n-Alkanes and n-Alkenes in Virgin Olive Oil from Calabria (South Italy): The Effects of Cultivar and Harvest Date
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Analytical Procedure
2.4. Gas Chromatography
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Istat.it. 2017. Available online: http://www.agri.istat.it/jsp/dawinci.jsp?q=plC270000010000032100&an=2016&ig=1&ct=311&id=15A|21A|32A (accessed on 16 June 2020).
- Giuffrè, A.M. Biometric evaluation of twelve olive cultivars under rainfed conditions in the region of Calabria, South Italy. Emir. J. Food Agric. 2017, 29, 696. [Google Scholar] [CrossRef] [Green Version]
- Mafrica, R.; Piscopo, A.; De Bruno, A.; Pellegrino, P.; Zappia, A.; Zappia, R.; Poiana, M. Integrated Study of Qualitative Olive and Oil Production from Three Important Varieties Grown in Calabria (Southern Italy). Eur. J. Lipid Sci. Technol. 2019, 121, 1900147. [Google Scholar] [CrossRef]
- Plastina, P.; Tundis, R.; La Torre, C.; Sicari, V.; Giuffré, A.M.; Neri, A.; Bonesi, M.; Leporini, M.; Fazio, A.; Falco, T.; et al. The addition of Capsicum baccatum to Calabrian monovarietal extra virgin olive oils leads to flavoured olive oils with enhanced oxidative stability. Ital. J. Food Sci. 2020, in press. [Google Scholar] [CrossRef]
- Sicari, V.; Leporini, M.; Giuffrè, A.M.; Aiello, F.; Falco, T.; Pagliuso, M.T.; Ruffolo, A.; Reitano, A.; Romeo, R.; Tundis, R.; et al. Quality parameters, chemical compositions and antioxidant activities of Calabrian (Italy) monovarietal extra virgin olive oils from autochthonous (Ottobratica) and allochthonous (Coratina, Leccino, and Nocellara Del Belice) varieties. J. Food Meas. Charact. 2020, 1–13. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Sicari, T.M.P.V.; Tundis, R. Calabrian extra-virgin olive oil from Frantoio cultivar: Chemical composition and health properties. Emir. J. Food Agric. 2018, 30, 631–637. [Google Scholar] [CrossRef]
- Mele, M.Z.I.M.A.; Giuffre, A.M. Pre-and post-harvest factors and their impact on oil composition and quality of olive fruit. Emir. J. Food Agric. 2018, 30, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M. The evolution of free acidity and oxidation related parameters in olive oil during olive ripening from cultivars grown in the region of Calabria, South Italy. Emir. J. Food Agric. 2018, 30, 539–548. [Google Scholar] [CrossRef]
- Libri, A.V.; Capocasale, M.; Giuffrè, A.M. Gli oli di oliva extra vergini prodotti in Calabria: La cultivar Sinopolese. Ind. Aliment. Italy 2019, 58, 13–23. [Google Scholar]
- Giuffrè, A.M.; Caracciolo, M.; Zappia, C.; Capocasale, M.; Poiana, M. Effect of heating on chemical parameters of extra virgin olive oil, pomace olive oil, soybean oil and palm oil. Ital. J. Food Sci. 2018, 30, 715–739. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Capocasale, M.; Macrì, R.; Caracciolo, M.; Zappia, C.; Poiana, M. Volatile profiles of extra virgin olive oil, olive pomace oil, soybean oil and palm oil in different heating conditions. LWT Food Sci. Technol. 2020, 117, 108631. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Variation in triacylglycerols of olive oils produced in Calabria (Southern Italy) during olive ripening. Riv. Ital. Sostanze Gr. 2014, 91, 221–240. [Google Scholar]
- Giuffrè, A.M.; Louadj, L.; Poiana, M.; Macario, A. Composition en stérols des huiles extraites d’olives de cultivars de la province de Reggio Calabria (Sud d’Italie). Riv. Ital. Sostanze Gr. 2012, 89, 177–183. [Google Scholar]
- Giuffrè, A.M. Evolution of Fatty Alcohols in Olive Oils produced in Calabria (Southern Italy) during Fruit Ripening. J. Oleo Sci. 2014, 63, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M. Wax Ester Variation in Olive Oils Produced in Calabria (Southern Italy) During Olive Ripening. J. Am. Oil Chem. Soc. 2014, 91, 1355–1366. [Google Scholar] [CrossRef]
- Consolidated Text on the Characteristics of Olive Oil and Olive-Residue Oil and on the Relevant Methods of Analysis. 01991R2568—IT—04.12.2016—031.005. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:01991R2568-20161204&from=en (accessed on 30 January 2021).
