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Abstract: Consumers in the U.S. increasingly prefer plant-based milk alternative beverages (ab-
breviated “plant milk”) to conventional milk. This study is motivated by the need to take into
consideration varied nutritional and qualitative attributes in plant milk to examine consumers’ pur-
chasing behavior and estimate demand elasticities which are achieved by a new approach combing
hedonic pricing model with Barten’s synthetic demand system. The method of estimation is enlight-
ened from the common practice of companies differentiating their products in multidimensions in
terms of attributes. A research dataset was uniquely created by associating the products’ purchase
data from Nielsen Homescan dataset with exclusive first-hand nutritional data. Estimations began
with creating a multidimensional hedonic attribute space based on the qualitative information of
different types of plant milk and conventional milk available to consumers and then calculating the
hedonic distances by Euclidean distance measurement to reparametrize Barten’s synthetic demand
system. Estimation results showed that the highest own-price elasticity pertained to soy milk which
was −0.25. Three plant milk types had inelastic demand. Soy milk exerted substituting effects on all
types of conventional milk products and vice versa. Soy milk, rice milk and almond milk entertained
complementary relationships between each other and four types of conventional milk were strong
substitutes within the group.

Keywords: plant-based milk alternative beverages; hedonic metric approach; Barten’s synthetic
model; consumer demand estimation; Nielsen Homescan data

1. Introduction

North America has experienced a huge decline of milk consumption per capita over
the past decade, in spite of its uniformly recognized nutritional benefits and sweeping
recommendations for consuming milk [1,2]. In the meantime, the market of plant-based
milk is expanding with the introduction of vegetative ingredients pervasively known as soy,
almond and rice [3]. As argued by Chalupa-Krebzdak et al. (2018) [4], it is the emergence of
plant-based milk alternatives that contributes to the slump of bovine milk consumption in
North America. Allied Market Research reported that the global market of plant-based milk
beverages is expected to cumulate $21.7 billion by 2022, with compound annual growth
rate (CAGR) reaching 13.3% from the year 2016 to 2022. Availing of this opportunity, the
beverage industry has enjoyed a huge development given the introduction of an extensive
array of natural, nutritious, handy and functional beverages in which plant milk is and
will likely remain a powerful force promoting the market race. Plant-based beverages are
often presented as a healthy, sustainable and animal-welfare-friendly alternative [5,6], and
generally can be classified into four categories which are: cereal-based, legumes-based,
nut-based and pseudocereals-based [7]. This work mainly focuses on three most common
plant milk types: soy milk, almond milk and rice milk.

Foods 2021, 10, 265. https://doi.org/10.3390/foods10020265 https://www.mdpi.com/journal/foods

https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-8463-5342
https://doi.org/10.3390/foods10020265
https://doi.org/10.3390/foods10020265
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/foods10020265
https://www.mdpi.com/journal/foods
https://www.mdpi.com/2304-8158/10/2/265?type=check_update&version=2


Foods 2021, 10, 265 2 of 25

The main driving forces of the surging demand of nondairy beverages are the inherent
deficiencies of traditional dairy products, taking lactose intolerance and protein allergies as
examples, and prevalence of vegetarian food [8,9]. The emergence of the flexitarian lifestyle
creates great opportunities for the innovation and new product development of plant
milk [10]. Among all the influencing factors, changing consumer lifestyle has a far-reaching
impact on the functional food and beverage market, but the aging of the population with
rising chronic-degenerative diseases and swelling healthcare expenditure also play pivotal
parts [11,12]. Undoubtedly, health and nutritional benefits are treated as the most vital
factors for consumers of plant-based food products [13]. Plant milks are good sources of
macronutrients and micronutrients required by the human body, making it an alternative
to conventional milk. For instance, soybean is considered as a complete food which is the
raw material used to produce soy milk consisting of protein, carbohydrates, fat and an
impressive series of vitamins and minerals. Additionally, soybean is low in saturated fat
and contains no cholesterol. These functional beverages are designed to not only satisfy
thirst but also supply plentiful vitamins, minerals, proteins and favorable fatty acids [14].

The dominance of soy milk in the market is gradually eclipsed by the emergence of
alternative products from other plant sources such as coconut, oat and almond [15]. The
rising consumption and continuous diversification of plant milk appeal to an increasing
research pursuit of purchasing and consumption patterns of these new products, which
is of great importance to manufacturing and marketing the products as well as food pol-
icy making. However, little research has investigated consumers’ willingness to pay for
consuming the main nutritive components in plant milk. Lacking such information is a
critical unmet demand for these milk alternatives bearing the potential to promote health
and nutritional status of a population [7,16] as well as food industry development. More
importantly, few studies have analyzed consumer demand on the newly developed plant
milk based on the differences of nutritional and qualitative attributes in these products.
Therefore, this work attempts to shed new light on the major issues of what is the consump-
tion pattern of plant milk and whether there is a significant substitution effect between
plant milk and conventional milk. This relies on evaluating the nutritional deviations of the
attributes present in plant milk and conventional milk and estimating consumer demand
using cutting-edge modifications to demand system models based on hedonic metric ap-
proach developed by taking into consideration characteristic differences. Income and price
elasticities were estimated using data recording consumers’ purchasing activity during the
period 2004–2015. The main objectives of this research are: (1) create an attribute-space
hedonic matrix for each product category associated with a preidentified group of brands
at Universal Product Code (UPC) and brand level; (2) estimate consumer demand for plant
milk categories covering almond milk, soy milk, rice milk and dairy milk constituting
whole milk, fat-free milk, 2% fat milk and 1% fat milk using attribute space hedonic metric
augmented Barten’s synthetic model, and (3) examine price sensitivities and substitute and
complement effects among the aforementioned beverages.

We briefly explain the rationale of specifying the hedonic augmented Barten’s synthetic
model for later use in modeling the demand of plant-based alternative beverages. The
theory of consumer demand is about individual behavior with respect to the choice of
quantities of a potentially large number of elementary goods [17]. It is assumed that a
representative consumer faced with different alternatives chooses a certain product to
maximize utility. From an economic standpoint, consumer demand cannot be analyzed
without referring to the price of the commodity and the corresponding quantity with
their relationship defined by a certain demand equation. Most earlier demand analyses
such as the works by Schultz (1938) [18] are partial demand examinations where food
price and income per capita are regarded as decisive variables in a demand equation, but
they did not chew over the complete intermutual nature of food demand [19]. Also, as
Thomas (1987) [20] mentioned, the single-equation approach to model consumer demand
is insufficient due to the absence of a sound theoretical foundation and incapability to
generate consistent parameter estimates such as cross-price elasticities [20]. Therefore, food
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demand research is requested to implement a complete demand system approach in order
to explicitly recognize the communal demand relationships among all foods.

The development of a demand system is started from specifying and estimating the
following system: q = q(m,p), where q is an n-vector of quantities of n commodities and
services and m = p’q, where m is the total expenditure on the n goods considered. In other
words, consumers’ preference is represented by the cost function, c(u,p), which specifies
the minimal expenditure imperative to fulfilling a specific utility, u, at given prices, p [21].
Therefore, based on the utility function which includes the employment of indirect utility
and application cost functions, the ordinary demand system can be derived. The concept
of a hedonic pricing model also originated from the reconsideration of utility measurement.
Lancaster (1966) [22] contended that it is product attributes/characteristics which the good
occupies that engender utility and not just the quantity of the good consumed. Therefore,
using the parameters estimated from hedonic pricing models to reparametrize a demand
system is theoretically justifiable.

Differently from previous research, the demand system we applied in this study is
rooted in the particular function form of Barten’s synthetic demand model [23]. Specifically,
hedonic pricing models were estimated for seven products (soy milk, almond milk, rice
milk, fat-free milk, 1% milk, 2% milk and whole milk) considered in the first place and
then the estimated coefficients were used to obtain the marginal value (shadow price) of
each qualitative attribute through a simple multiplication procedure. Barten’s synthetic
demand system was reparametrized by the factors derived from a multidimensional
hedonic attribute space built on the marginal value of attributes based on which the
hedonic distances were calculated applying Euclidean distance measurement.

The merits of this work can be embodied by the following aspects: In the first place, it
contributes to manifesting the expenditure patterns of plant milk based on the estimated
own-price, cross-price and expenditure elasticities of three beverage categories which
hopefully would contribute to forecasting the future advancement of consumption in
terms of these beverages and providing useful references for manufacturers of plant milk
to explore and expand the corresponding market, develop differentiated products and
formulate a marketing strategy. The estimation results are also crucial for advertisers to
strategically position plant milk in the competitive conventional milk marketplace.

