Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Fillet Samples, Storage Conditions and Sampling
2.2. Microbiological Analysis
2.3. Gas Analysis
2.4. Sensory Analysis
2.5. FTIR Spectroscopy
2.6. Image Acquisition
2.7. Data Analysis
3. Results and Discussion
3.1. Microbiological Spoilage of Sea Bass Fillets
3.2. MAP Gas Analysis
3.3. Sensory Analysis
3.4. Fish Spoilage Assessment Using FTIR and MSI Spectral Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). FAO Framework on Rural Extreme Poverty: Towards Reaching Target 1.1 of the Sustainable Development Goals. Rome, Italy. 2019. Available online: http://www.fao.org/3/ca4811en/ca4811en.pdf (accessed on 6 December 2020).
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2020. Sustainability in Action. Rome, Italy. 2020. Available online: https://doi.org/10.4060/ca9229en (accessed on 6 December 2020).
- Food and Agriculture Organization (FAO). The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Boziaris, I.S.; Parlapani, F.F. Specific Spoilage Organisms (SSO) in Fish. In Microbiological Quality of Food: Foodborne Spoilers; Bevilacqua, A., Corbo, M.R., Sinigaglia, M., Sykes, R., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 60–98. [Google Scholar]
- Parlapani, F.F.; Haroutounian, S.A.; Nychas, G.-J.E.; Boziaris, I.S. Microbiological spoilage and volatiles production of gutted European sea bass stored under air and commercial modified atmosphere package at 2 °C. Food Microbiol. 2015, 50, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Kritikos, A.; Aska, I.; Economou, S.; Mallouchos, A.; Parlapani, F.F.; Haroutounian, S.A.; Boziaris, I.S. Volatilome of chill-stored European seabass and Atlantic salmon products under modified atmosphere packaging. Molecules 2020, 25, 1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gram, L.; Huss, H.H. Microbiological spoilage of fish and fish products. Int. J. Food Microbiol. 1996, 33, 121–137. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Teena, M.; Manickavasagan, A.; Mothershaw, A.; El Hadi, S.; Jayas, D.S. Potential of machine vision techniques for detecting fecal and microbial contamination of food products: A review. Food Bioprocess Technol. 2013, 6, 1621–1634. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT Food Sci. Technol. 2015, 62, 1060–1068. [Google Scholar] [CrossRef]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.-J.E. Multispectral Imaging (MSI): A Promising method for the detection of minced beef adulteration with horsemeat. Food Control 2017, 73, 57–63. [Google Scholar] [CrossRef]
- Papadopoulou, O.; Panagou, E.Z.; Tassou, C.C.; Nychas, G.-J.E. Contribution of Fourier Transform Infrared (FTIR) Spectroscopy data on the quantitative determination of minced pork meat spoilage. Food Res. Int. 2011, 44, 3264–3271. [Google Scholar] [CrossRef]
- Argyri, A.A.; Jarvis, R.M.; Wedge, D.; Xub, Y.; Panagou, E.Z.; Goodacre, R.; Nychas, G.-J.E. A comparison of Raman and FT-IR spectroscopy for the prediction of meat spoilage. Food Contr. 2013, 29, 461–470. [Google Scholar] [CrossRef]
- Fengou, L.C.; Lianou, A.; Tsakanikas, P.; Gkana, E.N.; Panagou, E.Z.; Nychas, G.-J.E. Evaluation of Fourier transform infrared spectroscopy and multispectral imaging as means of estimating the microbiological spoilage of farmed sea bream. Food Microbiol. 2019, 79, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Chao, K.; Kima, M.S.; Lub, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Dissing, B.S.; Papadopoulou, O.S.; Tassou, C.C.; Ersbøll, B.K.; Carstensen, J.M.; Panagou, E.Z.; Nychas, G.-J.E. Using multispectral imaging for spoilage detection of pork meat. Food Bioprocess Technol. 2013, 6, 2268–2279. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Agriculture, Forestry and Fishery Statistics, 2019 Edition. Publications Office of the European Union, Luxemburg. 2019. Available online: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=fish_aq2a&lang=en (accessed on 6 December 2020).