- Trade Standard Applying to Olive Oils and Olive Pomace Oils. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.15-NC.-No-3-Rev.-13-2019-Eng.pdf (accessed on 30 January 2021).
- Mihailova, A.; Abbado, D.; Kelly, S.D.; Pedentchouk, N. The impact of environmental factors on molecular and stable isotope compositions of n-alkanes in Mediterranean extra virgin olive oils. Food Chem. 2015, 173, 114–121. [Google Scholar] [CrossRef]
- Mihailova, A.; Abbado, D.; Pedentchouk, N. Differences inn-alkane profiles between olives and olive leaves as potential indicators for the assessment of olive leaf presence in virgin olive oils. Eur. J. Lipid Sci. Technol. 2015, 117, 1480–1485. [Google Scholar] [CrossRef]
- Troya, F.; Lerma-García, M.; Herrero-Martínez, J.; Simó-Alfonso, E.F. Classification of vegetable oils according to their botanical origin using n-alkane profiles established by GC–MS. Food Chem. 2015, 167, 36–39. [Google Scholar] [CrossRef]
- Giuffrè, A.M. Changes in the n-alkane composition of avocado pulp oil (Persea americana, Miller) during fruit ripening. Grasas Aceites 2005, 56, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Giuffrè, A.M.; Capocasale, M. n-Alkanes in tomato (Solanum lycopersicum L.) seed oil: The cultivar effect. Int. Food Res. J. 2016, 23, 979–985. [Google Scholar]
- Moret, S.; Populin, T.; Conte, L.; Grob, K.; Neukom, H.-P. Occurrence of C15-C45 mineral paraffins in olives and olive oils. Food Addit. Contam. 2003, 20, 417–426. [Google Scholar] [CrossRef]
- Moret, S.; Populin, T.; Conte, L.S. Contamination of vegetable oils with mineral oils. Riv. Ital. Sostanze Gr. 2009, 86, 3–14. [Google Scholar]
- Moret, S.; Barp, L.; Grob, K.; Conte, L. Optimised off-line SPE–GC–FID method for the determination of mineral oil saturated hydrocarbons (MOSH) in vegetable oils. Food Chem. 2011, 129, 1898–1903. [Google Scholar] [CrossRef]
- Ichihara, K.; Ishihara, K.; Kusunose, E.; Kusunose, M. Some Properties of a Hexadecane Hydroxylation System in Rabbit Intestinal Mucosa Microsomes. J. Biochem. 1981, 89, 1821–1827. [Google Scholar] [CrossRef]
- Perdu-Durand, E.; Tulliez, J. Hydrocarbon hydroxylation system in liver microsomes from four animal species. Food Chem. Toxicol. 1985, 23, 363–366. [Google Scholar] [CrossRef]
- Biedermann, M.; Barp, L.; Kornauth, C.; Würger, T.; Rudas, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, Part II: Characterization of the accumulated hydrocarbons by comprehensive two-dimensional gas chromatography. Sci. Total Environ. 2015, 506–507, 644–655. [Google Scholar] [CrossRef]
- Biedermann, M.; Munoz, C.; Grob, K. Update of on-line coupled liquid chromatography—Gas chromatography for the analysis of mineral oil hydrocarbons in foods and cosmetics. J. Chromatogr. A 2017, 1521, 140–149. [Google Scholar] [CrossRef]
- Grob, K. Mineral oil hydrocarbons in food: A review. Food Addit. Contam. Part A 2018, 35, 1845–1860. [Google Scholar] [CrossRef]
- Kolattukudy, P.E. Chemistry and Biochemistry of Natural Waxes; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Iyer, S.; Millar, T.; Clemens, S.; Zachgo, S.; Giblin, M.; Taylor, D.; Kunst, L. Advances in Plant Lipid Research; Sánchez, J., Cerda´-Olmedo, E., Martínez-Force, E., Eds.; Universidad de Sevilla: Seville, Spain, 1998; p. 87. [Google Scholar]