Even though the inclination toward plant milk is ubiquitously observed, few works
have been done to reveal how sensitive consumers are to price changes, which is of
great importance for companies to adjust their pricing strategies and production plan
accordingly, simultaneously taking into consideration competitor’s behavior. Currently,
the global food market has already detected the business opportunities related to plant
milk and put their tentacles in this industry, predictably leading to fiercer competition in
the near future. Therefore, in order to barge itself to the forefront, a company should be
fully informed with consumers’ attitudes and purchasing behavior and then keep wits
about the fast-changing market where demand elasticities play a crucial part in exhibiting
the consumption structure, which is affected by the income and price changes of a certain
group of products and also the eating habit and consumption concept. Demand and income
elasticities of plant milk estimated in this research would provide strong evidence showing
a renewal of consumption concept of U.S. consumers favoring a healthy and nutritious diet
which is characterized by less fat and sugar intake, high protein and nutrition balance. This
transformation is about to drive more companies to devote themselves into this emerging
market and encourage new product development to consistently improve health conditions
of people, creating a virtuous circle not only for human development but also for social
advancement.

Additionally, to the best of our knowledge, no research has been done to incorporate
the information of consumers’ willingness to pay for qualitative attributes into demand
systems and systematically estimate the demand elasticities of the three most common
types of plant milk. The augmented Barten’s synthetic demand model we developed
achieved a great improvement of the traditional demand model such that it addressed the
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price endogeneity issue common with estimating a complete demand system and, more
importantly, scaled down the number of parameters required to be estimated. In light
of such advantages, the model can be extensively applied to analyze demand of other
qualitatively differentiated products.

2. Literature Review

Research about plant milk has proliferated in recent years with the product increas-
ingly becoming prevalent in the market. Some review articles about plant-based alternative
beverages, for instance, Vanga and Raghavan (2018) [24] delineated the nutritional dis-
tinctions among different plant milk and conventional milk products and by comparison
argued that nutritional soy milk is the best substitute to replace dairy milk in consumers’
diet. Singhal et al. (2017) [25] reviewed and compared the contents and nutritional value
of nondairy beverages to cow’s milk. Sethi et al. (2016) [26] outlined the functional con-
stituents of plant milk, their health benefits and the technological interventions ought
to be implemented to enhance the quality and trustworthiness of plant milk. Fuentes
and Fuentes (2017) [27], relying on the concepts of the marketing device and qualifica-
tion, described, conceptualized and critically discussed the ways and consequences of
constructing a mass market for vegan milk alternatives. Mäkinen et al. (2016) [12] gave
an overview on the technological, nutritional and environmental aspects of plant milk
substitute production and consumption.

In order to capture consumers’ attitude, preferences and motivation toward plant milk
and their related influencing factors, some empirical research has sprout up to achieve this
goal. Empirical consumer research by Laassal and Kallas (2019) [28] utilized Homescan
data of 343 households and drew on revealed preference discrete choice experiment to
evaluate consumers’ propensity to dairy alternative products in Catalonia. The main results
implied that price was the principal contributing factor, followed by flavor attribute. By
conducting a quantitative survey of plant milk and cow’s milk consumption in Austria,
Haas (2019) [29] analyzed consumers’ perception of products’ image and contrasted the
motivational configuration behind consumption behavior. The result showed that con-
sumers of plant milk gave more credits to plant milk, ascribing to its better digestibility
and the allergy-free merit, with consumption motivations more diversified to have animal
welfare and environmental sustainability involved. Dharmasena and Capps (2014) [30]
explored consumer demand for soy milk, white milk and flavored milk.

In common practice, consumer demand of agricultural food products is analyzed
with respect to estimating price elasticities and expenditure elasticities. Many empirical
articles in the extant literature apply conventional demand models, such as the almost ideal
demand system (AIDS) [31] and the Rotterdam model [32] in which own-price, cross-price
and expenditure elasticities are estimated based the exploitation of the relationship between
prices and market shares. Traditional demand models assume that consumers’ utility is
gained through the quantity of a specific good they consume, without considering the
intrinsic properties of a particular good which distinguishes it from other similar goods.
While, based on the characteristics approach to estimating demand, the random utility
model (RUM) has been widely used as an alternative model to the conventional demand
model to estimate consumer demand, it is very complicated computationally and difficult
to estimate [33–36]. Given this issue, Pinske et al. (2002) [37] developed a distance metric
(DM) approach which uses spatial distance to the desired characteristic to estimate price
elasticities for different products. Compared to the RUM approach, which requires a
simulation process, the DM approach is more straightforward to employ and moldable
enough to feature the substitution patterns within differentiated products [34]. Rojas and
Peterson (2008) [38] applied this technique to the retail beer market by selecting alcohol
content as the primary quality criterion of beer products supplemented by other different
distance combinations. However, one of the prominent weaknesses of their work is that the
distance measurement constructed is obscure and is built on prior knowledge of the data,
specifically in selecting the base category of the product in developing the distance matrix.
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Some academic studies were generated in order to remedy the research limitations
aforementioned, specifically, the selection of the arbitrary base category in the construction
of the distance matrix. For instance, Gulseven and Wohlgenant (2015) [34] proposed a hedo-
nic metric (HM) approach to examine and estimate the demand for retail milk, showing that
this approach alleviates the embedded ambiguity in selecting the base category problem in
the DM model and considerably curtails the number of parameters necessary to estimate a
demand system, achieving the possibility of incorporating abundant discriminated prod-
ucts in each demand system. The study of Gould and Lin (1994) [39] borrowed Lancaster’s
(1966) [22] idea of a hedonic framework, but its motivation is to estimate demand for
qualitative attributes dependent on products’ elasticity, whereas this work aims to estimate
consumer demand based on their qualitative characteristics. Even though Gulseven and
Wohlgenant (2015) [34] have developed a method to estimate own-price, cross-price and
expenditure elasticities of several conventional and soy milk products based on quality
attributes and hedonic prices, the milk product types included in their study are limited
and mingled with dairy alternative beverages, since soy milk is not commonly categorized
into conventional milk categories. Also, their method has many ambiguities in practice.
For example, they do not explain clearly how the hedonic matrix is constructed and the
own closeness index has application errors.

In view of the shortcomings of the above research, the remaining sections of this
study are organized as follows: Based on the hedonic pricing model estimation of each
out of seven products at brand level, a hedonic attribute space was constructed. After
obtaining all the parameters determined by the hedonic distance matrix which captures the
Euclidean distance between two products, the hedonic metric augmented Barten’s synthetic
demand system was estimated to derive expenditure, own-price and cross-price elasticities
to uncover the price sensitivities and substitute and complement effects among three plant
milk and four types of milk products, expectedly providing information for manufacturers,
retailers, advertising companies and nutritionists for strategic decision making.

3. Model Specification

We start by discussing the hedonic pricing model which was estimated in priority to
obtain the marginal value (or shadow price) of each quality attribute attainable from the
product. Then, the shadow price was employed as a weight added onto the amount of each
characteristic to measure the value added from each attribute. After this, a hedonic attribute
space was created where each component in the space was the hedonic attribute distances
between any two attributes considered in this study. The name hedonic attribute space was
created by analogy to Euclidean space, where multiple attributes in products constitute a
multidimensional space and each attribute distance between two products can be treated
as a point in the space. Following this measurement, the hedonic distance of two products
finally composed the hedonic distance matrix based on pairwise comparison of Euclidean
distance between two products. After each differentiated product was allocated into the
hedonic attribute space and then the hedonic distance matrix, we could reparametrize the
price coefficients in Barten’s synthetic demand system.

Hedonic regressions are being increasingly used to better understand the drivers of
prices for consumer products (Sopranzetti, 2015) [40]. One purpose of the hedonic method
might be to obtain estimates of the willingness to pay for or marginal cost of producing the
different characteristics [41]. Here we focus on the first main purpose to acquire consumers’
willingness to pay for the different attributes of plant milk. X = (X1, X2 . . . , Xl) represents
the qualitative characteristic combination. The functional dependency of the price of a
product on its characteristics vector X can be generally modeled by P = f (x) + ε, where ε
is the error vector and P is the observed price.

