Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples
2.3. Sample Preparation
2.4. LC–MS Parameters
2.4.1. Analysis of Pesticide Residues
2.4.2. Analysis of Pesticide Metabolites
2.5. Detection and Identification of Pesticide Residues and Pesticide Metabolites
2.6. Method Validation
2.7. Quality Control
3. Results and Discussion
3.1. Validation
3.2. Residues in Grapes and Wines from Conventional Production
3.3. Pesticide Metabolites in Grapes and Wines from Conventional Production
Screening of Pesticide Metabolites in Grapes and Wines from Conventional Production
3.4. Screening of Pesticide Residues and Pesticide Metabolites in Grapes and Wines from Organic Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
# | Analyte (Parent Pesticide/Pesticide Metabolite) | Elemental Composition | Ion Type | Detected Ion (MS 1) | Retention | Measured m/z | Ref. |
---|---|---|---|---|---|---|---|
Time | of Fragments | ||||||
[min] | (MS 2) | ||||||
1 | ACETAMIPRID | C10H11ClN4 | [M+H]+ | 223.0743 | 6.1 | 126.0103; 56.0481 | [28] |
[M-H]- | 221.0599 | 6.1 | 140.0268; 65.0142 | ||||
1a | acetamiprid-N-desmethyl | C9H9ClN4 | [M+H]+ | 209.0589 | 6.0 | 126.0109; 56.0481 | |
2 | AZOXYSTROBIN | C22H17N3O5 | [M+H]+ | 404.1241 | 8.8 | 372.0981; 344.1027; 329.0794 | [29] |
2a | azoxystrobin (Z-isomer) | C22H17N3O5 | [M+H]+ | 404.1241 | 8.5 | 372.0981; 344.1027; 329.0794 | |
3 | BENALAXYL | C20H23NO3 | [M+H]+ | 326.1751 | 9.9 | 208.1333; 148.1124; 121.0886; 91.0538 | [30] |
3a | benalaxyl-hydroxy | C20H23NO4 | [M+H]+ | 342.17 | 8.9 | 264.1385; 206.1197; 164.1095; 146.0984 | |
3b | benalaxyl-gluco | C26H33NO9 | [M+H]+ | 504.2228 | 8.4 | 324.1754; 264.1385; 206.1197; 164.1095; 146.0984 | |
4 | CYPRODINYL | C14H15N3 | [M+H]+ | 226.1339 | 9.7 | 210.1013; 185.1082; 144.0799; 133.0751; 106.0656 | [31] |
4a | cyprodinyl-hydroxy | C14H15N3O | [M+H]+ | 242.1288 | 8.7; 8.9 | 224.1192; 208.0913; 142.0629; 124.0732; 108.0797 | |
4b | cyprodinyl-hydroxy glykosid | C20H25N3O6 | [M+H]+ | 404.1816 | 8.0; 8.1; 8.7 | 242.1297; 224.1192; 208.0913; 142.0629; 124.0732; 108.0797 | |
5 | DIMETHOMORPH | C21H22ClNO4 | [M+H]+ | 388.131 | 8.9; 9.1 | 301.0650; 273.0655; 165.0541; 114.0546; 70.0271 | [32] |
5a | dimethomorph-demethyl | C20H20ClNO4 | [M+H]+ | 374.1154 | 8.5; 8.7 | 287.048; 151.0378; 114.0546; 70.0271 | |
5b | dimethomorph-demethyl glycoside | C26H30ClNO9 | [M+H]+ | 536.1682 | 7.7 | 374.1154; 287.0480; 151.0378; 70.0271 | |
5c | dimethomorph-hydroxy | C21H22ClNO5 | [M+H]+ | 404.1259 | 8.1; 8.3; 8.5 | 386.1135; 317.0558; 289.0614; 165.0541; 114.0546; 70.0271 | |
6 | FENHEXAMID | C14H17Cl2NO2 | [M+H]+ | 302.0709 | 9.4 | 177.9817; 143.0124; 97.1008; 55.0525 | [33] |
[M-H]- | 300.0564 | 9.3 | 264.0796; 249.0558; 221.0241 | ||||