- Neukom, H.-P.; Grob, K.; Biedermann, M.; Noti, A. Food contamination by C20–C50 mineral paraffins from the atmosphere. Atmos. Environ. 2002, 36, 4839–4847. [Google Scholar] [CrossRef]
- Grob, K.; Bronz, M. Analytical problems in determining 3,5-. stigmastadiene and campestadiene in edible oils. Riv. Ital. Sostanze Gr. 1994, 71, 291–295. [Google Scholar]
- Grob, K.; Artho, A.; Biedermann, M.; Egli, J. Food contamination by hydrocarbons from lubricating oils and release agents: Determination by coupled LC-GC. Food Addit. Contam. 1991, 8, 437–446. [Google Scholar] [CrossRef]
- The European Agency for the Evaluation of Medicinal Products. Committee for Veterinary Medicinal Products—Mineral Hydrocarbons—Summary Report; EMEA/CVMP/069/95-Final; European Food Safety Authority: Parma, Italy, 1995. [Google Scholar]
- de Oliveira, E.D.; Carneiro da Silva, S. n-Alkanes as markers in nutritional studies with wild ruminant and non-ruminant animals. Sci. Agric. 2007, 64, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.; Sinclair, A.; Hovell, F.D.D.; Mayes, R.; Edwards, S. Validation of the n-alkane technique for measuring herbage intake in sows. In Proceedings of the Annual Meeting of the British Society of Animal Science; 1999; p. 177. [Google Scholar]
- Giuffrè, A.M. The effect of cultivar and harvest season on the n-alkane and the n-alkene composition of virgin olive oil. Eur. Food Res. Technol. 2020, 247, 1–12. [Google Scholar] [CrossRef]
- Srbinovska, A.; Conchione, C.; Ursol, L.M.; Lucci, P.; Moret, S. Occurrence of n-Alkanes in Vegetable Oils and Their Analytical Determination. Foods 2020, 9, 1546. [Google Scholar] [CrossRef]
- IOC. Guide for the Determination of the Characteristics of Oil-Olives. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-OH-Doc.-1-2011-Eng.pdf (accessed on 30 January 2021).
- Ali, H.; Mayes, R.; Hector, B.; Orskov, E. Assessment of n-alkanes, long-chain fatty alcohols and long-chain fatty acids as diet composition markers: The concentrations of these compounds in rangeland species from Sudan. Anim. Feed Sci. Technol. 2005, 121, 257–271. [Google Scholar] [CrossRef]
- Sayago, A.; González-Domínguez, R.; Urbano, J.; Fernández-Recamales, Á. Combination of vintage and new-fashioned analytical approaches for varietal and geographical traceability of olive oils. LWT Food Sci. Technol. 2019, 111, 99–104. [Google Scholar] [CrossRef]
- Bachelor, F.; Paralikar, A.; Telang, S. Alkanes of three Artemisia species. Phytochemistry 1972, 11, 442–443. [Google Scholar] [CrossRef]
- Osorio Bueno, E.; Sánchez Casas, J.; Montaño García, A.; Gallardo González, L. Discriminating power of the hydrocarbon content from virgin olive oil of Extremadura cultivars. J. Am. Oil Chem. Soc. 2005, 82, 1–61. [Google Scholar] [CrossRef]
- Sakouhi, F.; Cerchi, W.; Sbei, K.; Absalon, C.; Boukhchina, S. Characterisation and accumulation of squalene and n-alkanes in developing Tunisian Olea europaea L. fruits. Int. J. Food Sci. Technol. 2011, 46, 2281–2286. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Conte, L.S. Caratterizzazione della frazione idrocarburica e composizione degli acidi grassi degli oli d’oliva vergini provenienti dalla zona di Pola (Croazia). Riv. Ital. Sostanze Gr. 1996, 73, 317–320. [Google Scholar]
- Gaind, K.; Gupta, R. Alkanes, alkanols, triterpenes and sterols of Kalanchoe pinnata. Phytochemistry 1972, 11, 1500–1502. [Google Scholar] [CrossRef]