Pi = β0 + ∑
m

βm Aim + ∑
n

DnXin + εi, i = 1, 2, . . . , 7 (1)

ln(Pi) = β0 + ∑
m

βm Aim + ∑
n

DnXin + εi, i = 1, 2, . . . , 7 (2)
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where Aim is the amount of nutritional attribute m, including calories, fat, calcium, vitamin
A, vitamin D, fiber and protein contained in product i, thus m = 7 and i = 7. Xin is other
factor(s) that might affect prices which are brands, coupon, deal, package size, multipack
and yearly dummies (where l = 1, 2, . . . , 42 and m + n = 49). The linear and semi-log
hedonic pricing models are the two most commonly applied forms. The hedonic pricing
model has been described by Palmquist and Smith (2002) [42] as “one of the ‘success’ stories
of modern applied microeconomic analysis.” When variables are omitted or replaced by
proxies, simpler forms such as the linear, semi-log, double-log and the Box-Cox linear
perform the best [43]. The semi-log structural hedonic pricing model is far superior to its
linear counterpart for permitting the value of a given attribute to vary proportionately
with the value of others (Sopranzetti, 2015) [40]. In order to make no assumptions exerted
on the model form, the models we incorporate to fit the data include both linear and
semi-log forms.

Linear hedonic pricing model assumes that the relationship between prices and at-
tributes is linear. As shown in Equation (1), price of a good i is a function of the sum of
attribute values [44]. As such, the total value of each attribute is derived by multiplying
quantity of the attribute by shadow price of that attribute. Pi is the monthly average price
in the time period. If a semi-log functional form for price–attribute relationship is pre-
sumed [45], as indicated by Equation (2), then the model is interpreted as the dependence of
log-price of the product on related characteristics. Again, all the attributes can be separated
into nutritional attributes Aim and other related attributes Xin. Accordingly, βm and Dn are
the coefficients (implicit prices of attributes) to be estimated. β0 denotes the intercept and
εi represents the stochastic error term. Because the data applied in this study were pooled
consumer data, where time factors might play a role in the price changes, we took time
effects into consideration by adding yearly dummies into the model. Other influencing
variables embraced included values of the multipackage, package size, coupons, deals,
brands, etc.

3.1. Hedonic Attribute Space and Hedonic Distance Measurement

The practice of putting products in a certain space and measuring their difference
based on their locations in the space can be traced back to the famous model, namely, the
Hotelling Model, which was developed by Hotelling (1929) [46], who aimed to explain
the Bertrand Paradox in oligopolistic competition. He suggested that the difference of
two products can be considered as the distance between two companies that produce the
products. This is the first argument taking into consideration the distance to measure the
difference between two products. Therefore, putting products into a space and measuring
their difference based on distances—the main idea in hedonic distance measurement—is
theoretically justifiable. This idea is supported by Pinske, Slade and Brett (2002) [37], who
use a vector dij to measure the distance between regions or outlets i and j in some metric.
The geographic locations of the two outlets is measured by the Euclidean distance and a
zero/one variable that indicates whether j is i’s nearest neighbor. It is suggested that more
relevant applications include the assessment of proximity in taste space. Employing this
method, Rojas and Peterson (2008) [38] constructed a distance metric where cross-price
and cross-advertising coefficients (bjk and cjk) in the adjusted AIDS model are defined as
functions of different distance measurements between brands j and k. They suggest that
these distance measurements may be either continuous or discrete. Alcohol content of a
brand, for example, can be applied to establish a continuous distance measure which can
be measured by an inverse measure (reciprocal in math) of Euclidean distance, or closeness,
in product between brand j and k.

However, a big issue appearing during the application of the distance metric method
is that the continuous distances’ computation is dependent on preimposed attributes
and selecting the base category, which, most of the time, is arbitrarily decided by the
researcher, leading to inconclusive estimation results. Therefore, in order to remedy the
limitations embedded in the distance metric method, we applied the distance measurement
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to construct a hedonic attribute space based on the coefficients estimated in hedonic pricing
models. The detailed procedure to acquire a hedonic attribute space can be referred to in
Appendix A. The final results of the hedonic distance matrix constructed are presented in
Table 1. The rescaled continuous hedonic distance valued between 0 and 1 is shown in
Table 2.

Table 1. Linear and semi-log hedonic distance matrix.

Almond Milk Soy Milk Rice Milk 2% Milk 1% Milk Fat-Free Milk Whole Milk

Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log

Almond milk 0.00 0.00 0.26 0.26 0.54 0.51 0.74 0.62 0.52 0.92 0.39 1.30 1.13 0.79
Soy milk 0.26 0.25 0.00 0.00 0.38 0.34 0.59 0.48 0.35 0.97 0.20 1.11 1.09 0.71
Rice milk 0.54 0.51 0.38 0.34 0.00 0.00 0.78 0.64 0.57 1.09 0.36 1.03 0.99 0.73
2% milk 0.74 0.62 0.59 0.48 0.78 0.64 0.00 0.00 0.58 1.11 0.68 1.14 1.40 0.95
1% milk 0.52 0.92 0.35 0.97 0.57 1.09 0.58 1.11 0.00 0.00 0.41 1.66 1.03 0.78

Fat-free milk 0.39 1.30 0.20 1.11 0.36 1.03 0.68 1.14 0.41 1.66 0.00 0.00 1.16 1.42
Whole milk 1.13 0.79 1.09 0.71 0.99 0.73 1.40 0.95 1.03 0.78 1.16 1.42 0.00 0.00

Table 2. Continuous linear and log hedonic distance matrix.

Almond
Milk Soy Milk Rice Milk 2% Milk 1% Milk Fat-Free

Milk Whole Milk

Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log

Almond milk 1.00 1.00 0.79 0.80 0.65 0.66 0.58 0.62 0.66 0.52 0.72 0.43 0.47 0.56
Soy milk 0.79 0.80 1.00 1.00 0.73 0.75 0.63 0.68 0.74 0.51 0.83 0.47 0.48 0.58
Rice milk 0.65 0.66 0.73 0.75 1.00 1.00 0.56 0.61 0.64 0.48 0.74 0.49 0.50 0.58
2% milk 0.58 0.62 0.63 0.68 0.56 0.61 1.00 1.00 0.63 0.47 0.60 0.47 0.42 0.51
1% milk 0.66 0.52 0.74 0.51 0.64 0.48 0.63 0.47 1.00 1.00 0.71 0.38 0.49 0.56

Fat-free milk 0.72 0.43 0.83 0.47 0.74 0.49 0.60 0.47 0.71 0.38 1.00 1.00 0.46 0.41
Whole milk 0.47 0.56 0.48 0.58 0.50 0.58 0.42 0.51 0.49 0.56 0.46 0.41 1.00 1.00

Referring to the concept of closeness and closest neighbors in the above distance
metric method, the nearest neighbor of two products is defined by two products located
next to each other in the hedonic space. Following this proposition, the nearest neighbor
(closest product) for each product can then be directly acquired from Table 3, where the
shortest distance in a linear hedonic matrix between almond milk and other products is
associated with soy milk (distance value 0.26). With the same logic, for soy milk, rice milk,
2% milk, 1% milk, whole milk and fat-free milk, the closest products were fat-free milk,
fat-free milk, 1% milk, soy milk, soy milk and rice milk, respectively. Table 4 is drawn to
present these results in a more straightforward way in which for each product, its nearest
neighbor was valued at 1 and that was how the value of cross-product closeness index dnn

ij
was assigned. In a word, if two products, i and j, are nearest neighbors, the cross-product
closeness index is 1, otherwise, it is 0.

Table 3. Nearest neighbor dummy matrix (dnn
ij ) of linear and log hedonic distance matrix.

Almond Milk Soy Milk Rice Milk 2% Milk 1% Milk Fat-Free Milk Whole Milk

Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log Linear Log

Almond milk 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Soy milk 0 1 0 0 0 0 0 0 0 0 1 0 0 0
Rice milk 0 0 0 1 0 0 0 0 0 0 1 0 0 0
2% milk 0 0 0 1 0 0 0 0 1 0 0 0 0 0
1% milk 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Fat-free milk 0 0 1 0 0 1 0 0 0 0 0 0 0 0
Whole milk 0 0 0 1 1 0 0 0 0 0 0 0 0 0
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Table 4. Joint hypothesis tests for seasonal dummies, lambda and mu in demand system.