6a | fenhexamid-glycoside | C20H27Cl2NO7 | [M+H]+ | 464.1237 | 8.7 | 302.0702; 177.9817; 143.0124; 97.1008; 55.0525 | |
[M-H]- | 462.1082 | 8.6 | 300.0564; 264.0796; 249.0558; 221.0241 | ||||
6b | fenhexamid-hydroxy | C14H17Cl2NO3 | [M+H]+ | 318.0658 | 8.6 | 300.0549; 175.9651; 113.0961; 97.1008; 55.0525 | |
[M-H]- | 316.0513 | 8.5 | 280.073; 237.0710; 175.9663 | ||||
6c | fenhexamid-hydroxy glycoside | C20H27Cl2NO8 | [M+H]+ | 480.1187 | 7.6 | 318.0646; 300.0549; 175.9651; 113.0961; 97.1008; 55.0525 | |
[M-H]- | 478.1041 | 7.5 | 316.0497; 280.073; 237.0710; 175.9663 | ||||
6d | fenhexamid-dechloro | C14H18ClNO2 | [M+H]+ | 268.1099 | 9.0 | 232.1335; 144.0234; 97.1012; 55.0535 | |
[M-H]- | 266.0975 | 8.9 | 230.1190; 215.0944; 187.004 | ||||
7 | FENPROPIDIN | C19H31N | [M+H]+ | 274.2529 | 8.5 | 189.1640; 147.1165; 86.0958; 57.0687 | [34] |
7a | fenpropidin-hydroxy | C19H31N O | [M+H]+ | 290.2478 | 8.1 | 272.2337; 147.1165 | |
8 | FENPYRAZAMINE | C17H21N3O2S | [M+H]+ | 332.1427 | 9.3 | 304.1461; 262.0995; 231.1369; 230.1289; 216.1130; 189.0889; 145.0750; 131.0713 | [35] |
8a | fenpyrazamine-metabolite | C13H17N3O | [M+H]+ | 232.1444 | 6.4 | 190.0971; 173.0698; 145.0750; 132.0808 | |
9 | FLUDIOXONIL | C12H6F2N2O2 | [M-H]- | 247.0325 | 8.9 | 207.0228; 180.0313; 169.0391; 151.0304; 126.0346 | [36] |
9a | fludioxonil-hydroxy glycoside | C18H16F2N2O8 | [M-H]- | 425.0802 | 7.1 | 263.0267; 196.0344; 126.0346 | |
10 | FLUOPYRAM | C16H11ClF6N2O | [M+H]+ | 397.0537 | 9.3 | 208.0144; 190.0486; 173.0219; 145.0272 | [37] |
10a | fluopyram-hydroxy | C16H11ClF6N2O2 | [M+H]+ | 413.0486 | 8.6 | 395.0370; 224.0078; 173.0212; 145.0272 | |
11 | IPROVALICARB | C18H28N2O3 | [M+H]+ | 321.2173 | 9.4 | 144.0644; 119.0852; 116.0700; 98.0591; 91.0533; 72.0797 | [38] |
[M+CH3COO]- | 319.2027 | 9.3 | 259.1470; 216.0911; 97.0040; 59.0128 | ||||
11a | iprovalicarb-hydroxy | C18H28N2O4 | [M+H]+ | 337.2122 | 7.9; 8.1 | 319.1811; 144.0644; 135.0800; 116.0696; 98.0591; 72.0797 | |
11b | iprovalicarb-hydroxy glycoside | C24H38N2O9 | [M+H]+ | 499.265 | 7.3; 7.5 | 337.2099 319.1811; 144.0644; 135.0800; 116.0696; 98.0591; 72.0797 | |
12 | MEPANIPYRIM | C14H13N3 | [M+H]+ | 224.1191 | 9.4 | 207.0937;121.0762; 106.0639; 93.0696 | [39] |
12a | mepanipyrim-2-hydroxypropyl | C14H17N3O | [M+H]+ | 244.1444 | 8.3 | 226.1341; 200.1181; 133.0760; 106.0639; 93.0571 | |
12b | mepanipyrim-2-hydroxypropyl glycoside | C20H27N3O6 | [M+H]+ | 406.1972 | 7.3; 7.6 | 244.1460; 226.1341; 200.1181; 133.0760; 106.0639; 93.0572 | |
13 | MEPTYLDINOCAP | C18H24N2O6 | [M-C4H4O]- | 295.1299 | 10.9 | 277.2162; 193.0242; 171.1023 | [40] |
13a | 2,4-DNOP | C14H20N2O5 | [M-H]- | 295.1299 | 9.4 | 277.2162; 193.0242; 171.1023 | |