- Lazón, A.; Albi, T.; Cart, A.; Gracián, J. The hydrocarbon fraction of virgin olive oil and changes resulting from refining. J. Am. Oil Chem. Soc. 1994, 71, 285–291. [Google Scholar] [CrossRef]
- Koprivnjak, O. Variety differentiation of virgin olive oil based on n-alkane profile. Food Chem. 2005, 90, 603–608. [Google Scholar] [CrossRef]
- Bianchi, G.; Murelli, C.; Vlahov, G. Surface waxes from olive fruits. Phytochemistry 1992, 31, 3503–3506. [Google Scholar] [CrossRef]
- Moreda, W.; Pérez-Camino, M.; Cert, A. Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159–171. [Google Scholar] [CrossRef]
- Brondz, I.; Greibrokk, T.; Aasen, A.J. n-Alkanes of Hypericum perforatum: A revision. Phytochemistry 1983, 22, 295–296. [Google Scholar] [CrossRef]
- El Antari, A.; Hilal, A.; Boulouha, B.; El Moudni, A. Influence of variety, environment and cultural techniques on the characteristics of olive fruits and the chemical composition of extra virgin olive oil of Morocco. Olivae 2000, 80, 29–36. [Google Scholar]
- Pineda, M.; Rojas, M.; Gálvez-Valdivieso, G.; Aguilar, M. The origin of aliphatic hydrocarbons in olive oil. J. Sci. Food Agric. 2017, 97, 4827–4834. [Google Scholar] [CrossRef]
- Gómez-Coca, R.Q.; del Carmen Pérez-Camino, M.; Moreda, W. Saturated hydrocarbon content in olive fruits and crude olive pomace oils. Food Addit. Contam. Part A 2016, 33, 391–402. [Google Scholar] [CrossRef]
- Nygaard, U.C.; Vege, Å.; Rognum, T.; Grob, K.; Cartier, C.; Cravedi, J.-P.; Alexander, J. Toxic effects of mineral oil saturated hydrocarbons (MOSH) and relation to accumulation in rat liver. Food Chem. Toxicol. 2019, 123, 431–442. [Google Scholar] [CrossRef]
- Bush, R.T.; McInerney, F.A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 2013, 117, 161–179. [Google Scholar] [CrossRef]
- Bortolomeazzi, R.; Berno, P.; Pizzale, L.; Conte, L.S. Sesquiterpene, alkene, and alkane hydrocarbons in virgin olive oils of different varieties and geographical origins. J. Agric. Food Chem. 2001, 49, 3278–3283. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Sánchez, P.L.; León-Camacho, M.; Aparicio, R. A comprehensive study of hazelnut oil composition with comparisons to other vegetable oils, particularly olive oil. Eur. Food Res. Technol. 2003, 218, 13–19. [Google Scholar] [CrossRef]
- D’Agostino, M.; Sanz, J.; Martínez-Castro, I.; Giuffrè, A.M.; Sicari, V.; Soria, A.C. Statistical analysis for improving data precision in the SPME GC–MS analysis of blackberry (Rubus ulmifolius Schott) volatiles. Talanta 2014, 125, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giuffrè, A.M. n-Alkanes and n-Alkenes in Virgin Olive Oil from Calabria (South Italy): The Effects of Cultivar and Harvest Date. Foods 2021, 10, 290. https://doi.org/10.3390/foods10020290
Giuffrè AM. n-Alkanes and n-Alkenes in Virgin Olive Oil from Calabria (South Italy): The Effects of Cultivar and Harvest Date. Foods. 2021; 10(2):290. https://doi.org/10.3390/foods10020290
Chicago/Turabian StyleGiuffrè, Angelo Maria. 2021. "n-Alkanes and n-Alkenes in Virgin Olive Oil from Calabria (South Italy): The Effects of Cultivar and Harvest Date" Foods 10, no. 2: 290. https://doi.org/10.3390/foods10020290
APA StyleGiuffrè, A. M. (2021). n-Alkanes and n-Alkenes in Virgin Olive Oil from Calabria (South Italy): The Effects of Cultivar and Harvest Date. Foods, 10(2), 290. https://doi.org/10.3390/foods10020290