Tests Model Estimate p-Value Test Results

Test0
linear 10.56 0.01 d11 = d12 = d13

log 6.26 0.10 d11 = d12 = d13

Test1
linear 9.19 0.03 d21 = d22 = d23

log 8.62 0.03 d21 = d22 = d23

Test2
linear 5.87 0.12 d31 = d32 = d33

log 6.55 0.09 d31 = d32 = d33

Test3
linear 3.91 0.27 d41 = d42 = d43

log 2.08 0.56 d41 = d42 = d43

Test4
linear 16.88 0.00 d51 = d52 = d53

log 16.05 0.00 d51 = d52 = d53

Test5
linear 0.87 0.83 d61 = d62 = d63

log 1.41 0.70 d61 = d62 = d63

Test6
linear 81.86 <0.0001 lambda = 0, mu = 0

log 99.93 <0.0001 lambda = 0, mu = 0

Test7
linear 1787.5 <0.0001 lambda = 1, mu = 1

log 1810.1 <0.0001 lambda = 1, mu = 1

Test8
linear 67.41 <0.0001 lambda = 1, mu = 0

log 79.59 <0.0001 lambda = 1, mu = 0

Test9
linear 1832.4 <0.0001 lambda = 0, mu = 1

log 1840.7 <0.0001 lambda = 0, mu = 1

3.2. Own-Closeness Index Measurement

Borrowing the idea of Sabidussi (1966) [47] and Wang and Tang (2014) [48] to construct
the closeness index, we first built a network which contained notes and directed edges.
According to the social network paradigm, for each edge denoted as {i, j} ∈ E , there is
a corresponding edge {j, i}. In this sense, the seven products considered in this study
could be treated as seven nodes, and each node was connected with the other six nodes
to have 42 edges in total. For convenience, let V(i,j) and V(j,i) signify, respectively, the
sets of nodes that were connected. V can be separated into {i} and V(ij), ∀j ∈ Ni, where
Ni = {j ∈ V : {i, j} ∈ E} denotes the set of neighbors of node i. Then, the classic closeness
denoted as Ci of the node i ∈ V can be represented as:

Ci ,
N − 1

∑j∈V dij
(3)

where dij = dji is the distance (i.e., length of the shortest paths) between two nodes i and
j, and the factor N − 1 in the numerator is inserted to make Ci ∈ (0, 1). It is suggested
that the larger the Ci, the closer node i is, on average, to all other nodes in the graph
G. Closeness centrality, originally defined by Sabidussi (1966) [47], is a basic centrality
measure which designates how centrally located a node is. It attaches higher scores to
nodes which have shorter distances to all other nodes. Relating closeness centrality to the
classic closeness expression (Equation (3)), the larger Ci, the more central the node is, and
this means the corresponding product has comprehensively the smallest distances with all
the other products. As Figure 1 presents, each product is a node and connected with other
nodes by a symmetric edge with the length of the edges being the Euclidean distance. A
more intuitive way to illustrate the closeness centrality is shown on the right of Figure 1, in
which the larger Ci of the product is, the bigger node i is drawn.
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3.3. Reparameterization in Demand System

Demand system models are widely used in estimating demand relationships in a
wide range of food products. The almost ideal demand system (AIDS) and Rotterdam
model are two commonly used such demand systems. One of the major advancements
in demand system modeling was the development of the Rotterdam model by Theil
(1965) [32] and Barten (1964) [49]. Barten (1993) [23] proposed Barten’s synthetic model
(BSM), incorporating the differential versions of the almost ideal demand system (AIDS)
model [31], the National Bureau of Research (NBR) model [50], the Rotterdam model [32,49]
and the Dutch Central Bureau of Statistics (CBS) model [51]. Following Matsuda (2005) [52],
the basic BSM is as follows:

wid ln qi = (βi + λwi)d ln Q +
n

∑
j=1

[γij − µwi
(
δij − wj

)
]d ln pj (4)

where i = 1, 2, . . . , n and βi ≡ (1− λ)bi +λci and γij ≡ (1− µ)sij +µrij, wi ≡
piqi
m denotes

the expenditure share of good i, which determines the allocation of additional expenditure
to the good, d ln Q ≡ ∑i wid ln pi denotes the Divisa volume index. δij is the Kronecker
delta, which is equal to unity if i = j and zero otherwise; bi are constant coefficients. After
imposing the restrictions on coefficients µ and λ, we retrieve the LA/AIDS, the Rotterdam,
the CBS and the NBR models. Specifically, (λ, µ) = (0, 0) gives rise to the Rotterdam model;
(λ, µ) = (1, 0) creates the CBS model; (λ, µ) = (0, 1) yields the NBR model; (λ, µ) = (1, 1)
generates the AIDS model. The reparameterization of a demand system and then derivation
of own-price elasticities, cross-price elasticities and expenditure elasticities can be found in
Appendix B.

4. Data

Nielsen Homescan consumer panel data 2004–2015 was exploited in this research.
The analysis of this research is partly based on data from The Nielsen Company (U.S.),
LLC and marketing database offered by the Kilts Center for Marketing Data Center at the
University of Chicago Booth School of Business. The conclusions extracted from applying
the Nielsen data are those of the researchers and do not reflect the views of the Nielsen.
Nielsen is not responsible for, had no role in, and is not involved in deriving and arranging
the results reported herein. Consumer level data is gathered by tracking households’
purchase behavior. From this large panel data, consumers’ weekly purchase information
is extracted. From this database, price, quantity and expenditure data of plant milk and
conventional milk were acquired. The final dataset was aggregated to Universal Product
Code (UPC) level in order to capture enough variations of nutritional variables. The
format of original data file in which individual household’s purchase information was
recorded by specific trip dates, so it can be commonly observed in the dataset that purchases
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may appear many times each month or even no purchase activities at all. Additionally,
the products’ nutritional attributes and their proportions are barely changed from time
to time, so constructing time series data cannot ensure enough variations of nutritional
attributes for hedonic pricing model estimation. Therefore, the best choice available was
to transform the dataset into pooled data form at UPC level. The structure of the final
dataset was characterized by product types (soy milk, almond milk, rice milk, 1% milk,
2% milk, fat-free milk and whole milk) which comprise different products recorded by the
UPC code.

4.1. Data Manipulation for Estimating Hedonic Pricing Models

It is one of the trickiest issues to gather data about nutritional information of plant
milk for hedonic pricing model estimation primarily due to the unavailability of an appli-
cable database pertaining to such information. The availability of nutritional information
indispensable in this work was directly obtained from the products’ label (i.e., individuals’
visual observation of beverage packages). The final dataset of nutritional attributes reflects
the same set of qualitative information that consumers have about these products based on
their labels. Other than the nutritional variables including calories, protein, fat, vitamin A
and vitamin D, which consumers are concerned with the most when making purchasing
decisions, we attempted to find out other variables that might exert significant effects
on the products’ prices. For example, apparently, the availability of deals and coupon
contributes to lower purchasing prices due to the fact that if a coupon is applied, the price
is discounted accordingly. So, a dummy variable which implies if consumers receive a deal
or a coupon as incorporated into the model. Additionally, we controlled the time effects
by adding yearly dummies considering the fact that the pooled dataset was transformed
from time series of consumer purchase data. Brand was also proven to be an important
influencing factor to price, so the corresponding dummy variable was added, taking value
1 as a store brand and 0 as a national brand. The final variables of qualitative attributes
involved in hedonic pricing models encompassed package size, the multipackage (units
per package), deals, coupon, brands and yearly dummies.

Every product appearing in the market was given a unique barcode called the Univer-
sal Product Code (UPC), which serves as product identification in the Nielsen Homescan
data. Therefore, the nutritional information was collected according to different UPCs
which were used to record different products in the Nielsen dataset. Then, the detailed
products’ attribute data was merged with Nielsen based on UPCs to formulate the dataset
ready for estimating hedonic pricing models. The detailed data manipulation procedure is
briefly summarized in Figure 2.

The process to derive monthly average unit price paid (unit price paid in short in
Figure 1), dependent variable in hedonic pricing model, is shown in Figure 2. First, we
obtained each product’s information such as package size, multipackage, size unit from
the file called “products” and then merged the information with the trips file from the
Nielsen Homescan dataset to acquire the dataset including key variables: quantities sold,
total price paid by consumers, coupon value, deal, multipackage, package size and size
unit. Trips file records consumers purchasing information, including detailed information
of products purchased and total expenditure in each trip and the trip date. The unit price
paid, shown in Figure 2, was calculated by first dividing the variable final price paid by
the quantity, where final price paid was calculated by subtracting the value of variables
“coupon value” from the value of “total price paid”. Then, the variable monthly average
price/oz was gained by taking average of unit prices paid each month and year.