14 | METALAXYL | C15H21NO4 | [M+H]+ | 280.1543 | 8.5 | 220.1341; 192.1397; 160.1128; 148.1126; 45.0325 | [41] |
14a | metalaxyl-hydroxy | C15H21NO5 | [M+H]+ | 296.1495 | 8.0 | 278.1361; 236.1281; 208.1333; 176.1075; 146.0950; 45.0325 | |
15 | METHOXYFENOZIDE | C22H28N2O3 | [M-H]- | 369.2174 | 9.1 | 311.1359; 149.0602; 121.0647; 105.0705; 80.5643 | [42] |
15a | methoxyfenozide-hydroxy glycoside | C28H38N2O9 | [M-H]- | 581.2271 | 7.8 | 327.1369; 165.0524; 96.5673 | |
16 | METRAFENONE | C19H21BrO5 | [M+H]+ | 409.0645 | 10.1 | 226.9706; 209.0808; 194.0563; 166.0626 | [43] |
16a | metrafenone CL 1500836 | C19H20O6 | [M+H]+ | 345.1333 | 8.5 | 253.0837; 181.0849; 165.0545; 163.0387 | |
16b | metrafenone CL 3000402 | C19H19BrO6 | [M+H]+ | 423.0438 | 9.7 | 393.0310; 268.1079; 242.9640; 240.9500; 212.9530 | |
16c | metrafenone CL 379395 | C19H19BrO6 | [M+H]+ | 423.0438 | 8.9 | 226.9674; 225.0758; 223.0596; 212.9909; 195.0648 | |
17 | PENCONAZOLE | C13H15Cl2N3 | [M+H]+ | 284.0721 | 9.8 | 172.9928; 158.9764; 70.0397 | [44] |
17a | penconazole-hydroxy | C13H15Cl2N3O | [M+H]+ | 300.0665 | 8.1; 8.8 | 282.0554; 213.0225; 188.9868; 158.9766; 70.0397 | |
17b | penconazole-hydroxy glycoside | C19H25Cl2N3O6 | [M+H]+ | 462.1176 | 7.5 | 300.0670; 282.0554; 213.0225; 188.9868; 158.9766; 70.0397 | |
18 | PROQUINAZID | C14H17IN2O2 | [M+H]+ | 373.0417 | 10.9 | 330.9943; 288.9473; 271.9204; 162.0431; 43.0523 | [45] |
18a | proquinazid-hydroxy | C14H17IN2O3 | [M+H]+ | 389.0352 | 9.9 | 330.9943; 288.9473; 271.9204; 162.0431; 59.0480 | |
18b | proquinazid-hydroxy glycoside | C20H27IN2O8 | [M+H]+ | 551.0844 | 9.2 | 389.0352; 330.9943; 288.9473; 271.9204; 162.0431; 59.0480 | |
19 | PYRACLOSTROBIN | C19H18ClN3O4 | [M+H]+ | 388.1059 | 9.9 | 324.0523; 296.0585; 194.0811; 163.0628; 149.0468; 133.0517 | [46] |
19a | pyraclostrobin-hydroxy | C19H18ClN3O5 | [M+H]+ | 404.1008 | 9.9 | 312.0469; 194.0811; 163.0628; 149.0468; 133.0517 | |
[M-H]- | 402.0862 | 9.9 | 208.0045; 164.0134; 157.0006 | ||||
19b | pyraclostrobin-desmethoxy | C18H16ClN3O3 | [M+H]+ | 358.0953 | 9.9 | 326.0677; 298.0585; 164.0704; 132.0434 | |
19c | pyraclostrobin-hydroxy glycoside | C25H28ClN3O10 | [M+H]+ | 566.1536 | 8.6 | 404.1008; 312.0469; 194.0811; 163.0628; 149.0468; 133.0517 | |
20 | PYRIMETHANIL | C12H13N3 | [M+H]+ | 200.1183 | 8.8 | 183.0927; 143.0608; 107.0614; 82.0656 | [47] |
20a | pyrimethanil-hydroxy | C12H13N3O | [M+H]+ | 216.113 | 7.3; 7.6; 8.0 | 198.1035; 183.0979; 159.0545; 107.0609; 82.0654 | |
20b | pyrimethanil-hydroxy glycoside | C18H23N3O6 | [M+H]+ | 378.1661 | 6.9 | 216.1148; 198.1035; 183.0979; 159.0545; 107.0609; 82.0654 | |
20c | pyrimethanil-hydroxy diglycoside | C23H31N3O10 | [M+H]+ | 510.2082 | 6.6 | 378.1673; 216.1148; 198.1035; 183.0979; 159.0545; 107.0609; 82.0654 | |