- Gram, L.; Trolle, G.; Huss, H.H. Detection of specific spoilage bacteria from fish stored at low (0 °C) and high (20 °C) temperatures. Int. J. Food Microbiol. 1987, 4, 65–72. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Papadopoulou, O.; Carstensen, J.M.; Nychas, G.-J.E. Potential of multispectral imaging technology for rapid and non-destructive determination of the microbiological quality of beef filets during aerobic storage. Int. J. Food Microbiol. 2014, 174, 1–11. [Google Scholar] [CrossRef]
- Manthou, E.; Lago, S.L.; Dagres, E.; Lianou, A.; Tsakanikas, P.; Panagou, E.Z.; Anastasiadi, M.; Mohareb, F.; Nychas, G.-J.E. Application of spectroscopic and multispectral imaging technologies on the assessment of ready-to-eat pineapple quality: A performance evaluation study of machine learning models generated from two commercial data analytics tools. Comput. Electron. Agric. 2020, 175, 105529. [Google Scholar] [CrossRef]
- Syropoulou, F.; Parlapani, F.F.; Bosmali, I.; Madesis, P.; Boziaris, I.S. HRM and 16S rRNA gene sequencing reveal the cultivable microbiota of the European seabass during ice storage. Int. J. Food Microbiol. 2020, 327, 108658. [Google Scholar] [CrossRef]
- Tryfinopoulou, P.; Tsakalidou, E.; Vancanneyt, M.; Hoste, B.; Swings, J.; Nychas, G.-J.E. Diversity of Shewanella population in fish Sparus aurata harvested in the Aegean Sea. J. Appl. Microbiol. 2007, 103, 711–721. [Google Scholar] [CrossRef] [Green Version]
- Koutsoumanis, K.P.; Taoukis, P.S.; Drosinos, E.; Nychas, G.-J.E. Applicability of an Arrhenius model for the combined effect of temperature and CO2 packaging on the spoilage microflora of fish. Appl. Environ. Microbiol. 2000, 66, 3528–3534. [Google Scholar] [CrossRef] [Green Version]
- Tryfinopoulou, P.; Tsakalidou, E.; Nychas, G.-J.E. Characterization of Pseudomonas spp. associated with spoilage of gilthead seabream store under various conditions. Appl. Environ. Microbiol. 2002, 68, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lerfall, J.; Thomassen, G.M.B.; Jacobsen, A.N. Quality of fresh saithe (Pollachiusvirens) in modified atmosphere pachagesas affected by the gas composition. Food Packag. 2018, 18, 147–156. [Google Scholar] [CrossRef]
- Parlapani, F.F.; Kormas, K.A.; Boziaris, I.S. Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. J. Sci. Food Agric. 2015, 95, 2386–2394. [Google Scholar] [CrossRef] [PubMed]
- Parlapani, F.F.; Mallouchos, A.; Haroutounian, S.A.; Boziaris, I.S. Volatile organic compounds of microbial and non-microbial origin produced on model fish substrate un-inoculated and inoculated with gilt-head sea bream spoilage bacteria. LWT Food Sci. Technol. 2017, 78, 54–62. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach for Structural Equation Modeling; Marcoulides, G.A., Ed.; Modern Methods for Business Research; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Dijkstra, T.K.; Henseler, J. Consistent and asymptotically normal PLS estimators for linear structural equations. Comput. Stat. Data Anal. 2015, 81, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Vasconcelos, H.; De Almeida, J.M.M.M. A chemometrics approach applied to Fourier transform infrared spectroscopy (FTIR) for monitoring the spoilage of fresh salmon (Salmo salar) stored under modified atmospheres. Int. J. Food Microbiol. 2017, 241, 331–339. [Google Scholar] [CrossRef]
