura, T.; Yamanishi, K. Inactivation of herpes viruses by high hydrostatic pressure. J. Virol. Methods 1992, 38, 255–261. [Google Scholar] [CrossRef]
- Grove, S.F.; Lee, A.; Lewis, T.; Stewart, C.M.; Chen, H.; Hoover, D.G. Inactivation of Foodborne viruses of significance by high pressure and other processes. J. Food Prot. 2006, 69, 957–968. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Kingsley, D.H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses. Int. J. Food Microbiol. 2013, 167, 138–143. [Google Scholar] [CrossRef]
- Kingsley, D.H.; Chen, H. Aqueous matrix composition influences feline calcivirus inactivation by high pressure processing. J. Food Prot. 2008, 71, 1598–1603. [Google Scholar] [CrossRef]
- Lou, F.; Neetoo, H.; Chen, H.; Li, J. Inactivation of a human norovirus surrogate by high-pressure processing: Effectiveness, mechanism, and potential application in the fresh produce industry. Appl. Environ. Microbiol. 2011, 77, 1862–1871. [Google Scholar] [CrossRef] [Green Version]
- Rzezutka, A.; Cook, N. Survival of human enteric viruses in the environment and food. FEMS Microbiol. Rev. 2004, 28, 441–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirneisen, K.A.; Black, E.P.; Cascarino, J.L.; Fino, V.R.; Hoover, D.G.; Kniel, K.E. Viral Inactivation in Foods: A Review of Traditional and Novel Food-Processing Technologies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 3–20. [Google Scholar] [CrossRef]
- Hirneisen, K.A.; Hoover, D.G.; Hicks, D.T.; Pivarnik, L.F.; Kniel, K.E. Pressure inactivation of enteric viruses in a seafood salad-like product. J. Aquat. Food Prod. Technol. 2012, 21, 455–467. [Google Scholar] [CrossRef]
- Murchie, L.W.; Kelly, A.L.; Wiley, M.; Adair, B.M.; Patterson, M. Inactivation of a calicivirus and enterovirus in shellfish by high pressure. Innovat. Food Sci. Emerg. Tech. 2007, 8, 213–217. [Google Scholar] [CrossRef]
- Terio, V.; Tantillo, G.; Martella, V.; Di Pinto, P.; Buonavoglia, C.; Kingsley, D.H. High pressure inactivation of HAV within mussels. Food Environ. Virol. 2010, 2, 83–88. [Google Scholar] [CrossRef]
- Horm, K.M.; Harte, F.M.; D’Souza, D.H. Human norovirus surrogate reduction in milk and juice blends by high pressure homogenization. J. Food Prot. 2012, 75, 1984–1990. [Google Scholar] [CrossRef]
- Buckow, R.; Bingham, J.; Daglas, S.; lowther, S.; Amos-Ritchie, R.; Middleton, D. High pressure inactivation of selected avian viral pathogens in chicken meat homogenate. Food Control 2017, 73, 215–222. [Google Scholar] [CrossRef]
- Imamura, S.; Kanezashim, H.; Goshima, T.; Suto, A.; Ueki, Y.; Sugawara, N.; Ito, H.; Zou, B.; Uema, M.; Noda, M.; et al. Effect of High-Pressure Processing on Human Noroviruses in Laboratory-Contaminated Oysters by Bio-Accumulation. Foodborne Pathog. Dis. 2017, 14, 518–523. [Google Scholar] [CrossRef]