21 | SPIROTETRAMAT | C21H27NO5 | [M+H]+ | 374.1961 | 9.4 | 330.2062; 302.1740; 270.1484; 244.1330; 216.1006; 124.0726 | [48] |
21a | Spirotetramat-enol | C18H23NO3 | [M+H]+ | 302.1751 | 8.1 | 270.1487; 216.1006; 124.0726 | |
21b | Spirotetramat-enol glucoside | C24H33NO8 | [M+H]+ | 464.2278 | 5.2; 5.6 | 302.1739; 270.1487; 216.1006; 124.0726 | |
21c | Spirotetramat BYI08330-cis-keto-hydroxy | C18H23NO4 | [M+H]+ | 318.17 | 8.5 | 300.1618; 268.1335; 214.0869 | |
21d | Spirotetramat BYI08330-mono-hydroxy | C18H25NO3 | [M+H]+ | 304.1907 | 7.6 | 272.1647; 21101512 | |
22 | SPIROXAMINE | C18H35NO2 | [M+H]+ | 298.2741 | 8.9 | 144.1345; 100.1083; 72.0795 | [49] |
22a | spiroxamine-N-oxide | C18H35NO3 | [M+H]+ | 314.269 | 9.0; 9.2; 9.3 | 160.1328; 130.1218; 100.1112; 88.0750 | |
22b | spiroxamine-N-desethyl | C16H31NO2 | [M+H]+ | 270.2428 | 8.7 | 116.1066; 72.0810 | |
22c | spiroxamine-N-despropyl | C15H29NO2 | [M+H]+ | 256.2271 | 8.4 | 102.0909; 84.0797; 58.0639 | |
23 | TEBUCONAZOLE | C16H22ClN3O | [M+H]+ | 308.1524 | 9.8 | 151.0312; 139.0285; 125.0147; 70.0390; 57.0704 | [50] |
[M-H]- | 306.1379 | 9.7 | 223.0911; 82.0407; 68.0255 | ||||
23a | tebuconazole-hydroxy | C16H22ClN3O2 | [M+H]+ | 324.1473 | 8.9, 9.4; 9.7 | 141.0078; 125.0147; 70.0390 | |
[M-H]- | 322.1334 | 9.2; 9.5 | 239.0838; 223.0911; 68.0255 | ||||
23b | tebuconazole-hydroxy glycoside | C22H32ClN3O7 | [M+H]+ | 486.2002 | 8.4 | 324.1481; 141.0078; 125.0147; 70.0390 | |
24 | TEBUFENPYRAD | C18H24ClN3O | [M+H]+ | 334.1681 | 10.3 | 200.0584; 171.0322; 147.0532; 145.0540; 132.0938; 117.0223 | [51] |
24a | tebufenpyrad-hydroxy | C18H24ClN3O2 | [M+H]+ | 350.163 | 9.1 | 200.0584; 171.0323; 163.1109; 145.1007; 133.1017 | |
25 | TRIFLOXYSTROBIN | C20H19F3N2O4 | [M+H]+ | 409.1370 | 10.1 | 206.0813; 186.0535; 162.0917; 146.0608; 131.0730 | [52] |
25a | trifloxystrobin isomers | C20H19F3N2O4 | [M+H]+ | 409.1370 | 9.9; 10.3; 10.5 | 206.0813; 186.0535; 162.0917; 146.0608; 131.0730 | |
25b | trifloxystrobin-demethyl | C19H17F3N2O4 | [M+H]+ | 395.1213 | 9.3 + 9.6 | 192.0800; 186.0537; 148.0762; 116.0498 |
References
- Food and Agriculture Organisation. Table and Dried Grapes. Available online: Http://Www.Fao.Org/3/a-I7042e.Pdf (accessed on 13 July 2020).
- Grimalt, S.; Dehouck, P. Review of Analytical Methods for the Determination of Pesticide Residues in Grapes. J. Chromatogr. A 2016, 143, 1–23. [Google Scholar] [CrossRef]
- Phytosanitary Portal (Rostlinolékařský Portál). Central Institute for Supervising and Testing in Agriculture (UKZUZ). Available online: http://eagri.cz/public/app/srs_pub/fytoportal/fy-public/?k=0#rlp|met:domu|kap1:uvod|kap:uvod (accessed on 12 December 2020).