- Tsakanikas, P.; Karnavas, A.; Panagou, E.; Nychas, G.-J.E. A machine learning workflow for raw food spectroscopic classification in a future industry. Sci. Rep. 2020, 10, 11212. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Qu, J.-H.; Pu, H.-B.; Zhang, X.-C.; Song, Z.; Chen, X.; Zhang, H. Developing a multispectral imaging for simultaneous prediction of freshness indicators during chemical spoilage of grass carp fish fillet. J. Food Engin. 2016, 182, 9–17. [Google Scholar] [CrossRef]
- Sousa, N.; Moreira, M.J.; Saraiva, C.; Almeida, J.M.M.M. Applying Fourier Transform Mid Infrared Spectroscopy to detect the adulteration of Salmo salar with Oncorhynchus mykiss. Foods 2018, 7, 55. [Google Scholar] [CrossRef] [Green Version]
Temperature/Packaging | Air | MAP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | y0 | Rate | ±SE | yEnd | Se Fit | R2 | y0 | Rate | ±SE | yEnd | SE Fit | R2 | |
Total Viable Count | 4.94 | 0.60 | 0.05 | 9.76 | 0.31 | 0.97 | 5.13 | 0.13 | 0.01 | 8.60 * | 0.16 | 0.97 | |
Pseudomonas spp. | 4.68 | 0.63 | 0.05 | 9.92 | 0.32 | 0.97 | 5.09 | 0.14 | 0.01 | 8.50 * | 0.16 | 0.97 | |
Shewanella spp. | 3.02 | 0.63 | 0.06 | 8.70 | 0.40 | 0.96 | 3.68 | 0.19 | 0.01 | 8.03 | 0.10 | 0.99 | |
0 | Enterobacteriaceae | 3.40 | 0.25 | 0.02 | 6.37 * | 0.23 | 0.95 | 3.94 | 0.25 | 0.03 | 7.70 * | 0.21 | 0.96 |
B. thermophacta | 2.50 | 0.45 | 0.01 | 7.13 | 0.06 | 1.00 | 2.72 | 0.21 | 0.02 | 7.60 * | 0.36 | 0.96 | |
Lactic acid bacteria | 2.77 | 0.18 | 0.02 | 4.95 * | 0.15 | 0.97 | 3.45 | 0.14 | 0.01 | 6.60 * | 0.21 | 0.97 | |
Yeasts | 3.34 | 0.70 | 0.05 | 8.85 * | 0.19 | 0.99 | 3.65 | 0.10 | 0.01 | 6.90 * | 0.13 | 0.97 | |
Total Viable Count | 4.94 | 0.91 | 0.04 | 10.02 * | 0.27 | 0.98 | 5.13 | 0.28 | 0.02 | 9.02 | 0.18 | 0.98 | |
Pseudomonas spp. | 4.68 | 0.96 | 0.04 | 10.05 * | 0.28 | 0.98 | 5.09 | 0.22 | 0.01 | 8.60 * | 0.20 | 0.96 | |
Shewanella spp. | 3.02 | 1.02 | 0.04 | 8.95 * | 0.27 | 0.98 | 3.68 | 0.72 | 0.07 | 8.18 | 0.33 | 0.96 | |
4 | Enterobacteriaceae | 3.40 | 0.79 | 0.09 | 7.52 * | 0.22 | 0.97 | 3.40 | 0.32 | 0.03 | 6.73 | 0.26 | 0.94 |
B. thermophacta | 2.50 | 0.71 | 0.04 | 6.70 * | 0.16 | 0.99 | 2.72 | 0.66 | 0.06 | 7.34 | 0.24 | 0.99 | |
Lactic acid bacteria | 2.77 | 0.36 | 0.03 | 4.97 * | 0.13 | 0.97 | 3.45 | 0.33 | 0.03 | 7.07 * | 0.34 | 0.97 | |
Yeasts | 3.34 | 1.08 | 0.03 | 5.34 | 0.01 | 1.00 | 3.65 | 0.39 | 0.02 | 5.90 | 0.06 | 1.00 | |
Total Viable Count | 4.94 | 1.94 | 0.25 | 9.69 | 0.22 | 0.99 | 5.13 | 0.62 | 0.07 | 8.96 | 0.28 | 0.95 | |
Pseudomonas spp. | 4.68 | 1.72 | 0.11 | 9.55 | 0.26 | 0.98 | 5.09 | 0.53 | 0.07 | 8.78 | 0.31 | 0.94 | |