Foods 2021, 10, 265 11 of 25
Foods 2021, 10, x FOR PEER REVIEW 12 of 26 
 

 

1% milk

2% milk

fat-fee milk

whole milk
soy milk almond milk rice milk

Plant milk conventional milk

Nielsen Homescan data

products file

products’information trips files

Sorted by UPC

merge 
by trip code

quantity 

final 
expenditure/product/

month

quantity sold

Multi-pack

size

qualitative attributes data merge 
by UPC

final expenditure/quantity 

unit price paid (per unit 
cost)/8ozs

Data manipulation for Hedonic 
pricing model estimation 

Budget share/product wi

monthly average price 
at product level  

monthly average 
quantity at product level  

total price 
paid

coupon 
value 

final expenditure in 
1 trip 

total expenditure for 
all  products/month

Data manipulation for Barten 
synthetic model estimation  

Figure 2. Data manipulation procedure for hedonic pricing models and Barten’s synthetic demand system. 

5. Empirical Results and Discussion 
5.1. Estimation Results of Hedonic Pricing Models 

As mentioned before, the first step of estimating hedonic metric augmented Barten’s 
synthetic model was to estimate hedonic pricing models. The estimation results of hedonic 
pricing models generally conformed to our expectations. Both model forms fit well for 
plant milk and conventional milk data. The detailed estimation results can be found in 
Yang and Dharmasena (2020) [53] As intuition suggests, consumers’ willingness to pay 
for a specific attribute will be negative if they are discouraged to accept this given attrib-
ute. In the linear hedonic pricing model, the estimated coefficient captures the contribu-
tion of a unit increase in the attribute to the change of a unit price change on average. The 
estimated coefficient of fat content negatively contributed to unit price of rice milk and 
soy milk, taken the value −0.1080 and −0.0025, respectively, revealing that a unit increase 
in fat content yielded 10.8 percent and 0.25 percent decrease of consumers’ willingness to 
pay for a unit price of rice milk and soy milk. Gulseven and Wohlgenant (2015) [34] also 
analyzed the effect of energy attribute on prices, taking carbohydrates, instead of calories, 
into consideration. Estimation results showed that carbohydrates have positive influence 

Figure 2. Data manipulation procedure for hedonic pricing models and Barten’s synthetic demand system.

4.2. Data Manipulation for Estimating Demand System

As indicated in Figure 2, the process to construct the final dataset to estimate the
demand system began with the original datasets which were used to estimate the hedonic
regressions. Parameters such as price, quantity and budget share of each product needed
to be known before estimating the demand system. First, as Figure 2 shows, monthly
average prices and monthly average quantity could be calculated from the products file
directly. But this time, the variables price and quantity were averaged by product type level
instead of UPC level for demand system estimation. Then, we merged the seven separate
data files created previously for estimating hedonic pricing model in order to acquire
the total expenditure of all seven product types, which was created by first summing up
final expenditure in each trip, which, as shown in Figure 2, was calculated by subtracting
“coupon value” from “total price paid” in each trip, and then sum the data again by each
product type. The calculation of average budget share wi of each product type each month
and each year was dependent on total expenditure of seven product types divided by total
expenditure per product type.
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From the above steps, we had all the necessary variables at hand to estimate the
demand system. Because we had seven product types with average budget shares from
year 2004 to 2015, the final dataset for estimating the demand system contained 144 (12
months times 12 years) observations for each product type and the whole demand system
had 1008 (144 times 7) observations in total.

5. Empirical Results and Discussion
5.1. Estimation Results of Hedonic Pricing Models

As mentioned before, the first step of estimating hedonic metric augmented Barten’s
synthetic model was to estimate hedonic pricing models. The estimation results of hedonic
pricing models generally conformed to our expectations. Both model forms fit well for
plant milk and conventional milk data. The detailed estimation results can be found in
Yang and Dharmasena (2020) [53] As intuition suggests, consumers’ willingness to pay for
a specific attribute will be negative if they are discouraged to accept this given attribute.
In the linear hedonic pricing model, the estimated coefficient captures the contribution
of a unit increase in the attribute to the change of a unit price change on average. The
estimated coefficient of fat content negatively contributed to unit price of rice milk and
soy milk, taken the value −0.1080 and −0.0025, respectively, revealing that a unit increase
in fat content yielded 10.8 percent and 0.25 percent decrease of consumers’ willingness to
pay for a unit price of rice milk and soy milk. Gulseven and Wohlgenant (2015) [34] also
analyzed the effect of energy attribute on prices, taking carbohydrates, instead of calories,
into consideration. Estimation results showed that carbohydrates have positive influence
on prices. Similarly, calories exerted about 0.03 percent positive effect on unit prices of soy
milk. Americans are encouraged to take calories as their main source to acquire nutrition
and to make wise nutrient-dense choices from all food groups [54]. As concluded by Taubes
(2007) [55], good and bad calories coexist, so what matters to good health is not how many,
but the kind of calories we take in. Studies have shown that calorie consumption is closely
correlated to income, making its elasticity not constant [56–58].

As expected, vitamin A positively impacted the prices of soy milk and almond milk,
with estimated coefficients valued at 0.0029 and 0.073, respectively. The significant positive
effects of protein and calcium on prices unfolded consumers’ preference on these nutritional
attributes. The results also show that protein entertained the highest weight, indicating
that protein was the most favorable qualitative attribute of soy milk and almond milk, and
calories were reluctantly accepted by consumers. These results are consistent with that of
Gulseven and Wohlgenant (2015) [34], which show that the coefficient of protein enjoys
the highest value, followed by carbohydrates and fat. Rising expenditures or incomes, as
demonstrated by Widarjono (2012) [59] and Faharuddin et al. (2014) [60], leads to increased
consumption of fats and proteins in comparison with the consumption of calories and
carbohydrates.

5.2. Estimation Results from Barten’s Synthetic Demand System

As mentioned before, the estimated coefficients from linear and semi-log hedonic
pricing models are used to calculate the value-added terms and pair-wised difference
in-between characteristics to obtain the hedonic distance matrix. After all the parameters
are gathered, we reparametrized Barten’s synthetic model to create the hedonic metric
augmented Barten’s synthetic model from which expenditure elasticities, own-price and
cross-price elasticities (both uncompensated and compensated) were estimated for the
seven products over the 144-month period. We dropped one equation for estimation
purposes, as Barten (1969) [61] proposes that parameter estimates are invariant to the
dropped equation and the dropped parameters can be recovered from the adding-up
restrictions.

Presence of possible autocorrelation (serial correlation) was examined through the
autocorrelation and partial autocorrelation function generated for each series. Seasonal
(quarterly) dummy variables were significant at 0.01 level for almond milk, soy milk
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and fat-free milk, as shown in Appendix C, supporting quarterly seasonality present in
the dataset. Due to this fact, the following version, shown as Equation (5), of Barten’s
synthetic model, in which the disturbance term and quarterly seasonal dummies have been
incorporated to represent seasonal adjustment.

witd ln qit = (βi + λwit)d ln Qt + α0d ln pit +
(
α1xs

i + α2xc
i − µwi(δii − wit)

)
d ln pit

+ ∑
i 6=j

[chdh
ij + cnndnn

ij – µwit
(
δij − wjt

)]
d ln pjt +

3
∑

j=1
djQijt + eit

(5)

where i = 1, 2, . . . , 7 indexes seven products in the demand system; t indexes the time in
months over 12 years, i.e., t = 1, 2, 3, . . . , 144; pjt are monthly average prices for each milk
product; qit is quantity (oz.) consumed of each milk product; Qijt is the quarterly dummy
used to capture the seasonality relating to four quarters in all the years. Monthly budget
share of each plant-based milk alternative beverage consumed is denoted by wit where
wit =

pitqit
m . Additive disturbance term is denoted by eit.