- Heshmati, A.; Nili-Ahmadabadi, A.; Rahimi, A.; Vahidinia, A.; Taheri, M. Dissipation Behavior and Risk Assessment of Fungicide and Insecticide Residues in Grape under Open-Field, Storage and Washing Conditions. J. Clean. Prod. 2020, 270, 122287. [Google Scholar] [CrossRef]
- EFSA; Medina-Pastor, P.; Triacchini, G. The 2018 European Union Report on Pesticide Residues in Food. Efsa J. 2020, 18, 6057. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. The 2015 European Union Report on Pesticide Residues in Food. Efsa J. 2017, 15, e04791. [Google Scholar] [CrossRef]
- European Commission. Organic Farming. Available online: Https://Ec.Europa.Eu/Info/Food-Farming-Fisheries/Farming/Organic-Farming_en (accessed on 23 January 2021).
- Rahman, S.M.E.; Mele, M.A.; Lee, Y.-T.; Islam, M.Z. Consumer Preference, Quality, and Safety of Organic and Conventional Fresh Fruits, Vegetables, and Cereals. Foods 2021, 10, 105. [Google Scholar] [CrossRef]
- EC. Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and Control (consolidated text). Off. J. Eur. Union 2008, L 250, 1–84. [Google Scholar]
- Hou, X.; Xu, Z.; Zhao, Y.; Liu, D. Rapid Analysis and Residue Evaluation of Six Fungicides in Grape Wine-Making and Drying. J. Food Compos. Anal. 2020, 89, 103465. [Google Scholar] [CrossRef]
- Schusterova, D.; Suchanova, M.; Pulkrabova, J.; Kocourek, V.; Urban, J.; Hajslova, J. Can Occurrence of Pesticide Metabolites Detected in Crops Provide the Evidence on Illegal Practices in Organic Farming? J. Agr. Food Chem. 2019, 67, 6102–6115. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, M.W.; Benner, J.P.; Chun Lam, C.C.; Booth, J.D.; Clark, T.; Gledhill, A.J.; Roberts, K.J. Bioavailability of Common Conjugates and Bound Residues. In Pesticide Chemistry; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 383–393. ISBN 978-3-527-61124-9. [Google Scholar]
- Bauer, A.; Luetjohann, J.; Rohn, S.; Jantzen, E.; Kuballa, J. Development of a Suspect Screening Strategy for Pesticide Metabolites in Fruit and Vegetables by UPLC-Q-Tof-MS. Food Anal. Methods 2018, 11, 1591–1607. [Google Scholar] [CrossRef]
- Hu, M.; Tan, H.; Li, Y.; Qiu, J.; Liu, L.; Zeng, D. Simultaneous Determination of Tiafenacil and Its Six Metabolites in Fruits Using Ultra-High-Performance Liquid Chromatography/Tandem Mass Spectrometry. Food Chem. 2020, 327, 127015. [Google Scholar] [CrossRef]
- Chen, X.; Dong, F.; Xu, J.; Liu, X.; Wu, X.; Zheng, Y. Effective Monitoring of Fluxapyroxad and Its Three Biologically Active Metabolites in Vegetables, Fruits, and Cereals by Optimized QuEChERS Treatment Based on UPLC-MS/MS. J. Agric. Food Chem. 2016, 64, 8935–8943. [Google Scholar] [CrossRef]
- Mekonnen, T.F.; Byrne, L.; Panne, U.; Koch, M. Investigation of Chlorpyrifos and Its Transformation Products in Fruits and Spices by Combining Electrochemistry and Liquid Chromatography Coupled to Tandem Mass Spectrometry. Food Anal. Methods 2018, 11, 2657–2665. [Google Scholar] [CrossRef]
- Yang, M.; Luo, F.; Zhang, X.; Zhou, L.; Lou, Z.; Zhao, M.; Chen, Z. Dissipation and Risk Assessment of Multiresidual Fungicides in Grapes under Field Conditions. J. Agric. Food Chem. 2020, 68, 1071–1078. [Google Scholar] [CrossRef]
- Castro, G.; Pérez-Mayán, L.; Carpinteiro, I.; Ramil, M.; Cela, R.; Rodríguez, I. Residues of Anilinopyrimidine Fungicides and Suspected Metabolites in Wine Samples. J. Chromatogr. A 2020, 1622, 461104. [Google Scholar] [CrossRef]
- Berset, J.D.; Mermer, S.; Robel, A.E.; Walton, V.M.; Chien, M.L.; Field, J.A. Direct Residue Analysis of Systemic Insecticides and Some of Their Relevant Metabolites in Wines by Liquid Chromatography—Mass Spectrometry. J. Chromatogr. A 2017, 1506, 45–54. [Google Scholar] [CrossRef]
- Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and Non-Targeted Liquid Chromatography-Mass Spectrometric Workflows for Identification of Transformation Products of Emerging Pollutants in the Aquatic Environment. Trac Trends Anal. Chem. 2015, 66, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Polgár, L.; García-Reyes, J.F.; Fodor, P.; Gyepes, A.; Dernovics, M.; Abrankó, L.; Gilbert-López, B.; Molina-Díaz, A. Retrospective Screening of Relevant Pesticide Metabolites in Food Using Liquid Chromatography High Resolution Mass Spectrometry and Accurate-Mass Databases of Parent Molecules and Diagnostic Fragment Ions. J. Chromatogr. A 2012, 1249, 83–91. [Google Scholar] [CrossRef]
- European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed; SANTE/12682/2019; DG SANTE: Bruxelles, Belgium, 2019. [Google Scholar]
- Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC 2020 (consolidated text). Off. J. Eur. Union 2005, L 70, 1–16.