Shewanella spp. | 3.02 | 2.17 | 0.22 | 7.71 | 0.35 | 0.96 | 3.68 | 1.01 | 0.11 | 8.28 | 0.29 | 0.96 | |
8 | Enterobacteriaceae | 3.40 | 1.25 | 0.06 | 8.00 * | 0.27 | 0.97 | 3.40 | 0.90 | 0.10 | 8.60 | 0.35 | 0.96 |
B. thermophacta | 2.50 | 1.24 | 0.10 | 6.45 * | 0.28 | 0.97 | 2.72 | 0.50 | 0.07 | 8.40 * | 0.61 | 0.94 | |
Lactic acid bacteria | 2.77 | 1.50 | 0.14 | 5.12 | 0.07 | 1.00 | 3.45 | 0.84 | 0.02 | 6.80 | 0.03 | 1.00 | |
Yeasts | 3.34 | 0.46 | 0.02 | 4.84 * | 0.07 | 0.99 | 3.65 | 0.36 | 0.01 | 7.80 * | 0.11 | 1.00 | |
Total Viable Count | 4.94 | 2.46 | 0.23 | 9.72 | 0.38 | 0.97 | 5.13 | 1.26 | 0.12 | 9.07 | 0.15 | 0.99 | |
Pseudomonas spp. | 4.68 | 2.37 | 0.20 | 9.71 | 0.34 | 0.97 | 5.09 | 1.26 | 0.17 | 8.87 | 0.19 | 0.98 | |
Shewanella spp. | 3.02 | 2.86 | 0.28 | 7.86 | 0.34 | 0.97 | 3.68 | 1.28 | 0.07 | 8.28 | 0.19 | 0.99 | |
12 | Enterobacteriaceae | 3.40 | 2.03 | 0.15 | 8.56 | 0.33 | 0.97 | 3.40 | 1.47 | 0.08 | 8.68 | 0.22 | 0.99 |
B. thermophacta | 2.50 | 3.41 | 0.21 | 6.82 * | 0.13 | 0.99 | 2.72 | 0.69 | 0.06 | 8.50 * | 0.42 | 0.97 | |
Lactic acid bacteria | 2.77 | 1.09 | 0.06 | 4.53 * | 0.04 | 1.00 | 3.45 | 0.52 | 0.05 | 7.70 * | 0.34 | 0.97 | |
Yeasts | 3.34 | 0.73 | 0.06 | 4.75 * | 0.09 | 0.97 | 3.65 | 0.43 | 0.04 | 7.40 * | 0.29 | 0.96 |
Storage | Data Set | Slope | Offset | R2 | RMSE |
---|---|---|---|---|---|
Air | Calibration | 0.73 | 2.01 | 0.73 | 0.90 |
Cross-validation * | 0.68 | 2.45 | 0.59 | 1.14 | |
Prediction | 0.78 | 1.81 | 0.75 | 0.84 | |
MAP | Calibration | 0.96 | 0.28 | 0.96 | 0.67 |
Cross-validation | 0.72 | 5.41 | 0.99 | 1.05 | |
Prediction | 0.99 | 0.24 | 0.99 | 0.64 |
Storage | Data Set | Slope | Offset | R2 | RMSE |
---|---|---|---|---|---|
Air | Calibration | 0.58 | 3.10 | 0.58 | 1.12 |
Cross-validation * | 0.48 | 3.89 | 0.40 | 1.38 | |
Prediction | 0.43 | 4.23 | 0.44 | 1.31 | |
MAP | Calibration | 0.65 | 2.79 | 0.65 | 0.77 |
Cross-validation | 0.53 | 3.38 | 0.42 | 0.96 | |
Prediction | 0.62 | 2.78 | 0.62 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govari, M.; Tryfinopoulou, P.; Parlapani, F.F.; Boziaris, I.S.; Panagou, E.Z.; Nychas, G.-J.E. Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods 2021, 10, 264. https://doi.org/10.3390/foods10020264
Govari M, Tryfinopoulou P, Parlapani FF, Boziaris IS, Panagou EZ, Nychas G-JE. Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods. 2021; 10(2):264. https://doi.org/10.3390/foods10020264
Chicago/Turabian StyleGovari, Maria, Paschalitsa Tryfinopoulou, Foteini F. Parlapani, Ioannis S. Boziaris, Efstathios Z. Panagou, and George-John E. Nychas. 2021. "Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis" Foods 10, no. 2: 264. https://doi.org/10.3390/foods10020264
APA StyleGovari, M., Tryfinopoulou, P., Parlapani, F. F., Boziaris, I. S., Panagou, E. Z., & Nychas, G. -J. E. (2021). Quest of Intelligent Research Tools for Rapid Evaluation of Fish Quality: FTIR Spectroscopy and Multispectral Imaging Versus Microbiological Analysis. Foods, 10(2), 264. https://doi.org/10.3390/foods10020264