Calculated autocorrelation and partial autocorrelation functions of the residuals per-
taining to all plant milk confirms the presence of serial correlation. The result conformed to
expectation due to the time-series nature of the dataset. A close study of the data indicated
the presence of a fifth-order autoregressive process of disturbance terms in the system.
Each demand equation was fitted with a first-, second-, third-, fourth- and fifth-order
autoregressive process of disturbance terms and simultaneously, the significance of each
autocorrelation coefficient was investigated. After all the above exercises were finished,
it was proved that disturbance terms behave as an AR (5) process. Accordingly, Barten’s
synthetic model was fitted by the following specification assuming the existence of a
disturbance process:

eit = ρi1ei,t−1 + ρi2ei,t−2 + ρi3ei,t−3 + ρi4ei,t−4 + ρi5ei,t−5 + uit, (6)

where ρi1, ρi2, ρi3, ρi4 and ρi5 represent first-, second-, third- and fourth-order autoregressive
parameters, respectively. uit is the white-noise disturbance (independently and identically
distributed with zero mean and constant variance). Lastly, the form of the reparameterized
Barten’s synthetic model taking AR (5) disturbances into consideration is shown as:

witd ln qit =
5
∑

k=1
ρj(witd ln qit)t−j + (βi + λwit)d ln Qt + α0d ln pit +

(
α1xs

i + α2xc
i − µwi(δii − wit)

)
d ln pit+

∑
i 6=j

[
chdh

ij + cnndnn
ij − µwit

(
δij − wjt

)]
d ln pjt −

5
∑

k=1
ρk{(βi + λwit−1)d ln Qt−k + α0d ln pit+(

α1xs
i + α2xc

i − µwit−k(δii − wit−k)
)
d ln pit−k + ∑

i 6=j

[
chdh

ij + cnndnn
ij

]
–
[
µwit−k

(
δij − wjt−j

)]
d ln pjt−k

}
+

3
∑

j=1
djQijt + eit

(7)

Correlation and covariance matrix of log prices of seven products is shown in Appendix C.
We estimated all models with no restrictions imposed from demand theory, but tested for
symmetry and homogeneity later. Linear and semi-log model estimations in the demand
system are shown in Appendix C. In the linear case, there were 22 out of 37 parameters
estimated showing significance at p-value 0.05. The parameter estimates a0, a2, ch, cnn and
b1 were significant. Calculated autocorrelation coefficients were statistically significant
at 99% level, indicating the presence of AR (5) disturbance terms. The joint hypotheses
test for seasonal dummies, λ (lambda) and µ (mu) are shown in Table 4. The test of
homogeneity failed to reject six out of seven homogeneity restrictions, null hypothesis
being homogenous of degree zero in price and expenditure. However, the symmetry test
demonstrated mixed results. Moreover, the joint hypotheses for λ (lambda) and µ (mu)
were rejected for possibility of differential demand systems with Rotterdam, AIDS, NBR
and CBS versions. Hence, it could be concluded that Barten’s synthetic model itself is an
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appropriate demand model to model this data (see also Matsuda, 2005). The parameter
estimates and joint hypotheses test of demand system using semi-log hedonic metric
approach showed similar results.

Three out of seven budget share series were nonstationary, indicating the sample mean
over 144 observations were both candidates of local coordinates to evaluate elasticities. In
view of this, we tried to obtain expenditure elasticities using the last 12 observations of each
budget share shown in Appendix D. Table 5 shows the expenditure elasticities and uncom-
pensated own-price and cross-price elasticities calculated using the last 12 observations
of budget share, respectively. The estimates of compensated own-price and cross-price
demand elasticities are shown in Table 6. It is shown that the calculated expenditure
elasticity estimates, except for rice milk, were significant at or above the p-value 0.05. Soy
milk was found to be the most expenditure-elastic plant-based milk alternative beverage.
Because expenditure elasticity performs as a measure of the responsiveness of expenditure
on, or consumption of, a product to a change in real income, this result also indicates
that soy milk was the most responsive plant-based milk alternative beverage for varying
total expenditure values. Almond milk also had high expenditure elasticity (3.60). This is
consistent with the results of Paraje et al. (2016) [62], Guerrero-Lopez et al. (2017) [63] and
Chacon et al. (2018) [64], which shows that demand for beverages was responsive to total
expenditure changes. Expenditure elasticities with respect to soy milk and almond milk
were high due to the fact that their expenditure shares were low (expenditure shares are
in the denominator of the expenditure elasticity calculation and this could explain why
the expenditure elasticity for almond milk and soy milk were somewhat high). In terms of
conventional milk products, they were all expenditure inelastic (2% milk 0.83; fat-free milk
0.57; whole milk 0.55) except for 1% milk (1.14), indicating that they are normal goods.

All uncompensated and compensated own-price elasticity estimates presented nega-
tive signs, which successfully indicated theoretically consistent own-price elasticity esti-
mates. The estimates were statistically significant except a few. Compensated own-price
elasticity of demand for soy milk was −0.25, which was the highest, indicating that con-
sumers are highly insensitive to own-price changes. Gulseven and Wohlgenant (2015) [34]
also found that soy milk entertained the highest own-price elasticity, followed by 1% milk,
full-fat milk, skim milk and 2% milk. Higher own-price elasticity of demand for soy milk is
attributed to small budget share and high prices associated with soy milk. In other words,
marginal consumers are more sensitive to a price change in soy milk compared to that
of other plant milk and conventional milk products. All the milk alternative beverages
under consideration showed inelastic own-price elasticity demands. Among the significant
compensated own price elasticities, 2% milk had the most inelastic elasticity of demand,
which was −0.17, meaning that price changes have a relatively small impact on product
consumption and it is taken by consumers as the most necessary milk product in their
daily lives. Irz and Kuosmanen (2013) [65] estimated a complete system of demand for
food and dairy products in Finland and found that all food groups are price inelastic, with
the lowest levels of price sensitivity belonging to meat, fish and dairy products. Bouamra-
Mechemache et al. (2008) [66] in their review article also demonstrated the inelastic nature
of demand for dairy products within the EU, with an average own-price elasticity reported
to be −0.57.

17 out of 42 (40 percent) compensated cross-price elasticities had negative signs
denoting net complements. There was no significant substitute for almond milk. Soy
milk’s net substitutes were all four types of regular milk products and it is a strong net
complement for almond milk and rice milk. One possible explanation is that because
the data used is purchase data, it means that almond milk and soy milk are normally
purchased together. Moreover, the results showed that almond milk and 2% milk are
substitutes. Even though the results did not indicate that rice milk could be a substitute for
conventional milk, it serves as complements for soy milk and almond milk. As expected,
all four types of conventional milk products were strong substitutes between each other.
For most product types, the absolute values of the cross-price elasticity were very small,
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i.e., close to 0, exhibiting that the consumption of most milk products was independent of
the price of other similar ones.

Table 5. Expenditure elasticities and uncompensated own-price and cross-price demand elasticities estimated by linear
hedonic Barten’s synthetic model.

Almond
Milk

Soy
Milk

Rice
Milk

2%
Milk

1%
Milk

Fat-Free
Milk

Whole
Milk Expenditure

almond milk −0.13 * −0.06 −0.06 *** −1.33 *** −0.61 *** −0.92 *** −0.68 *** 3.60 ***
(0.06) (0.04) (0.01) (0.41) (0.18) (0.27) (0.20) (0.00)

soy milk −0.03 *** −0.50 *** −0.02 *** −3.71 *** −1.62 *** −2.46 *** −1.85 *** 10.07 ***
(0.00) (0.04) (0.00) (0.45) (0.20) (0.30) (0.22) (1.21)

rice milk −0.13 *** −0.19 *** −0.10 −0.91 −0.47 −0.50 −0.49 2.31
(0.03) (0.06) (0.13) (0.93) (0.40) (0.62) (0.46) (2.50)

2% milk −0.00 *** −0.02 *** −0.00 *** −0.42 *** −0.11 *** −0.17 *** −0.12 *** 0.83 ***
(0.00) (0.00) (0.00) (0.03) (0.01) (0.04) (0.01) (0.07)

1% milk −0.00 *** −0.03 *** −0.00 *** −0.36 *** −0.33 *** −0.24 *** −0.18 *** 1.14 ***
(0.00) (0.00) (0.00) (0.03) (0.02) (0.02) (0.02) (0.08)

fat-free milk −0.00 *** −0.01 *** −0.00 −0.15 *** −0.07 *** −0.28 ** −0.07 ** 0.57 ***
(0.00) (0.00) (0.00) (0.03) (0.01) (0.02) (0.01) (0.07)

whole milk −0.00 *** −0.01 *** −0.00 *** −0.14 *** −0.06 *** −0.10 *** −0.22 *** 0.55 ***
(0.00) (0.00) (0.00) (0.04) (0.02) (0.02) (0.03) (0.10)

Note: p-value = 0.05 for rejecting the null hypothesis; ***, ** and * indicate significance at 0.001, 0.01, 0.05 levels. The value under each
estimate is standard error.

Table 6. Compensated own-price and cross-price demand elasticities estimated by linear hedonic Barten’s synthetic model.