- Kaushik, G.; Satya, S.; Naik, S.N. Food Processing a Tool to Pesticide Residue Dissipation—A Review. Food Res. Int. 2009, 42, 26–40. [Google Scholar] [CrossRef]
- European Food Safety Authority. The 2016 European Union Report on Pesticide Residues in Food. Efsa J. 2018, 16, e05348. [Google Scholar] [CrossRef] [Green Version]
- Pazzirota, T.; Martin, L.; Mezcua, M.; Ferrer, C.; Fernandez-Alba, A.R. Processing Factor for a Selected Group of Pesticides in a Wine-Making Process: Distribution of Pesticides during Grape Processing. Food Addit. Contam. Part A 2013, 30, 1752–1760. [Google Scholar] [CrossRef]
- Scholz, R.; van Donkersgoed, G.; Herrmann, M.; Kittelmann, A.; von Schledorn, M.; Graven, C.; Mahieu, K.; van der Velde-Koerts, T.; Anagnostopoulos, C.; Bempelou, E.; et al. Database of Processing Techniques and Processing Factors Compatible with the EFSA Food Classification and Description System FoodEx 2 Objective 3: European Database of Processing Factors for Pesticides in Food. EFS3 2018, 15. [Google Scholar] [CrossRef]
- European Food Safety Authority. Review of the Existing Maximum Residue Levels (MRLs) for Acetamiprid According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2011, 9, 2328. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reasoned Opinion on the Review of the Existing Maximum Residue Levels (MRLs) for Azoxystrobin According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2013, 11, 3497. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reasoned Opinion on the Review of the Existing Maximum Residue Levels (MRLs) for Benalaxyl According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2013, 11, 3405. [Google Scholar] [CrossRef]
- European Food Safety Authority. Reasoned Opinion on the Review of the Existing Maximum Residue Levels (MRLs) for Cyprodinil According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2013, 11, 3406. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Modification of the Existing MRLs for Dimethomorph in Various Crops. Efsa J. 2010, 8, 1622. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation. Pesticide Residues in Food—2005: Fenhexamid. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/JMPR05report.Pdf (accessed on 13 July 2020).
- European Food Safety Authority. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Fenpropidin. Efsa J. 2008, 6, 124r. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Reasoned Opinion on the Modification of the Existing MRLs for Fenpyrazamine in Almonds, Grapes, Apricots, Peaches and Strawberries. Efsa J. 2012, 10, 2989. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Fludioxonil. Efsa J. 2007, 5, 110r. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Pesticide Residues in Food—2010: Fluopyram. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/Evaluation10/Fluopyram.Pdf (accessed on 13 July 2020).
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Iprovalicarb. Efsa J. 2015, 13, 4060. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Review of the Existing Maximum Residue Levels (MRLs) for Mepanipyrim According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2011, 9, 2342. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Review of the Existing Maximum Residue Levels (MRLs) for Dinocap According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2011, 9, 2340. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Review of the Existing Maximum Residue Levels (MRLs) for Metalaxyl-M According to Article 12 of Regulation (EC) No 396/2005. Efsa J. 2011, 9, 2494. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Pesticide Residues in Food—2003: Methoxyfenozide. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/Evaluation03/Methoxyfenozide_2003.Pdf (accessed on 13 July 2020).