Viruses | Particle/Genome 1 | Genus/Family |
---|---|---|
Human norovirus (HuNoV) | Non-enveloped/ssRNA | Norovirus/Caliciviridae |
Human rotavirus (HRV) | Non-enveloped/segmented dsRNA | Rotavirus/Reoviridae |
Hepatitis A (HAV) | Non-enveloped/ssRNA | Hepatovirus/Picornaviridae |
Human astrovirus (HAtVs) | Non-enveloped/ssRNA | Mamastrovirus/Astroviridae |
Aichi virus (AiV) | Non-enveloped/ssRNA | Kobuvirus/Picornaviridae |
Hepatitis E (HEV) | Non-enveloped/ssRNA | Orthohepevirus/Hepeviridae |
Human adenovirus (HAdV) | Non-enveloped/dsDNA | Mastadenovirus/Adenoviridae |
Sapovirus (SaV) | Non-enveloped/ssRNA | Sapovirus/Caliciviridae |
Enterovirus (EV) | Non-enveloped/ssRNA | Enterovirus/Picornaviridae |
Virus/Surrogate Tested 1 | Treatment Parameters | Medium 2 | Reduction 3 | References |
---|---|---|---|---|
HuNoV GII.1-509 | 200 MPa, 4 °C, 5 min | Distilled H2O | 1.6 log RNA copies/mL | [56] |
200 MPa, 4 °C, 5 min | PBS | >1.2 1.2 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 7.0 | MEM | 1.2 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 4.0 | MEM | No reduction | ||
200 MPa, 4 °C, 5 min/pH 10.0 | MEM | 1.0 log RNA copy/mL | ||
200 MPa, 20 °C, 5 min/pH 7.0 | MEM | No reduction | ||
200 MPa, 40 °C, 5 min/pH 7.0 | MEM | No reduction | ||
400 MPa, 4 °C, 2 min/pH 4.0 | PBS | 2.14 log RNA copy/mL | [58] | |
400 MPa, 20 °C, 2 min/pH 4.0 | PBS | 1.08 log RNA copy/mL | ||
400 MPa, 4 °C, 2 min/pH 7.0 | PBS | 3.06 log RNA copy/mL | ||
400 MPa, 20 °C, 2 min/pH 7.0 | PBS | 1.24 log RNA copy/mL | ||
HuNoV GII.4-5M | 200 MPa, 4 °C, 5 min | Distilled H2O | >4-log RNA copy/mL | [56] |
200 MPa, 4 °C, 5 min | PBS | 2.7 RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 7.0 | MEM | 2.43 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 4.0 | MEM | 0.58 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 10.0 | MEM | 1.77 log RNA copy/mL | ||
200 MPa, 20 °C, 5 min/pH 7.0 | MEM | 0.1 log RNA copy/mL | ||
200 MPa, 40 °C, 5 min/pH 7.0 | MEM | 0.26 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 7.0 | MEM | 2.43 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 4.0 | MEM | 0.58 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 10.0 | MEM | 1.77 log RNA copy/mL | ||
200 MPa, 20 °C, 5 min/pH 7.0 | MEM | 0.1 log RNA copy/mL | ||
HuNoV GII.6-490 | 200 MPa, 4 °C, 5 min | Distilled H2O | 2 log RNA copies/mL | [56] |
200 MPa, 4 °C, 5 min | PBS | 2 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 7.0 | MEM | 1.3 log RNA copy/mL | ||
200 MPa, 4 °C, 5 min/pH 4.0 | MEM | No reduction | ||
200 MPa, 4 °C, 5 min/pH 10.0 | MEM | 0.9 log RNA copy/mL | ||
200 MPa, 20 °C, 5 min | MEM | No reduction | ||
200 MPa, 40 °C, 5 min | MEM | No reduction | ||
HAV | 450 MPa, ambient temp., 5 min | DMEM | 7.0 log PFU/mL | [43] |
400 MPa, 50 °C, 1 min | DMEM-FBS | 4.0 log PFU/mL | [60] | |