Almond
Milk

Soy
Milk

Rice
Milk

2%
Milk

1%
Milk

Fat-free
Milk

Whole
Milk

almond milk −0.12 * −0.13 *** −0.06 *** 0.01 −0.03 * −0.02 −0.01
(0.06) (0.03) (0.01) (0.01) (0.01) (0.01) (0.01)

soy milk 0.00 −0.25 *** −0.01 *** 0.06 *** 0.02 *** 0.04 *** 0.03 ***
0.00 0.03 0.00 0.01 0.00 0.01 0.00

rice milk −0.12 *** −0.13 *** −0.01 −0.04 −0.09 *** 0.08 −0.06 ***
(0.03) (0.03) (0.13) (0.03) (0.03) (0.07) (0.02)

2% milk 0.03 0.00 *** −0.00 −0.11 *** 0.03 *** 0.04 *** 0.03 ***
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

1% milk −0.00 ** 0.00 *** −0.00 *** 0.06 *** −0.15 *** 0.04 *** 0.03 ***
(0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)

fat-free milk −0.00 0.00 *** 0.00 0.06 *** 0.03 *** −0.14 *** 0.03 ***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)

whole milk −0.00 0.00 *** −0.00 *** 0.06 *** 0.03 *** 0.04 *** −0.12 ***
(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.02)

Note: p-value = 0.05 for rejecting the null hypothesis; ***, ** and * indicate significance at 0.001, 0.01, 0.05 levels. The value under each
estimate is standard error.

Comparatively, in terms of log hedonic metric augmented Barten’s synthetic model,
soy milk was also found to be the most expenditure-elastic plant-based milk alternative
beverage. There was no strong substitute for almond milk and rice milk. Soy milk and
other types of conventional milk products were found to be substitutes for 2% low-fat milk,
which is the same as the results we summarized above. Also, soy milk was a substitute for
fat-free milk and whole milk. Soy milk and rice milk acted as net complements to almond
milk. Not surprisingly, soy milk was continuously a substitute for all conventional milk
types. Almond and soy milk and four conventional milk products were all complements of
rice milk. The same strong substitution effects could be found among all four conventional
milk products.
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6. Conclusions and Implications

Consumer demand estimation results in this study solidified their substitution effect,
offering valid explanations of the trend of shifting consumption from conventional milk
to plant milk. This work evaluated the consumer demand for conventional milk and
plant milk using cutting-edge modifications to demand system models. A novel product
characteristics approach was exploited by introducing qualitative factors through hedonic
metric approach in approximating the elasticities estimated by Barten’s synthetic model.
Both linear and semi-log hedonic pricing models showed good fitness with the data of
seven products. The estimated parameters from Barten’s synthetic model were greatly
reduced and significant. Furthermore, the homogeneity and symmetry test results were
observed as expected. Soy milk had the highest own-price elasticity. Inelastic demand
of all three types of plant milk means that consumers’ purchasing is not very sensitive to
price changes. Plus, soy milk was found to be a substitute for all four types of conventional
milk products and vice versa. This provides a good explanation for the consumption trend
toward plant-based beverages. Additionally, three plant milk were complements among
each other.

The estimated elasticities can be used to project future demand trends of plant milk,
which is increasingly capturing the attention of startups and food companies to take
initiative steps to develop novel products with better quality, attractive packaging and a
positive influence on agricultural food market growth. The findings are hoped to shed
some light for policy makers to improve the agriculture sector to increase raw material,
such as soy, almond and rice, availability. The plant milk market is a classic example of a
monopolistically competitive market, so the government should guide the formation of a
benign competitive market, prevent a monopoly, and ensure that the price is stable at a
reasonable level. Future research can be induced by exploring the competitive behavior
of member firms in the market and their performance outcomes including prices, profits,
output, etc. Additionally, with the substitution effects between plant milk and conventional
milk observed, the conventional milk market requires continuing product alternation and
differentiation to improve its competitiveness and sustainability.

Due to the limited availability of nutritional information and recorded consumption
data about plant milk, this study could only apply pooled UPC level information to estimate
the hedonic pricing models. As plant milk started to gain popularity in the recent ten
years, adequate purchase observations were not available at the beginning of the time
period in this work. The dataset for estimating hedonic pricing model requires sufficient
variations on the nutritional attributes, but the existing household level data cannot satisfy
such a variability requirement. Furthermore, the information of nutritional data about
plant milk is limited and very rare in the Nielsen Homescan database as well as the USDA
nutritional database. The estimated results of demand elasticities could possibly be much
more informative if more consumer purchase data and nutritional information about plant
milk are available.
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Appendix A

As Figure 1 shows, after acquiring all the estimated coefficients in the linear hedo-
nic pricing model, we calculated the value-added term (implicit price) of attribute l for
each beverage i in the form vil = xil βl . For semi-log hedonic pricing model, the value-
added term was calculated by multiplying the amount of attribute k in product i (xil),
the estimated coefficients (βl) and price of the product i (Pi), in the form vil = xil βl Pi.
The following step was to calculate the hedonic attribute distance which is simply the
difference between value-added terms of each attributes for any two products i and j
(∀ i, j = 1, 2, . . . , 7) out of seven. Again, each attribute distance can be taken as a point in
the hedonic attribute space, and the hedonic distance between two products i and j is the
Euclidean distance.

Figure 2 provides a general view of how hedonic attribute space is constructed. Due to
the fact that package size and multipack dummies vary with different products, the hedonic
attribute space had 49 nutritional dimensions for each product. The 49 attributes included
seven nutritional attributes and other qualitative dummy variables, as mentioned above.
Since the dummy variables of multipack and package size had multiple values, Table 1
provides the description of each of them. The diagonal of the hedonic attribute matrix was
zero because the attribute l itself was zero. Accordingly, each block (every product) in the
matrix had 49 different attribute distances with another product. For simplicity, we denote
those distances as dl

ij in each block. After all the hedonic attribute distances were obtained,
we applied Euclidean distance to derive the hedonic distance between two products i and j,
dij, shown in Equation (A1). Then, the continuous hedonic distance matrix was calculated
using Equation (A2), where hedonic distance was rescaled between 0 and 1 to make these
distances comparable.

dij =

√(
d1

ij

)2
+
(

d2
ij

)2
+ . . . +

(
d49

ij

)2
(A1)

dc
ij =

1

1 +
√

dij

(A2)
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Table A1. Description of dummy variables of multipack and package size.

Dummy Variables Soy Milk Almond Milk Rice Milk 2% Milk 1% Milk Whole Milk Fat-Free Milk

Dpkge_size1 8 oz. 8 oz. 11 oz. size < 8 oz. 8 oz. size < 8 oz. size < 8 oz.
Dpkge_size2 8 oz. < size < 10 oz. 10 oz. 12 oz. 8 oz. 10 oz. 8 oz. 8 oz.
Dpkge_size3 10 oz. 12 oz. 14 oz. 8 oz. < size < 10 oz 10 oz. < size < 11 oz. 10 oz. 10 oz.
Dpkge_size4 10 oz. < size < 11 oz. 16 oz. 16 oz. 10 oz. 12 oz. 10 oz.<size < 11 oz. 10 oz.<size < 11 oz.
Dpkge_size5 11 oz. 32 oz. 32 oz. 10 oz. < size < 11 oz. 14 oz. 12 oz. 11 oz.
Dpkge_size6 12 oz. 48 oz. 48 oz. 11 oz. 16 oz. 14 oz. 12 oz.
Dpkge_size7 15 oz. 64 oz. 64 oz. 12 oz. 32 oz. 16 oz. 14 oz.
Dpkge_size8 15oz. < size < 16 oz. 128 oz. 14 oz. 52 oz. 20 oz. 16 oz.
Dpkge_size9 16 oz. 16 oz. 52 oz.<size < 64 oz. 24 oz. 20 oz.
Dpkge_size10 32 oz. 20 oz. 64 oz. 32 oz. 32 oz.
Dpkge_size11 32 oz. < size < 48oz. 24 oz. 94 oz. 32 oz. < size < 52 oz. 32 oz. < size < 52 oz.
Dpkge_size12 48 oz. 32 oz. 96 oz. 52 oz. 52 oz.
Dpkge_size13 64 oz. 32 oz. < size < 52 oz. 97 oz. 52 oz. < size < 64 oz. 52 oz. < size < 64 oz.
Dpkge_size14 128 oz. 52 oz. 128 oz. 64 oz. 64 oz.

Dpkge_size15
52 oz. < size < 64 oz.

oz. 96 oz. 94 oz.

Dpkge_size16 64 oz. 128 oz. 96 oz.
Dpkge_size17 94 oz. 128 oz.
Dpkge_size18 96 oz.
Dpkge_size19 97 oz.
Dpkge_size20 128 oz.