- European Food Safety Authority. Modification of the Existing MRLs for Metrafenone in Table and Wine Grapes. Efsa J. 2011, 9, 1979. [Google Scholar] [CrossRef]
- EFSA; Brancato, A.; Brocca, D.; De Lentdecker, C.; Erdos, Z.; Ferreira, L.; Greco, L.; Jarrah, S.; Kardassi, D.; Leuschner, R.; et al. Modification of the Existing Maximum Residue Level for Penconazole in Grapes. Efsa J. 2017, 15, e04768. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Proquinazid. Efsa J. 2009, 7, 1350. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Pesticide Residues in Food—2004: Pyraclostrobin. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/Evaluation04/Pyraclostrobinaf.Pdf (accessed on 13 July 2020).
- Food and Agriculture Organisation. Pesticide Residues in Food—2007: Pyrimethanil. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/Evaluation07/Pyrimethanil.Pdf (accessed on 13 July 2020).
- European Food Safety Authority. Reasoned Opinion on the Modification of the Existing MRLs for Spirotetramat in Strawberries, Bananas, Table Olives, Pineapples and Shallots. Efsa J. 2013, 11, 3361. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Spiroxamine. Efsa J. 2010, 8, 1719. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Tebuconazole. Efsa J. 2014, 12, 3485. [Google Scholar] [CrossRef]
- European Food Safety Authority. Conclusion Regarding the Peer Review of the Pesticide Risk Assessment of the Active Substance Tebufenpyrad. Efsa J. 2009, 7, 192r. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation. Pesticide Residues in Food—2004: Trifloxystrobin. Available online: Http://Www.Fao.Org/Fileadmin/Templates/Agphome/Documents/Pests_Pesticides/JMPR/Evaluation04/TRIFLOXYSTROBIN.Pdf (accessed on 13 July 2020).
Sample Type | Total Sampled | Conventional | Organic |
---|---|---|---|
grapes (white/red) | 16 | 10 (6/4) | 6 (4/2) |
wines (white/rose/red) | 33 | 12 (1/0/11) | 21 (11/4/6) |
GRAPES | WINES | ||||||||
---|---|---|---|---|---|---|---|---|---|
Concentration of Residues [mg/kg] | Concentration of Residues [mg/kg] | ||||||||
Analyte (f/i) 1 | LOQ [mg/kg] | N | Minimum | Maximum | MRL 2 | N | Minimum | Maximum | MRL 3 |
acetamiprid (i) | 0.001 | 2 | 0.076 | 0.138 | 0.5 | 0 | 0 | 0 | 0.5 |
ametoctradin (f) | 0.001 | 2 | 0.002 | 0.002 | 6 | 0 | 0 | 0 | 6 |
azoxystrobin (f) | 0.001 | 1 | 0.07 | 0.07 | 3 | 0 | 0 | 0 | 3 |
benalaxyl (f) | 0.001 | 0 | 0 | 0 | 0.3 | 2 | 0.001 | 0.002 | 0.3 |
BAC C12 (f) | 0.001 | 0 | 0 | 0 | 0.1 | 1 | 0.005 | 0.005 | 0.1 |
boscalid (f) | 0.001 | 9 | 0.009 | 1.070 | 5 | 9 | 0.001 | 0.056 | 5 |
carbendazim (f) | 0.001 | 0 | 0 | 0 | 0.3 | 1 | 0.001 | 0.001 | 0.5 |
cyhalothrin-lambda (i) | 0.01 | 1 | 0.024 | 0.024 | 0.08 | 0 | 0 | 0 | 0.2 |
cyprodinil (f) | 0.001 | 4 | 0.010 | 0.300 | 3 | 1 | 0.014 | 0.014 | 3 |
DDAC (f) | 0.001 | 1 | 0.028 | 0.028 | 0.1 | 0 | 0 | 0 | 0.1 |
difenoconazole (f) | 0.001 | 2 | 0.001 | 0.002 | 3 | 0 | 0 | 0 | 3 |
dimethomorph (f) | 0.001 | 4 | 0.001 | 0.007 | 3 | 6 | 0.001 | 0.009 | 3 |