400 MPa, 50 °C, 1 min, 1% NaCl | DMEM-FBS | 4.1 log PFU/mL | ||
400 MPa, 50 °C, 1 min, 3% NaCl | DMEM-FBS | 1.3 log PFU/mL | ||
400 MPa, 50 °C, 1 min, 6% NaCl | DMEM-FBS | 0.4 log PFU/mL | ||
HRV | 300 MPa, 4 °C, 2 min/pH 7.0 | MEM | 4.1 log PFU/mL | [49] |
300 MPa, 4 °C, 2 min/pH 4.0 | MEM | 1.9 log PFU/mL | ||
400 MPa, 4 °C, 2 min | MEM | 5 log PFU/mL (K8 strain) >5 log PFU/mL (Ku strain) | [57] | |
450 MPa, 4 °C, 2 min | MEM | >5 log PFU/mL (S2 strain) 5.3 log PFU/mL (YO strain) | ||
450 MPa, 20 °C, 2 min | MEM | 1 log PFU/mL (K8 strain) 4.1 log PFU/mL (Ku strain) | ||
HEV | 400 MPa, ambient temp. 1 and 5 min 600 MPa, ambient temp., for 1 and 5 min | MEM + 10% FBS | 2 log infectious particles | [15] |
AiV | 600 MPa, ambient temp., 5 min | MEM + 2% FBS MEM + 10% FBS | No reduction | [55] |
Poliovirus | 600 MPa, 20 ◦C, 60 min | EMEM | No reduction | [62] |
Coxsackie virus (CAV9) | 400 MPa, ambient temp., 5 min | MEM + 10% FBS | 3.4 log TCID50 | [55] |
500 MPa, ambient temp., 5 min | MEM + 10% FBS | 6.5 log TCID50 | ||
500 MPa, ambient temp., 5 min | MEM + 10% FBS | 7.6 log TCID50 | ||
Coxsackie virus (CBV5) | 600 MPa, ambient temp., 5 min | MEM + 10% FBS | No reduction | [55] |
FCV | 200 MPa, 10 °C, 4 min | DMEM-FBS | 5.0 log PFU/mL | [48] |
200 MPa, 20 °C, 4 min | DMEM-FBS | 0.3 log PFU/mL | ||
250 MPa, 20 °C, 1 min/pH 6.0 | DMEM-FBS | 4.1 log PFU/mL | [68] | |
250 MPa, 20 °C, 5 min, 12% NaCl | DMEM-FBS | 0.7 log PFU/mL | ||
50–350 MPa, 20 °C, 5 min | DMEM-FBS | 3.84 log TCID50 (250 MPa) >5.42 log TCID50 (300 MPa) | [73] | |
BEN | 50–350 MPa, 20 °C, 5 min | MEM | 0.33 log TCID50 (250 MPa) | [73] |
Virus/Surrogate Tested 1 | Treatment Parameters | Food | Reduction 2 | References |
---|---|---|---|---|
HuNoV GI.1 | 400 MPa, 6 °C, 5 min | Oysters | 1.3 log PFU/mL | [62] |
600 MPa, 1 and 21 °C, 2 min | Dry blueberries | <1 log | [67] | |
500 MPa, 1 °C, 2 min | Wet blueberries | 2.7 log | ||
HuNoV GII.4 | 400 MPa, 6 °C, 5 min | Oysters | 3.6 log PFU/mL | [62] |
400 MPa, 4 °C, 2 min/pH 7.0 | Strawberry puree | 2.29 log RNA copy/mL | [58] | |
400 MPa, 20 °C, 2 min/pH 7.0 | Strawberry puree | ∼1 log RNA copy/mL | ||
500 MPa, 4 °C, 2 min/pH 4.0 | Strawberry puree | Slight reduction | ||
600 MPa, 4 °C, 2 min/pH 4.0 | Strawberry puree | No reduction | ||
HuNoV GII-7 | 400 MPa, 25 °C, 5 min | Oysters | 1.87–1.99 log RNA copy/mL | [77] |
HAV | 400 MPa, 9 °C, 1 min | Oysters | 3.0 log PFU/mL | [17] |
375 MPa, 21 °C, 5 min/pH 3.67 | Mashed strawberry | 4.3 log PFU/mL | [43] | |
375 MPa, 21 °C, 5 min/pH 5.12 | Green onions | 4.7 log PFU/mL | ||
500 MPa, 4 °C, 5 min | Sausage | 3.2 log TCID50/mL | [18] | |
500 MPa, 20 °C, 1 min/pH 6.07 | Oysters | >4.6 log PFU/mL | [60] | |
500 MPa, 40 °C, 1 min/pH 6.07 | Oysters | >4.6 log PFU/mL | ||
500 MPa, 50 °C, 1 min/pH 6.07 | Oysters | 4.6 log PFU/mL | ||