Dmulti1 1 Pack 1 pack 1 pack 1 pack 1 pack 1 pack 1 pack
Dmulti2 2 packs 2 packs 2 packs 2 packs 2 packs 2 packs
Dmulti3 3 packs 3 packs 3 packs 3 packs
Dmulti4 4 packs 4 packs
Dmulti5 5 packs
Dmulti6 6 packs 6 packs 6 packs 6 packs 6 packs
Dmulti7 12 packs 12 packs 12 packs 12 packs 9 packs
Dmulti8 18 packs
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Appendix B

To ensure that the theoretical properties associated with the demand theory were
satisfied, we needed to impose the following restrictions on parameters of BSM. First,
adding-up restriction:

n

∑
i=1

βi + λ = 1 (A3)

and then homogeneity:
n

∑
j=1

γij = 0 (A4)

where i = 1, 2, . . . , n. The next restriction was imposed to certify that Slutsky symmetry
condition was satisfied:

γij = γij (A5)

where i, j. = 1, 2, . . . , n and i 6= j. γij is the slope coefficient associated with the jth good in
the ith share equation.

After the reparameterization of Barten’s synthetic model, we acquired the following
hedonic metric augmentation to the BSM (HM-BSM), which granted the implementation
of differentiated quality attributes in demand elasticity estimations.

wid ln qi = (βi + λwi)d ln Q + (α0 + α1xs
i + α2xc

i − µwi(δii − wi))d ln pi + ∑
i 6=j

[chdij + cnndnn
ij − µwi

(
δij − wj

)
]d ln pj (A6)
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In this form, Hicksian own-price elasticity is:

d ln qi
d ln pi

= ec
ii =

α0 + α1xs
i + α2xc

i
wi

− µ(δii − wi) (A7)

where wi is budget shares of ith good, δij is the Kronecker delta (δij= 1 if i = j and δij = 0 if
i 6= j). Hicksian cross-price elasticities could be calculated as:

d ln qi
d ln pj

= ec
ii =

chdh
ij + cnndnn

ij

wi
− µ

(
δij − wj

)
(A8)

The expenditure elasticities were calculated in the original form from the original
model:

d ln qi
d ln m

≡ ei =
βi
wi

+ λ (A9)

Marshallian elasticities which are recovered using the Slutsky equation in elasticity
form is shown as:

eU
ii =

α0 + α1xs
i + α2xc

i
wi

− µ
(
δij − wj

)
− βi + λwi (A10)

As aforementioned, using traditional a demand system requires a large number of
parameters to be estimated. If we use a distance metric method to reparametrize the
demand system, the number of parameters would be greatly reduced. In a distance
metric method, cross-price coefficients interact with hedonic distance dij while own-price
coefficients have a linear relationship with product attributes instead. As Pinske, Slade
and Brett (2002) [42] suggest, conditional on neighbor prices, fluctuations in prices of more
distant competitors have no impact on own sales. Based on the concepts of hedonic distance
and nearest neighbor, the cross-price and own-price effects in the hedonic augmented
Barten’s synthetic model were characterized as Equations (B9) and (B10) respectively:

γij = chdij + cnndnn
ij , (A11)

where dij is the hedonic distance, dnn
ij is the nearest neighbor dummy matrix.

γii = α0 + α1xs
i + α2xc

i , (A12)

where xs
i refers to the product’s average market share and xc

i is the closeness index of
product i instead. According to the definition of the closeness index, the value of a
product’s own closeness index is 1. As a result, xc

i are all 1 for the seven products considered.
However, it turned out that the list of such parameters caused a singularity problem in
estimating the demand system, which leads to biased estimation of parameters and hence
elasticities, a problem that is not mentioned and solved in Gulseven and Wohlgenant’s
(2015) research. Therefore, an alternative measurement enlightened by social network
study was found to be suitable for redefining the own-closeness index between products,
as mentioned before. We assumed that if a product is located in a more central position in
the hedonic distance space, then its own-closeness index becomes much larger.
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Appendix C

Table A2. Correlation and covariance matrix of log prices of seven products.

ln(psoy milk) ln(palmond milk ) ln(price milk) ln(p2% milk) ln(p1% milk) ln(pfat-free milk) ln(pwhole milk)

ln(psoy milk) 1.00 0.65
(<0.0001)

−0.21
(0.01)

−0.62
(<0.0001)

−0.59
(<0.0001)

−0.60
(<0.0001)

−0.63
(<0.0001)

ln(palmond milk) 0.65
(<0.0001) 1.00 0.00

(0.96)
−0.43

(<0.0001)
−0.38

(<0.0001)
−0.43

(<0.0001)
−0.42

(<0.0001)

ln(price milk) −0.21
(0.01)

0.00
(0.96) 1.00 0.13

(0.10)
0.12

(0.15)
0.10

(0.25)
0.12

(0.15)

ln(p2% milk) −0.62
(<0.0001)

−0.43
(<0.0001)

0.13
(0.11) 1.00 0.98

(<0.0001)
0.99

(<0.0001)
0.98

(<0.0001)

ln(p1% milk) −0.59
(<0.0001)

−0.38
(<0.0001)

0.12
(0.15)

0.98
(<0.0001) 1.00 0.97

(<0.0001)
0.98

(<0.0001)

ln(pfat-free milk) −0.60
(<0.0001)

−0.43
(<0.0001)

0.10
(0.25)

0.10
(<0.0001)

0.97
(<0.0001) 1.00 0.98

(<0.0001)

ln(pwhole milk ) −0.63
(<0.0001)

−0.42
(<0.0001)

0.12
(0.15)

0.98
(<0.0001)

0.98
(<0.0001)

0.98
(<0.0001) 1.00

Note: values in parentheses are p-values. ln(pi) = log of price of beverage i.

Table A3. Parameter estimates of linear hedonic Barten’s synthetic model for U.S. plant milk con-
sumed at home.

Parameter Estimate Std Err p-Value

Linear Log Linear Log Linear Log

a0 0.01 0.01 0.00 0.00 0.00 0.02
a1 −0.01 −0.01 0.00 0.01 0.09 0.03
a2 −0.01 −0.01 0.00 0.00 0.00 0.03
ch 0.00 0.00 0.00 0.00 <0.0001 0.01

cnn 0.00 0.00 0.00 0.00 0.00 0.11
b1 0.01 0.01 0.00 0.00 0.03 0.00

lambda 1.20 1.31 0.27 0.27 <0.0001 <0.0001
mu 0.16 0.17 0.02 0.02 <0.0001 <0.0001

rho1 −0.71 −0.69 0.04 0.04 <0.0001 <0.0001
rho2 −0.51 −0.50 0.04 0.04 <0.0001 <0.0001
rho3 −0.32 −0.34 0.04 0.04 <0.0001 <0.0001
rho4 −0.18 −0.19 0.04 0.04 <0.0001 <0.0001
rho5 −0.12 −0.11 0.03 0.03 0.00 0.00
d11 0.00 0.00 0.00 0.00 0.00 0.02
d12 0.00 0.00 0.00 0.00 0.70 0.95
d13 0.00 0.00 0.00 0.00 0.08 0.20
b2 0.22 0.20 0.03 0.03 <0.0001 <0.0001

d21 0.00 0.00 0.00 0.00 0.47 0.48
d22 0.00 0.00 0.00 0.00 0.02 0.02
d23 0.00 0.00 0.00 0.00 0.01 0.01
b3 0.00 0.00 0.00 0.00 0.61 0.51

d31 0.00 0.00 0.00 0.00 0.22 0.18
d32 0.00 0.00 0.00 0.00 0.36 0.31
d33 0.00 0.00 0.00 0.00 0.03 0.03
b4 −0.13 −0.19 0.10 0.10 0.17 0.05

d41 0.00 0.00 0.00 0.00 0.44 0.72
d42 0.00 0.00 0.00 0.00 0.14 0.29
d43 0.00 0.00 0.00 0.00 0.12 0.25
b5 −0.01 −0.02 0.05 0.05 0.78 0.64

d51 0.00 0.00 0.00 0.00 0.02 0.02
d52 0.00 0.00 0.00 0.00 0.00 0.01
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Table A3. Cont.

Parameter Estimate Std Err p-Value

Linear Log Linear Log Linear Log

d53 0.00 0.00 0.00 0.00 0.00 0.00
b6 −0.16 −0.17 0.07 0.07 0.03 0.02

d61 0.00 0.00 0.00 0.00 0.73 0.99
d62 0.00 0.00 0.00 0.00 0.52 0.32
d63 0.00 0.00 0.00 0.00 0.59 0.38
b7 −0.12 −0.14 0.05 0.05 0.03 0.01

Appendix D

Table A4. Average budget share.

Almond
Milk

Soy
Milk

Rice
Milk 2% Milk 1% Milk Fat-Free

Milk
Whole
Milk

Last
twelve

observa-
tions

0.004 0.018 0.001 0.453 0.126 0.251 0.147
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