famoxadone (f) | 0.002 | 3 | 0.004 | 0.037 | 2 | 0 | 0 | 0 | 2 |
fenhexamid (f) | 0.002 | 4 | 0.101 | 1.110 | 15 | 11 | 0.003 | 0.086 | 15 |
fenpropidin (f) | 0.001 | 0 | 0 | 0 | 0.01 | 1 | 0.009 | 0.009 | 0.01 |
fenpyrazamine (f) | 0.001 | 0 | 0 | 0 | 3 | 1 | 0.027 | 0.027 | 3 |
fludioxonil (f) | 0.001 | 4 | 0.007 | 0.219 | 5 | 1 | 0.001 | 0.001 | 4 |
fluopicolide (f) | 0.001 | 1 | 0.002 | 0.002 | 2 | 4 | 0.004 | 0.004 | 2 |
fluopyram (f) | 0.001 | 3 | 0.006 | 0.081 | 1.5 | 6 | 0.001 | 0.023 | 1.5 |
imidacloprid (i) | 0.001 | 2 | 0.001 | 0.002 | 1 | 0 | 0 | 0 | 1 |
iprovalicarb (f) | 0.001 | 1 | 0.002 | 0.002 | 2 | 10 | 0.002 | 0.059 | 2 |
kresoxim-methyl (f) | 0.001 | 2 | 0.001 | 0.002 | 1.5 | 1 | 0.002 | 0.002 | 1.5 |
mandipropamide (f) | 0.002 | 0 | 0 | 0 | 2 | 2 | 0.002 | 0.002 | 2 |
mepanipyrim (f) | 0.001 | 2 | 0.001 | 0.001 | 2 | 0 | 0 | 0 | 2 |
meptyldinocap (f) | 0.001 | 1 | 0.04 | 0.04 | 1 | 0 | 0 | 0 | 1 |
metalaxyl (f) | 0.001 | 0 | 0 | 0 | 2 | 8 | 0.001 | 0.069 | 1 |
methoxyfenozide (i) | 0.001 | 1 | 0.024 | 0.024 | 1 | 7 | 0.001 | 0.012 | 1 |
metrafenone (f) | 0.001 | 0 | 0 | 0 | 7 | 1 | 0.001 | 0.001 | 7 |
myclobutanil (f) | 0.001 | 3 | 0.002 | 0.012 | 1.5 | 1 | 0.001 | 0.001 | 1.5 |
paclobutrazole (f) | 0.001 | 0 | 0 | 0 | 0.01 | 1 | 0.002 | 0.002 | 0.01 |
penconazole (f) | 0.001 | 5 | 0.002 | 0.044 | 0.5 | 0 | 0 | 0 | 0.5 |
proquinazid (f) | 0.001 | 1 | 0.097 | 0.097 | 0.5 | 0 | 0 | 0 | 0.5 |
pyraclostrobin (f) | 0.001 | 1 | 0.164 | 0.164 | 1 | 0 | 0 | 0 | 2 |
pyrimethanil (f) | 0.001 | 5 | 0.002 | 1.440 | 5 | 7 | 0.007 | 0.048 | 5 |
quinoxyfen (f) | 0.001 | 3 | 0.001 | 0.003 | 1 | 0 | 0 | 0 | 1 |
spiroxamine (f) | 0.001 | 0 | 0 | 0 | 0.6 | 1 | 0.003 | 0.003 | 0.5 |
tebuconazole (f) | 0.002 | 3 | 0.002 | 0.034 | 0.5 | 1 | 0.007 | 0.007 | 1 |
tebufenozide (i) | 0.001 | 0 | 0 | 0 | 4 | 1 | 0.013 | 0.013 | 4 |
tetraconazole (f) | 0.002 | 1 | 0.002 | 0.002 | 0.5 | 0 | 0 | 0 | 0.5 |
thiophanate-methyl (f) | 0.001 | 0 | 0 | 0 | 0.1 | 1 | 0.001 | 0.001 | 3 |
trifloxystrobin (f) | 0.001 | 2 | 0.015 | 0.028 | 3 | 0 | 0 | 0 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schusterova, D.; Hajslova, J.; Kocourek, V.; Pulkrabova, J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods 2021, 10, 307. https://doi.org/10.3390/foods10020307
Schusterova D, Hajslova J, Kocourek V, Pulkrabova J. Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods. 2021; 10(2):307. https://doi.org/10.3390/foods10020307
Chicago/Turabian StyleSchusterova, Dana, Jana Hajslova, Vladimir Kocourek, and Jana Pulkrabova. 2021. "Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System" Foods 10, no. 2: 307. https://doi.org/10.3390/foods10020307
APA StyleSchusterova, D., Hajslova, J., Kocourek, V., & Pulkrabova, J. (2021). Pesticide Residues and Their Metabolites in Grapes and Wines from Conventional and Organic Farming System. Foods, 10(2), 307. https://doi.org/10.3390/foods10020307