350 MPa, 18–22 °C, 5 min | Mussels | 2.1 log PFU/treatment group (blue mussels) 1.7 log PFU/treatment group (Mediterranean mussels) | [74] | |
400 MPa, 18–22 °C, 5 min | Mussels | 3.6 log PFU/treatment group (blue mussels) 2.9 log PFU (Mediterranean mussels) | ||
400 MPa, 5 °C, 5 min | Seafood meat (tuna, cod, shrimp, and clams) Seafood salad (meat with mayonnaise) | Seafood meat: 1.76 log TCID50/g (tuna) 2.92 log TCID50/g (cod) 1.68 log TCID50/g (shrimp) 3.38 log TCID50/g (clams) Seafood salad: 3.30 log TCID50/g (tuna) 2.22 log TCID50/g (cod) 1.44 log TCID50/g (shrimp) 3.01 log TCID50/g (clams) | [72] | |
500 MPa, 20 °C, 2 min | Green onions | >4.7 MPN units/plant 2.5 log MPN units/plant (internalized virus) 5.5 MPN units/plant (external virus) | [14] | |
HEV | 400 MPa, ambient temp. 1 and 5 min; 600 MPa, ambient temp., for 1 and 5 min | Pork pâté | 0.5 log infectious particles | [15] |
HuAdV | 500 MPa, 20 °C, 2 min | Green onions | >1.14 log MPN units/plant (internalized virus) >5.8 log MPN units/plant (external virus) | [14] |
FCV | 200 MPa, 5 °C, 5 min | Seafood meat (tuna, cod, shrimp, and clams) Seafood salad (meat with mayonnaise) | Seafood meat: >4.5 log TCID50/g (tuna) 1.15 log TCID50/g (cod) >4.4 log TCID50/g (shrimp) 3.15 log TCID50/g (clams) Seafood salad: 3.84 log TCID50/g (tuna) 2.22 log TCID50/g (cod) >4.71 log TCID50/g (shrimp) >5.08 log TCID50/g (clams) | [72] |
50–350 MPa, 20 °C, 5 min | Shellfish (mussels, oysters) | 1.5 log TCID50 (250 MPa) (oysters, mussel) >3.83 log log TCID50 (300 MPa) (oysters) | [73] | |
FCV 2280 | 400 MPa, 10 min | Swine liver | 4.2 log | [46] |
600 MPa, 10 min | Ham | 4.1 log | ||
FCV wildtype (wt) | 400 MPa, 10 min | Swine liver | ≥5.0 log | [46] |
600 MPa, 10 min | Ham | 4.4 log | ||
500 MPa, 4 °C, 5 min | Sausage | 2.89 log TCID50/mL | [18] | |
BEN | 50–350 MPa, 20 °C, 5 min | Shellfish (mussels, oysters) | No reduction (250 MPa) 2.25 log TCID50 (450 MPa) (oysters) | [73] |
MS2 | 500 MPa, 4 °C, 5 min | Sausage | 1.46 log TCID50/mL | [18] |
400 MPa, 10 min | Swine liver | No reduction | [46] | |
600 MPa, 10 min | Ham | 1.7 log PFU/mL | ||
ΦX174 | 400 MPa, 10 min | Swine liver | 1.1 log PFU/mL | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govaris, A.; Pexara, A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods 2021, 10, 215. https://doi.org/10.3390/foods10020215
Govaris A, Pexara A. Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods. 2021; 10(2):215. https://doi.org/10.3390/foods10020215
Chicago/Turabian StyleGovaris, Alexander, and Andreana Pexara. 2021. "Inactivation of Foodborne Viruses by High-Pressure Processing (HPP)" Foods 10, no. 2: 215. https://doi.org/10.3390/foods10020215
APA StyleGovaris, A., & Pexara, A. (2021). Inactivation of Foodborne Viruses by High-Pressure Processing (HPP). Foods, 10(2), 215. https://doi.org/10.3390/foods10020215